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Eli Shlizerman
Faculty of Mathematics and Computer Science

The Weizmann Institute of Science, Israel
eli.shlizerman@weizmann.ac.il

Vered Rom-Kedar
Faculty of Mathematics and Computer Science

The Weizmann Institute of Science, Israel
vered.rom-kedar@weizmann.ac.il

Abstract
The truncated and forced non-linear Schrödinger

(NLS) model is analyzed using a novel framework in
which a hierarchy of bifurcations is constructed. Con-
sequently, a classification of the types of instabilities
which are expected to appear due to the forcing is pro-
vided; It is shown that by introducing the forcing fre-
quency as a free parameter (it was set to one in most
of the previous studies), the behavior near the plane
wave solution for any periodic box length, in the rele-
vant amplitude regime for the truncated system, may be
set to one of six different types. Furthermore, three of
the six types are associated with chaotic behavior and
instabilities (homoclinic chaos, hyperbolic resonance
and parabolic resonance). Finally, a simple statistical
measure which distinguishes between the fundamen-
tally different types of instabilities is proposed.
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1 Introduction
The one dimensional non-linear Schrödinger equation

emerges as a first order model in a variety of fields
in Physics - from high intensity laser beam propaga-
tion to Bose-Einstein condensation to water waves the-
ory; since it is the lowest order normal form for the
propagation of strongly nonlinear dispersive waves its
appearance in such a wide range of applications is
mathematically obvious (see [Haller, 1999] and ref-
erences therein). The NLS is completely integrable
in one dimension on the infinite line (or with peri-
odic boundary conditions) and hence completely solv-
able. The realization that the integrable structure might
not persist under small perturbations, lead, almost two
decades ago [Bishopet al., 1986][Bishop and Lom-
dahl, 1986], to the development of a program in which
the influence of forcing and damping that break the
integrability of the PDE is considered. This program

included extensive numerical study of the perturbed
PDE’s which was presented in various forms. Since
the phase space is infinite dimensional - it is indeed
unclear which form supplies the best understanding of
the solutions structure. It was then suggested that a
finite dimensional model - a two mode Galerkin trun-
cation of the perturbed NLS - faithfully describes the
PDE dynamics when even and periodic boundary con-
ditions are imposed and theL2 norm of the initial data
is not too large [Bishopet al., 1990b; Bishop and Clif-
ford, 1996; Bishopet al., 1988; Caiet al., 2002]. The
study of the perturbed two-mode model and character-
ization of chaotic orbits in it is the main subject of this
paper.

Previous investigation of the truncated system lead
to the discovery of a new mechanism of instability -
the hyperbolic resonance - by which homoclinic solu-
tions to a lower dimensional resonance zone are created
[Kovacic and Wiggins, 1992; G.Kovacic, 1993; Haller
and Wiggins, 1995b; Haller and Wiggins, 1995a]. New
methodologies and tools introduced to this PDE-ODE
study have finally lead to a proof that the homoclinic
resonance dynamics, and in particular the birth of new
types of multi-pulse homoclinic orbits which is associ-
ated with it, has analogous behavior in the PDE setting
(see [Haller, 1999; Caiet al., 2002; McLaughlin and
Shatah, 1998] and references therein).

Here we provide a global analysis of the ODE model,
which includes a qualitative understanding of all the
relevant instabilities in the reduced model and the de-
velopement of a statistical tool for distinguishing be-
tween these solutions numerically. The main tools we
use for the analysis - the energy momentum bifurca-
tion diagrams, Fomenko graphs and the hierarchy of
bifurcations framework are developed in [Shlizerman
and Rom-Kedar, 2005; Litvak-Hinenzon and Rom-
Kedar, 2004], and rely upon the fundamental works of
[Lerman and Umanskiy, 1998] and [Fomenko, 1991].

The paper is ordered as follows: In Sec. 2 we describe
the NLS equation and the truncated two-mode model.
In Sec. 3 we discuss the integrable structure and con-



struct the hierarchy of bifurcation for our model. In
Sec. 4, we utilize the integrable structure analysis to
define the six fundamentally different types of motion
near the plane wave solution, and present various char-
acteristics of the three types of chaotic solutions. We
conclude in Sec. 5 by providing a statistical tool for
classification of the neighboring chaotic orbits directly.

2 The NLS Equation
Consider the following forced and damped NLS equa-

tion:

−iψT +ψXX+|ψ|2ψ = iε(αψ−ΛψXX+Γexp(−iΩ2T )),
(1)

with periodic boundary conditions and with even solu-
tions inX:

ψ(X,T ) = ψ(X + L, T ), ψX(0, T ) = 0.

Let

B = ψ exp(iΩ2T ). (2)

ThenB satisfies the same boundary conditions asψ
and the autonomous (time independent) equation:

−iBT +BXX +(|B|2−Ω2)B = iε(αB−ΛBXX +Γ).
(3)

This equation was extensively studied in the last two
decades [Bishopet al., 1990a; Bishop et al., 1990b;
Bishop and Clifford, 1996; Bishopet al., 1988; Bishop
et al., 1986], and in this section we will mention only
the relevant results. In this context, the perturbed NLS
was first derived as a small amplitude envelope approx-
imation of the damped driven Sine-Gordon Equation
(SGE) when the driving force is in the near resonance
frequency. Then,Ω = 1 and the only parameter ap-
pearing in the unperturbed system is the box sizeL.
The space of spatially uniform solutions (B(X,T ) =
1√
2
c(T )) is invariant under the perturbed flow (1) and

the unperturbed solutions are of the formc(T ) =
|c(0)| exp[i(Ω2− 1

2 |c(0)|2)T + iγ(0)]. Linear stability
analysis of such solutions atε = 0 shows that there is
exactly one unstable mode,cos 2π

L X, when

2π
L
< |c(0)| ≤ 4π

L
(4)

whereas for lower values of|c(0)| the plane wave so-
lution is linearly stable (neutral). We see that for large
box size the plane wave solution is unstable even for
small amplitude, as expected.
Consider a two mode complex Fourier truncation for

equation (3):

B2(X,T ) =
1√
2
c(T ) + b(T )coskX, (5)

where the periodic boundary conditions imply that

k =
2π
L
j, j ∈ Z+, (6)

and since we are interested in the first unstable mode
we take j = 1. Substituting this solution to the
NLS equation (3), settingα = Λ = 0 and Γ = 1,
and neglecting (see [Bishopet al., 1990a; Bishop et
al., 1990b; Bishop and Clifford, 1996; Bishopet al.,
1988; Bishopet al., 1986; Bishopet al., 1983; Bishop
and Lomdahl, 1986; Caiet al., 2002] for discussion of
this step) higher Fourier modes, we obtain the follow-
ing equations of motion:

− iċ+
(

1
2
|c|2 +

1
2
|b|2 − Ω2

)
c+

1
2
(cb∗ + bc∗)b = i

√
2ε

(7)

− iḃ+
(

1
2
|c|2 +

3
4
|b|2 − (Ω2 + k2)

)
b+

1
2
(bc∗ + cb∗)c = 0.

Here |b| is the amplitude of the first symmetric mode
and 1√

2
|c| is the amplitude of the plane wave. These

equations are of the form of a two degrees of freedom
near integrable Hamiltonian system with the Hamilto-
nian:

H(c, c∗, b, b∗; ε) = H0(c, c∗, b, b∗) + εH1(c, c∗, b, b∗),
(8)

and the Poisson brackets {f, g} =
−2i

(〈
∂
∂c ,

∂
∂c∗

〉
+

〈
∂
∂b ,

∂
∂b∗

〉)
, where

H0 =
1
8
|c|4 +

1
2
|b|2|c|2 +

3
16
|b|4 − 1

2
(Ω2 + k2)|b|2

− Ω2

2
|c|2 +

1
8
(b2c∗2 + b∗2c2) (9)

H1 =
−i√

2
(c− c∗).

Furthermore, atε = 0, these equations possess an ad-
ditional integral of motion:

I =
1
2
(|c|2 + |b|2) (10)

and thus are integrable, see [Bishopet al., 1988; Bishop
et al., 1986; Caiet al., 2002].

Remark 1. We expect the two-mode model to apply for
regions in which the plane wave solution has at most
one unstable mode. Using 4 and 10 it follows that near
the circle b = 0 we should expect the analysis to be
valid for I ≤ 2k2. Interestingly enough, we see that
exactly at thisI value the symmetric mode solutions
lose their stability.



To understand the perturbed motion of the truncated
model we study the integrable structure by the gen-
eral framework of ”hierarchy of bifurcations”. See
[Shlizerman and Rom-Kedar, 2005; Shlizerman and
Rom-Kedar, 2004; Litvak-Hinenzon and Rom-Kedar,
2004] for the description of this general framework.

3 Integrable Structure of the Truncated System
For the truncated system we consider the following

transformation to generalized action angle co-ordinates
for c 6= 0 [Kovacic and Wiggins, 1992]; taking

c = |c| exp (iγ) , b = (x+ iy) exp (iγ) (11)

so thatI = 1
2 (|c|2 + x2 + y2), one obtains the general-

ized action angle canonical coordinates for the Hamil-
tonian:

H(x, y, I, γ) = H0(x, y, I) + εH1(x, y, I, γ),

where

(I, γ) ∈ (R+ × T ),

(x, y) ∈ BI = {(x, y)|0 ≤ x2 + y2 < 2I}

and

H0(x, y, I) =
1
2
I2 − Ω2I + (I − 1

2
k2)x2 − 7

16
x4

− 3
8
x2y2 +

1
16
y4 − 1

2
k2y2, (12)

H1(x, y, I, γ) =
√

2
√

2I − x2 − y2 sin γ. (13)

The transformation to these variables is singular at
c = 0, namely on the circle2I = x2 + y2, where
the phaseγ is ill defined and the perturbation term has
a singular derivative. In Kovacic and Haller [Kovacic
and Wiggins, 1992; G.Kovacic, 1993; Haller and Wig-
gins, 1995b; Haller and Wiggins, 1995a] the analy-
sis was performed for phase space regions which are
bounded away from this circle. Here, to better under-
stand the dynamics near this circle, we introduce a sim-
ilar transformation which is valid as long asb 6= 0:

b = |b|eiθ , c = (u+ iv)eiθ , I =
1
2
(u2 + v2 + |b|2)

(14)
We thus obtain the equation of motion in the canonical
coordinates(u, v, I, θ) from the Hamiltonian:

H0(u, v, I) =
3
4
I2 +

(
−Ω2 +

3
4
u2 − 1

4
v2 − k2

)
I

− 7
16
u4 − 3

8
u2v2 +

1
2
k2u2 +

1
2
k2v2 +

1
16
v4

H1(u, v, I) =
√

2(v cos θ + u sin θ).

When bothγ andθ are well defined, namely forcb 6= 0,
the two sets of coordinates are simply related:

x = |b| cos(θ − γ) y = |b| sin(θ − γ)

u =
|c|
|b|
x, v = −|c|

|b|
y.

It follows that forx2 + y2 < 2I we have:

dγ

dt
= ω(x, y, I) = I−Ω2+x2 =

∂H0(x, y, I)
∂I

(15)

and foru2 + v2 < 2I we have:

dθ

dt
= ω(u, v, I) =

3
2
I−Ω2+

3
4
u2−1

4
v2−k2 =

∂H0(u, v, I)
∂I

.

(16)
Consider the truncated model in appropriate gener-

alized action angle co-ordinates, i.e.H0(q, p, I; k,Ω)
where(q, p) stands for either(x, y) or (u, v) in repre-
sentation 11 and 14 respectively. Each energy surface
is foliated by the level sets which are composed of ei-
ther a few two dimensional tori, circles and possibly
their separatrices or isolated fixed points. In our system
there is only one isolated fixed point at(q, p, I; k,Ω) =
(0, 0, 0; k,Ω). A circle in the full phase space corre-
sponds to an isolated fixed point in the normal plane
(q, p), namely to a pointpf = (qf , pf , If ) at which
∂H0
∂q

∣∣∣
pf

= ∂H0
∂p

∣∣∣
pf

= 0. For our model, there are six

families of such circles as listed in Table 1.
Following [Lerman and Umanskiy, 1998] terminol-

ogy, the circles are called here singular circles and the
curves of energy and action values(H0(pf ), I(pf ))
corresponding to these circles are called singularity
surfaces. The structure of these singularity surfaces,
plotted in the energy-momentum space, serves as an
organizing skeleton of the energy surfaces.
Locally, in the (q, p, I; k,Ω) coordinate system, the

normal stability of an invariant circle is determined by

det
(

∂2H0
∂2(q,p)

∣∣∣
pf

)
= −λ2

pf
. Indeed, whenλp

f
is real

and non-vanishing the corresponding circle is said to
be normally hyperbolic, when it vanishes it is called
normally parabolic and when it is pure imaginary it is
normally elliptic, see the detailed references in [Litvak-
Hinenzon and Rom-Kedar, 2004] and the discussion in
[Bolotin and Treschev, 2000]. For our example these
calculations show that the first and third families of in-
variant circles become parabolic atI = 1

2k
2 whereas

the second and fourth families are parabolic atI = 2k2.

3.1 Hierarchy of Bifurcations
We use two essential tools to describe the energy sur-

faces and the the singularity surfaces of the truncated
model: the Energy Momentum Bifurcation Diagram
(EMBD) and the Fomenko graphs (see section 3.2). We



Invariant circle: θ, γ ∈ T 1 Exists For Elliptic For Hyperbolic For Description

1. ppw = (x = 0, y = 0, I, γ) I ≥ 0 I < 1
2k

2 I > 1
2k

2 Plane wave

2. psm = (u = 0, v = 0, I, θ) I ≥ 0 I < 2k2 I > 2k2 Symmetric mode

3. p±pwm =

(x = ±
√

4
7 (−k2 + 2I), y = 0, I, γ) I ≥ 1

2k
2 I ≥ 1

2k
2 - PW mixed mode

(u = ±
√

6
7I + 4

7k
2, v = 0, I, θ) I > 1

2k
2 I > 1

2k
2 - ”

4. p±smm =

(x = 0, y = ±2k, I, γ), I > 2k2 I > 2k2 - SM mixed mode

(u = 0, v = ±
√

2I − 4k2, I, θ) I ≥ 2k2 I ≥ 2k2 - ”

Table 1. Singular circles and their normal stability.

delineate the energy and parameter space of the inte-
grable family of Hamiltonian systemsH0(q, p, I; k,Ω)
by using these tools to construct the following hierar-
chy of bifurcations:

1. Single energy surface. The first level consists of
the values of the constants of motion across which
the topology of the level sets on a given energy sur-
faceH0(q, p, I; k,Ω) = h is changed. These are
the values at which the level sets include isolated
circles, namely the values at which the singularity
surfaces cross the vertical surfaceH0 = h on the
EMBD, and thus these correspond to the vertices
in the Fomenko graphs.

2. Energy bifurcation values. The second level con-
sists of the energy bifurcation valueshb at which
the form of the Fomenko graph changes, namely
across which the energy surfaces are no longer
equivalent. Thus, it describes how the energy sur-
face differential topology is changed withh.

3. Parameter dependence of the energy bifurcation
values. The third level consists of the bifurcating
parameter valueskb,Ωb at which the bifurcation
sequence of the second level changes (by either
changing the order of the energy bifurcating values
or by adding/substracting one of the energy bifur-
cation values).

Next we will describe how we construct each level of
the hierarchy for our model, and then we demonstrate
numerically that typically each of these bifurcations is
associated with a different type of perturbed motion in
its vicinity.

3.2 Level 1: Single Energy Surfaces
Calculation of the singular surfaces and the normal

stability of the lower dimensional tori are the first
steps in depicting the global structure of the energy
surfaces. Theenergy-momentum bifurcation dia-
gram (EMBD) is constructed by plotting the singular
surfaces -(H0(pf (I)), I) in the (h, I) plane, where
(pf (I)) are given by the six families of Table 2.

H0(xf , yf , I) Evaluation

1. H(xpw, ypw, I) = H(0, 0, I) = ( I2

2
− Ω2I)

2. H(usm, vsm, I) = H(0, 0, I) = 3
4
I2 − (k2 + Ω2)I

3. H(x±pwm, y±pwm, I) = 15
14

I2 − (Ω2 + 4
7
k2)I + 1

7
k4

4. H(u±smm, v±smm, I) = I2

2
− Ω2I − k4

Table 2. Singular surfaces. Hamiltonian at the singular
circles.

Figure 1. EMBD fork = 1.025, Ω = 1.

In figure 1 we plot these curves for the non-
dimensional wave numberk = 1.025 and Ω2 = 1,
the parameter values used in previous works [Bishopet
al., 1990a; Bishopet al., 1990b; Bishop and Clifford,
1996; Bishopet al., 1988; Bishopet al., 1986; Bishop
et al., 1983]. We use the usual convention in bifurca-
tion diagrams by which normally stable circles are de-
noted by solid lines whereas normally hyperbolic cir-



cles are denoted by dashed lines (see Table 1). Differ-
ent colors are used for the different families of invariant
circles (Thick and thin black line1 for the plane wave
and its bifurcating branch and thick and thin grey line2

for the symmetric mode and its bifurcation branch).
The allowed region of motion is shaded - for each point
(h, I) in this shaded region there are(c, b) values sat-
isfying H0(c, b) = h, I = 1

2 (|c|2 + |b|2). An energy
surface in this diagram is represented by the intersec-
tion of a vertical line with the allowed region of motion.
The topology of the level sets for differentI values on
a given energy surface is represented by the Fomenko
graphs.
The Fomenko graphs are constructed by assigning to

each connected component of the level sets (on the
given energy surface) a point on the graph, so there
is a one-to-one correspondence between them (see
[Fomenko, 1991][Litvak-Hinenzon and Rom-Kedar,
2004]). Then, an edge of this graph corresponds to a
regular one parameter family of two tori whereas ver-
tices correspond to singular values of(h, I) at which
some families of tori glue together or shrink to a singu-
lar circle. In the standard construction of the Fomenko
graphs [Fomenko, 1991] the main objective is the study
of the topology of the surfaces and the level sets, hence,
for example, all the normally elliptic singular circles
are assigned with the same symbol (molecule ”A”).
Here, we distinguish between the different singular cir-
cles as these correspond to different dynamic in the
NLS. Thus, we denote the invariant circles correspond-
ing to the plane wave family (ppw) and the invariant
circles which emanate from them (p±pwm), by open and
full triangles respectively. The invariant circles corre-
sponding to the symmetric mode family (psm) and the
invariant circles which emanate from them (p±smm), are
denoted by open and full circles. In this way the topo-
logical changes of the level sets are discovered and the
energy surface may be reconstructed from these graphs.
The vertical line on Fig. 1 indicates the energy value

for which the Fomenko graph is shown in Fig. 2. In
this figure the relation between the energy momentum
bifurcation diagram, the Fomenko graph and the en-
ergy surface is demonstrated. Projections of the energy
surface are plotted twice; the energy surface is the two
dimensional surface in the(x, y, I) space (respectively
(u, v, I) space) multiplied, for allc 6= 0 (for all b 6= 0),
by the circleγ ∈ S1 (θ ∈ S1). The redundant presen-
tation in the(u, v, I) space is shown to better explain
the level sets topology near the circlec = 0 where the
transformation to the(x, y, I) co-ordinates is singular.
We observe that these Fomenko graphs encode all

needed information for the reconstruction of the en-
ergy surfaces, without the explicit computation of the
corresponding energy surfaces[Fomenko, 1991]. In
[Shlizerman and Rom-Kedar, 2005] we present the full
sequence of Fomenko graphs for this model for sev-
eral parameter values, and using the above coding the

1blue and red
2magenta and green

corresponding energy surfaces may be found. We note
that a similar construction using branched surfaces for
somen d.o.f. systems has been recently suggested
(see [Litvak-Hinenzon and Rom-Kedar, 2004] and ref-
erences therein).

Figure 2. EMBD, Fomenko graph and energy surfaces (modeS1)

for k = 1.025, Ω = 1, h = −0.44.

3.3 Level 2: Bifurcating Energy Values
Intersecting the energy-momentum bifurcation dia-

grams with a vertical line (hyper-surface in then d.o.f.
case) and constructing the corresponding Fomenko
graphs (branched surfaces) leads to a full description
of a given energy surface. It follows that many changes
in the differential topology of the energy surfaces can
be easily read off from these diagrams (the EMBD) -
they correspond to singularities - folds, branchings, in-
tersections or asymptotes - of the singularity surfaces.
Furthermore, some of these singularities of the singu-
larity surfaces are also associated with some dynami-
cal phenomena (e.g. resonances and parabolicity). We
will describe here only folds and branchings, as these
are the only singularities of the plane wave curve which
occur in the relevant range ofI values, see [Shlizerman
and Rom-Kedar, 2005] for the full analysis and descrip-
tion.

3.3.1 Folds in the singularity surfaces and Reso-
nances Clearly (see for example Fig. 1) the energy
surfaces change their topology whenever there is a fold
in the singularity surfaces. Furthermore, it was estab-
lished (see [Litvak-Hinenzon and Rom-Kedar, 2004])
that folds of non-parabolic singularity surfaces corre-
spond to strong resonance relations for the lower di-
mensional invariant tori:

dH

dI
(p∗f ) = 0 ⇔ ·

γ
∣∣∣
p∗f

= 0.

In particular, a minima (or maxima) of the singular-
ity surfaceH0(qf , pf , If ) of the non-parabolic tori
(qf , pf , If ) corresponds to a circle of fixed points.
Hence, to find a set of bifurcating energies we need to
list the extremum of the surfacesH0(qf , pf , If ) for



the various singularity manifolds and verify that these
are non-degenerate. In Table 3 we list theI values for
which folds are created for the six singular surfaces
of Table 2 and the values ofI for which the singular
circles are parabolic (Table 1).

I-resonance I-parabolic Parabolic Res.

1. Ipw
r = Ω2 Ipw

p = 1
2
k2 kpr−pw =

√
2Ω

2. Ism
r = 2k2+2Ω2

3
Ism

p = 2k2 kpr−sm =
√

1
2
Ω

3. Ipwm
r = 4k2+7Ω2

15
Ipw

p = 1
2
k2 kpr−pw =

√
2Ω

4. Ismm
r = Ω2 Ismm

p = 2k2 kpr−sm =
√

1
2
Ω

Table 3. Resonant and parabolic singular circles.

Using the resonantI values of Table 3 in Table 2 we
conclude that the following energy values correspond
to bifurcations due to the resonances/folds, of the plane
wave branch:

hpw
r = −1

2
Ω4, (17)

At this energy the corresponding family of circlesppw

has a circle of fixed points.

3.3.2 Branching surfaces and parabolic circles
Another source for bifurcations in the energy surface
structure appears when the singularity surface splits.
For the two degree of freedom case such a splitting
is associated with the appearance of a parabolic circle
(for then d.o.f. case we look for a fold in the surface
of parabolic tori, namely we look for ann − 2 reso-
nant parabolicn − 1 tori, see [Litvak-Hinenzon and
Rom-Kedar, 2004] for precise statement). Thus, the
appearance of the parabolic circlepsm at h = hsm

p

from which the branches of circlesp±smm emerge im-
plies that for energies below this value no such circles
appear, and the Fomenko graph has no splitting to two
branches whereas larger energies have these two circles
as the upper boundary of the energy surface. In Table
3 we list the parabolic values ofI. Plugging these val-
ues in Table 2 we find an additional energy bifurcation
value which is associated with the plane wave:

hpw
p =

1
2
k2(

1
4
k2 − Ω2) (18)

3.4 Level 3: Parametric Bifurcations
The EMBD clearly depends on the parameters of the

problem, the wave numberk and the forcing frequency
Ω. When the order of the energy bifurcation values
changes as these parameters are varied, a parametric
bifurcation occurs. In Fig. 3 a bifurcation diagram
of the energy bifurcation values associated with the
plane wave is shown - the energy values at which the
plane wave is resonant (hrpw), parabolic (hppw) and

the energy values at which the mixed mode solutions
emanating from the plane wave solution are resonant
(hrpwm), are drawn as a function ofΩ. The crossing of
these curves in the diagram corresponds to a bifurca-
tion of the EMBDs-for this value ofΩ the plane wave
is both resonant and parabolic, and the sequence of the
Fomenko graphs changes across this value ofΩ.

Figure 3. Bifurcation diagram of the energy bifurcation values for

k = 1.025, Ω is varied.

Recall that our model is valid for relatively small pe-
riodic lengths, so that the NLS pde possesses only one
linear unstable mode; therefore,L is traditionally cho-
sen asL ≈ 6.12 an thusk ≈ 1.025. Another tradition
in this context is to consider the NLS as a valid ap-
proximation of the SGE equation, which implies that
Ω2 ≈ 1. Studying the truncated perturbed NLS inde-
pendently, we allow both parametersk andΩ to be free.
Repeating the construction of the integrable structure

for the truncated system with these two free bifurcation
parameters we find that the fixed points of the normal
plane(x, y) and their stability depend only onk and
this dependence does not change the order by which
the solutions change their stability asI grows nor their
type (see Table 1). However, constructing the next
levels of the hierarchy reveals that the EMBD curves
change with(k,Ω) (Table 2) and the bifurcating val-
ues (Table 3) change as well. Thus,the parameterΩ
provides additional control for the energy bifurcation
values. We show next that at these bifurcation values
different types of chaotic behavior appear.

4 Temporal chaos near plane wave
We propose that the above detailed understanding of

the unperturbed structure immediately translates into a
qualitative understanding of the perturbed motion. Our
main interest here is in the perturbed solutions near the
spatially uniform plane wave.
The behavior near the the plane wave solution (singu-

lar surface 1 in table 2) depends primarily on its local
stability and on the rotation rate on it (γ̇). If it is a nor-
mally elliptic circle we have the usual Birkhoff normal



form/resonant behavior depending on the ratio between
the normal and inner frequencies of the plane wave cir-
cle. When the plane wave corresponds to a hyperbolic
circle, for sufficiently small perturbation its separatri-
ces split and, iḟγ is bounded away from zero, the usual
chaotic zone of area preserving maps appears in the
Poincaŕe map inγ. We will refer to this behavior as
homoclinic chaos. When the plane wave corresponds
to a non-resonant parabolic circle, the perturbed mo-
tion near it stays close to the integrable circle just as
in the elliptic case, since the separatrix is small and its
splitting is exponentially small in the distance from the
bifurcation point.
The behavior of the perturbed orbits changes dramat-

ically near strong resonances; When the rotation rate
vanishes (̇γ = 0), the strongest resonance is created - a
circle of fixed points appears. For normally elliptic res-
onant circles, perturbation leads to the usual resonance
phenomena. When a normally hyperbolic circle be-
comes resonant, there is a family of heteroclinic orbits
connecting pairs of fixed points on the circle. Under
perturbation this family creates ahyperbolic resonance
zone, see [Haller, 1999; Kovacic and Wiggins, 1992].
When the singular circle is parabolic and resonant - a
parabolic resonanceis created, and a small perturba-
tion leads to dramatically different dynamics than in
other types of resonances. The initial conditions near
the invariant circle do not stay close to it as in the
case of periodic motion on a non-resonant parabolic
circle [Rom-Kedar, 1997]. We proceed by presenting
the phase space and the numerical solutions of the per-
turbed orbits for the three fundamentally different types
of chaotic motion described above: homoclinic chaos
(which corresponds to a point on an unstable singular
curve - a bifurcation of the first level), hyperbolic res-
onance (which corresponds to a fold - bifurcation of
the second level) and parabolic resonance (which cor-
responds to a fold and branching at the same point -
bifurcation of the third level).
Notice that once we have found the perturbed mo-

tion of the two-mode model we are able to recover
B(X,T ) - the approximated solution of the NLS equa-
tion (5). The relation between the solution in the
(x, y, I, γ) space to the truncated solutionB2(X,T )
and hence to the truncated solutionψ2(X,T ) =
B2(X,T ) exp(−iΩ2T ) of the time dependent equation
is easily found forc 6= 0 via the transformations (5,11):

B2(X,T ) = (

√
I(T )− 1

2
(x2(T ) + y2(T )) (19)

+ (x(T ) + iy(T )) cos kX) exp(iγ(T ))

ψ2(X,T ) = B2(X,T ) exp(−iΩ2T ),

To understand the nature of these solutions, we
present them in several ways (Figs. 4, 5 and 6). In di-
agrams (A),(C),(F) and (G) of these figures we use the
action angle coordinates(x, y, I, γ) to achieve an effec-
tive comparison between the perturbed and the underly-

ing unperturbed structures. In addition to the standard
(x, y) presentation of the Poincaré sections inγ we in-
clude the Probability Distribution Function (PDF) of
the return times to the section.
In diagrams (B),(D) and (E) we do not apply any coor-

dinate transformation and consider the recovered solu-
tion, which can be a solution of the NLS pde as well. In
previous works it was suggested that plots of|B(X,T )|
as a function of(X,T ) for a small interval of time (will
be referred to asthe amplitude plot) reveal the differ-
ence between regular and chaotic motion. Besides the
space-time profiles (the amplitude plots) we construct
similarly to [McLaughlin and Overman, 1995; Caiet
al., 2002], the diagram(Re{B(0, T )}, Im{B(0, T )})
for some intervalT (we will call this representation a
B-plane plot). We are allowed to consider the solution
atX = 0, since in the autonomous NLS equation (2)
the choice of even solutions ensures that the soliton will
be centered atX = 0 or atX = ±L

2 .
In Sec. 3.4 we have shown that the parametersk

andΩ2 control the stability of the invariant circles and
the rotation rate. By manipulating these parameters
we are able to produce the three types of perturbed
orbits which we discuss here. For consistency with
the previous works [Bishopet al., 1990a; Bishop et
al., 1990b] we have set the parameters in parabolic res-
onance and homoclinic chaos tok = 1.025 and have
chosen to varyΩ. In the hyperbolic resonance case we
have chosen to set(k,Ω) to (0.8,

√
1.79) for which the

phase shift along the homoclinic loop is approximately
π (∆γ = π). Then a stability island which shadows
the resonance zone in the invariant plane is seen.

4.1 Homoclinic chaos and Hyperbolic resonance
Homoclinic chaos in the truncated model is formed

when the plane wave possesses homoclinic loops, or
in other words - unstable. From Table 1, we can pre-
dict that forIpw > 1

2k
2 the perturbed solutions near the

plane wave will exhibit homoclinic chaos for almost all
Ω values. The chaotic zone is created in thex−y coor-
dinates, with uniformity in the angle variable, since for
almost allΩ the motion rate does not vanish (|γ̇| > 0).
The motion near hyperbolic resonant circles is of com-

pletely different nature [Kovacic and Wiggins, 1992;
G.Kovacic, 1993; Haller and Wiggins, 1995b; Haller
and Wiggins, 1995a]. Of particular interest for the
NLS model are the hyperbolic resonant plane wave cir-
cles which exist whenIpw

p = 1
2k

2 < Ipw
r = Ω2.

WhenΩ = 1 these appear only for small wave num-
bers (k <

√
2), namely for sufficiently large intervals.

By introducing the additional parameterΩ we see that
for any k value there is an interval ofΩ values for
which the resonant plane wave circle is hyperbolic: it
is hyperbolic for allΩ > Ωpr−pw = 1√

2
k. Here, we

show some perturbed trajectories which appear near
the hyperbolic resonance regime. In Fig. 5 a trajec-
tory which is trapped in a stability island is shown. We
see that the main difference between the regular homo-
clinic chaos and the hyperbolic resonant chaotic motion



Figure 4. A perturbed orbit near a family of hyperbolic circles fork = 1.025, Ω2 = 1, ε = 1√
2
10−4. Initial Conditions:

(c(0), b(0)) = (
√

3, 10−6) i.e. (x(0), y(0), I(0), γ(0)) = (10−6, 0, 1.5, 0). Red marker stands for a soliton centered at

X = 0 (right side of the plane wave) and the green marker stands for a soliton centered atX = ±L/2 (left side of the plane wave).

has to do with the non-uniformity in the angle variable
- thus it is not observable in the amplitude plot but is
clearly seen in theB plane plots. We also observe a
spread ofO(

√
ε) in (I, x, y) near the hyperbolic res-

onance regime, however the spread is not robust and
depends strongly on the choice of initial conditions. In
figure 4 we show the behavior near regular homoclinic
orbits whereas figure 5 shows the behavior near res-
onant homoclinic orbits. We note that in these plots
typical chaotic orbits are shown - these orbits shadow
some of the countable infinity of multipulse homoclinic
and heteroclinic orbits that exist due to the transverse
separatrix crossings (see [Haller, 1999] and references
therein).

4.2 Parabolic resonance
Parabolic resonance is a bifurcation in the energy sur-

face structure, which appears when the singularity sur-
face has a cusp and a fold of one of the branches (or
split in the symmetric case). In Sec. 3.3.2 we found the
energy functionhpw

p (Eq. 18) for bifurcations which
appear due to singularity surface branchings. The be-
havior near a branching point is not simple - to analyze
it one needs to understand how Hamiltonian trajecto-
ries cross bifurcations [Lebovitz and Pesci, 1995]. It
appears that the action in the normal plane is a key in-
gredient in understanding the perturbed motion as it is
adiabatically preserved [Neishtadt, 1975]. In Fig. 6
the difference between parabolic resonance and other
types of motion is demonstrated numerically. This phe-
nomenon can be described as a combination of a local-
ization of elliptic resonance (can be seen in(I−γ) plot)
and instabilities due to hyperbolic resonance (can be

seen in(x, y, I) plot). Notice the strong non-uniformity
in theB-plane plot and the long tail which appears in
the PDF of the return times. Finally, notice the paths of
the trajectory in the EMBD plot which strongly sug-
gests that indeed adiabatic description of some seg-
ments of the motion is appropriate.
It is important to notice that by remark 1, for all

Ω <
√

2k, the above scenarios of plane wave parabolic
resonance, hyperbolic resonance and homoclinic chaos
occur in the range at which the NLS has only one un-
stable mode.

5 Characterization of the perturbed solutions
Consider an even solutionB(X, t) of the perturbed

NLS equation (Eq. 3) (either a solution of the PDE or
a recovered truncated solution), and examine|B(0, t)|.
Our aim is to find the signatures of the different insta-

bilities discussed above on the signal|B(0, t)|. Such a
measure or a technique should suggest simple classifi-
cation of the perturbed orbits and will be a good can-
didate for comparison of the truncated recovered so-
lution with numerical solutions of the perturbed NLS
equation. Though we can calculate the first two Fourier
modes of such solutions and reconstruct the phase dia-
grams similar to the the previous section, we believe a
simpler characterization may be of importance for fast
and crude classification which is not as dependent on
the low dimensional phase space structure. Observe the
upper diagrams of figure 7 in which the signal|B(0, t)|
is presented for three types of reconstructed trajecto-
ries. It is clearly seen that the maxima of these signals
has quite a different behavior. Now, it follows from
Eq. 19 that the expression|B0|max and|xmax|, which



Figure 5. A perturbed orbit near a family of hyperbolic resonant circles fork = 0.8, Ω2 = 1.79, ε = 1√
2
10−4. Initial Conditions:

(c(0), b(0)) = (
√

2, 10−5 + 10−5i)e1.8i i.e. (x(0), y(0), I(0), γ(0)) = (10−5, 10−5, 1.79, 1.8). An island of stability is

detected.

Figure 6. A perturbed orbit near a family of parabolic resonant circles fork = 1.025, Ω2 = k2/2, ε = 1√
2
10−4. Initial Conditions:

(c(0), b(0)) = (
√

2, 10−6) i.e. (x(0), y(0), I(0), γ(0)) = (10−6, 0, 1, 0).

is the intersection of the homoclinic orbit to the plane
wave with the x-axis, are analogous. Since at homo-
clinic chaos and at hyperbolic resonance the trajecto-
ries follow closely the separatrix, the narrow distribu-
tion of the maximal values|xmax| (and hence|B0|max)
measures the non-uniformity of the cross-section of the
chaotic zone with the x-axis near|xmax|. On the other
hand, at parabolic resonance the trajectories pass grad-
ually from the vicinity of elliptic circles to the vicin-

ity of hyperbolic circles and vice versa and this results
in a gradual change inxmax and correspondingly in
|B0|max, see the(x, y, I) diagrams in Figs. 4,5 and 6.

Therefore, we define the set of maximal values of



Figure 7. Upper graphs (from left to right): short evolution of|B(0, t)| for parabolic resonance, hyperbolic resonance and homoclinic chaos.

Lower graph: PDF of|B0|max and calculation ofσmax. The color and the marker correspond to the color and the marker of the maximal

points of each type of motion.

|B(0, t)| as:

|Bj
0|max = |B(0, tj)| s.t.

d

dt
|B(0, tj)| = 0 &

d2

dt2
|B(0, tj)| < 0 &

|B(0, tj)| > Bpw =
1√
2
|c|,

where the last inequality guaranties that we consider
only the maximal values ofx on the right half nor-
mal plane in our generalized action-angle presentation.
In Fig. 7 we show the PDF of|B0|max for fixed
ε = 1√

2
10−4, from which we substantiate that there

is a different distribution of|B0|max for different types
of motion. To quantify this observation, we compute
the normalized standard deviationσmax of the set of
maximal values of|B0|max:

σmax =

√
< |B0|max >2 − < |B0|2max >

< |B0|max >
. (20)

We assert thatσmax supplies a crude measure for the
width of the chaotic zone in the x-y plane and hence
may be used to distinguish between the trajectories. In-
deed, it is clear from figure 7 that for a fixedε, σmax of
a parabolic resonant orbit is much larger from theσmax

of a hyperbolic resonant orbit or of a chaotic orbit near
a hyperbolic periodic orbit.
In Fig. 8 we examine the dependence ofσmax on the

perturbation parameterε. To construct Fig. 8 we inte-
grated, for each case and eachε value,10 initial condi-
tions all having the same(I, x, y, γ) values as in Figs.
4-6, for a time interval which has a sufficient number

Figure 8. Dependence ofσmax onε.

of |B0|max samples. Another and more reliable possi-
bility, which we intend to apply in further study, is to
choose the same time interval in all three cases. Our
assertion, thatσmax essentially measures the width of
the chaotic zone, implies thatσmax should be of or-
derO(εp): for homoclinic chaos we expectp ' 1, for
hyperbolic resonancep ' 1

2 and for parabolic reso-
nance we expect that0 < p < 1

2 . The fitted slopes of
Fig.8: phc = 0.837± 0.182, phr = 0.551± 0.159 and
ppr = 0.32 ± 0.086 support our assertion. In particu-
lar, the slope for the parabolic resonance is well sepa-
rated from the other cases. In our example, precise dis-
tinction between hyperbolic resonance and homoclinic
chaos is achieved as well. However, the value ofphr

is not as robust asphc andppr are. In particular, it ap-
pears that our choice of parameters which insure that
∆γ ' π is essential for obtaining robust results. Other
parameter values produce in many casesphr ' 1, and
indeed in these cases most initial conditions near hy-
perbolic resonance appear to be indistinguishable from



those starting near hyperbolic periodic orbits.

6 Conclusions
In this paper we characterized different chaotic solu-

tions of the truncated NLS model. We identified these
solutions by analyzing the integrable structure using
the hierarchy of bifurcations framework. By introduc-
ing the additional parameterΩ, the forcing frequency,
we demonstrated that we cancontrol the type of chaotic
behavior in the truncated model at a fixed periodic
length. Furthermore, we proposed a simple statisti-
cal measure for distinguishing between the variety of
chaotic solutions. We have seen that this tool works
well in distinguishing between parabolic resonance and
the hyperbolic trajectories, but it is not robust in dis-
tinction between hyperbolic resonance and homoclinic
chaos. Further investigation of this tool and its per-
formance on a variety of perturbed solutions is under
current study, as is the design of other simple tools for
a precise classification of chaotic orbits near the plane
wave solution. One would hope that such methodol-
ogy will help in the classification and comparison of
the perturbed PDE solutions with the truncated model
solutions.
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