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Intrinsic and experimental mechanisms frequently lead to broadening of spectral features in core-shell
spectroscopies. For example, intrinsic broadening occurs in x-ray absorption spectroscopy �XAS� measure-
ments of heavy elements where the core-hole lifetime is very short. On the other hand, nonresonant x-ray
Raman scattering �XRS� and other energy loss measurements are more limited by instrumental resolution.
Here, we demonstrate that the Richardson-Lucy �RL� iterative algorithm provides a robust method for decon-
volving instrumental and intrinsic resolutions from typical XAS and XRS data. For the K-edge XAS of Ag, we
find nearly complete removal of �9.3 eV full width at half maximum broadening from the combined effects of
the short core-hole lifetime and instrumental resolution. We are also able to remove nearly all instrumental
broadening in an XRS measurement of diamond, with the resulting improved spectrum comparing favorably
with prior soft x-ray XAS measurements. We present a practical methodology for implementing the RL
algorithm in these problems, emphasizing the importance of testing for stability of the deconvolution process
against noise amplification, perturbations in the initial spectra, and uncertainties in the core-hole lifetime.
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I. INTRODUCTION

In core-shell x-ray spectroscopies, the measured spectra
are often degraded with respect to the underlying, ideal sig-
nal due to the finite core-hole lifetime or practical limits in
the experiment’s energy resolution. This gives rise to the
generic problem wherein a measured spectrum I �referred to
as the image� is the result of convolving the true spectrum O
�referred to as the object� with a point-spread function P
representing the combined effects of intrinsic and experi-
mental broadening, i.e., I= P � O, where � represents the
convolution. The inverse problem of extracting O from the
measured I subject to known P is common to experiments in
diverse fields, and various deconvolution procedures have
seen extensive theoretical and computational study.1–17

A key pragmatic issue is that deconvolution is generally
ill conditioned both due to the presence of noise and also due
to the limited bandwidth of P with respect to the relevant
bandwidth of information in O. There are two basic ap-
proaches to handling this issue. First, one may make use of
the convolution theorem via Fourier methods, incorporating
appropriate filtering or other regularization procedures to sta-
bilize the inversion against noise amplification.1,4–6,8,16 Sec-
ond, one may formally model the process of convolution
subject to additive noise, using maximum likelihood prin-
ciples to determine an optimal deconvolution process subject
to the prior information for the particular problem. This typi-
cally leads to an iterative algorithm.8,12,13,15–17 In both cases,
the incorporation of prior information is crucial; at a mini-
mum, information about the smoothness of O must be given
to stabilize the deconvolution against noise amplification. In
the absence of the use of such prior information in the de-
convolution process, Loeffen et al.11 propose that the
Shannon-Hartley theorem18 from information theory requires
that any increase in the bandwidth of the signal �i.e., sharp-
ening of the spectrum� should come at exponential cost in
noise amplification.

In x-ray absorption spectroscopy �XAS� measurements of
heavy elements the core-hole lifetime �core hole of the K-shell
results in a broadening of the spectra by �core hole
=� /�core hole,

19 where �core hole is a monotonically increasing
function of the binding energy, reaching values of 10 eV or
more for K-shell spectra when Z�50.20 Then, the measured
spectrum is the convolution of the idealized spectrum with a
Lorentzian having full width at half maximum �FWHM� of
�core hole. Prior work on deconvolution within the XAS
community1,4,6,9,11,21 has largely focused on Fourier-based
techniques. For example, Loeffen et al.11 find that one can
remove approximately half of the lifetime broadening
through Wiener filtering. Similarly, Filipponi6 finds that one
can remove about two-thirds of the lifetime broadening
while greatly improving the behavior at the tails of reso-
nances by using a Gaussian filter and carefully treating end-
point effects and singularities at the edge step. Additional
validation for these methods comes through a comparison
with resonant inelastic x-ray scattering �RIXS� measure-
ments, from which one can extract XAS spectra which are
broadened only by the final state �rather than initial state�
lifetime.22 For example, the ability to resolve quadrupole
transitions in the XAS of several rare earth metals using
Fourier-transform-based deconvolution was verified by com-
parison to RIXS results.23 Alternatively, Babanov et al.1 find
good performance using Tikhonov regularization17 for an ini-
tial estimate of O which is then corrected by a linear, itera-
tive deconvolution algorithm. The results of Babanov et al.1

are promising in that, except near the absorption edge, the
deconvolved spectra show good agreement with unbroad-
ened calculations of the XAS. Also, Klementev has sug-
gested an improved deconvolution method for XAFS using a
Bayesian approach which incorporates x-ray photoemission
results as additional prior information.9

The issue of deconvolution also naturally arises in a re-
lated, core-shell x-ray spectroscopy: the nonresonant inelas-
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tic x-ray scattering of hard x rays from relatively weakly
bound shells. This technique is commonly called nonreso-
nant x-ray Raman scattering �XRS�. XRS provides a bulk-
sensitive alternative to soft x-ray XAS, albeit at the cost of
experimental energy resolution, while also accessing addi-
tional information through sensitivity to multipole transi-
tions. In typical XRS measurements of light elements, the
energy resolution of the measurement is about 1 eV. This is
a factor of about 3–10 larger than the combined effects of
�core hole and the energy resolution in soft x-ray XAS. This
broadening is most important in the near-edge region, where
one may find important information about local atomic and
electronic symmetry in the structure and detailed momentum
dependence of the fine structure. With the rapid increase in
use of the XRS technique in recent years,24–26 it is important
to seek a standard, reliable method for deconvolving the ex-
perimental resolution so that XRS and soft x-ray XAS spec-
tra can be compared on a similar footing.

We focus here on iterative deconvolution algorithms. Due
to their probabilistic nature and the flexibility they allow for
the incorporation of prior information, these algorithms have
repeatedly shown dramatic improvements over Fourier-based
methods in, e.g., infrared spectroscopies27,28 and telescope
imaging,16,29 to name two prominent examples. In core-shell
x-ray spectroscopies, the experimenter often has significant
prior information about the object O: the spectra are positive
definite, the spectra are relatively smooth wherein the fine
structure cannot be too fine �except possibly for preedge
resonances�, the general periodicity in energy of the fine
structure changes in a known way with photoelectron kinetic
energy, the atomic background is often well known, etc. The
question then arises as to the implementation and efficacy of
these modern deconvolution algorithms for core-shell x-ray
spectroscopies.

Here, we demonstrate that the Richardson-Lucy �RL� it-
erative deconvolution algorithm provides an effective proce-
dure to deconvolve intrinsic, instrumental, or combined
broadening from typical XAS or XRS data. The RL
approach12,14 is a maximum likelihood solution for the un-
broadened spectrum subject to Poisson counting
statistics,12,14,16 making it well suited for x-ray spec-
troscopies. Various implementations of the RL approach
have seen extensive use in deblurring images, including
those from the Hubble space telescope30 and related prob-
lems in astronomy.10,16 Iterative deconvolution algorithms
have also previously been used in electron energy loss
spectroscopy.3,7,31 However, to our knowledge, the RL algo-
rithm has not previously been employed in XAS or XRS
analysis.

The remainder of this paper is as follows. In Sec. II we
introduce the RL algorithm and discuss the optimization is-
sues which are specific to core-shell x-ray spectroscopies. In
Sec. III, we apply the RL method to the K edge of Ag, which
has �core hole=8.3 eV. The performance of the RL algorithm
for this problem is well beyond the limitations that would be
imposed by the Shannon-Hartley theorem, were it applicable,
and also significantly better than results to date from Fourier-
based deconvolution: starting a few eV after the absorption
edge, we find greater than 90% removal of broadening by the
combined effects of the core-hole lifetime and the experi-

mental resolution. In Sec. IV, we demonstrate that improved
energy resolution can be obtained in XRS measurements by
considering the canonical example of the K-edge XRS spec-
trum for diamond. We find full deconvolution of the experi-
mental resolution at least 5 eV away from the edge, with
good agreement between the RL-deconvolved XRS spectrum
and prior soft x-ray XAS measurements32 taken with energy
resolution comparable to �core hole. In Sec. V we summarize
our findings, discuss their consequences for future experi-
mental practice, and conclude.

II. THE RICHARDSON-LUCY ALGORITHM

We model the measured intensity I�xi� on the discrete grid
�xi� by convolving the “true” spectrum O�xi� with a point-
spread function P representing the combined effects of ex-
perimental and intrinsic broadening and then adding a noise
source N�O ,xi�, i.e.,

I�xi� = �
j

P�xj�O�xi − xj� + N�O,xi� = �P � O��xi� + N�O,xi� .

�1�

The task at hand is to determine the most probable O given I,
P, and the knowledge that N represents independent Poisson
statistics at each xi. Bayes’ theorem requires

p�I�O� = �
i

	�P � O��xi�
I�xi� exp	− �P � O��xi�

I�xi�

. �2�

Following the approach of Shepp and Vardi,16 the maximum
likelihood solution 	i.e., when � ln p�I �O� /�O=0
 is given
by the limit of the series of estimators

O�n+1� � O�n��P*
�

I

P � O�n� , �3�

where P* is the grid reversal of P and where the seed spec-
trum O�0�� I. The O�n� from Eq. �3� are positive-definite for
positive-definite I and are relatively stable with respect to the
choice of the point-spread function.7,8,12 A small positive off-
set may sometimes need to be applied to I to avoid accidental
zeros in the denominator of Eq. �3�.

The RL algorithm in its simplest form �above� may even-
tually suffer from unphysical levels of noise amplification as
the iteration number increases. There are two general rem-
edies to this situation. First, one may define a stopping cri-
terion such that iteration of Eq. �3� is halted when the am-
plification of high-frequency noise overtakes the
convergence rate of the O�n�. Second, the RL algorithm can
be regularized for a particular class of problem by use of a
constraint or filter function F at each application of Eq. �3�,
i.e.,

O�n+1� = F�xi,O
�n�,O�n��P*

�
I

P � O�n�� . �4�

This regularization filter is defined to include a selection of
the prior information available about the experiment. In prac-
tice, this has included the need for bounds on the percent
absorption measured in infrared spectroscopy28,33 and the re-
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jection of scale-specific fluctuations in the deblurring of as-
tronomical images.16,34 The flexibility for incorporation of
diverse prior information separates the RL and related itera-
tive deconvolution approaches from the direct Fourier-based
methods.

We now present a practical implementation of the RL
algorithm for deconvolution of XAS and XRS spectra. There
are five issues which must be discussed: the deconvolution
grid spacing; the incorporation of prior information into a
regularizing filter 	as in Eq. �4�
; the use of an appropriate
criterion for convergence and the completion of iteration; a
test of the stability of the deconvolution against perturbations
in the original data; and the determination of the effective
energy resolution of the deconvolved spectrum. First, we
make use of an energy grid with 0.05 eV spacing; this is
chosen to have resolution much finer than any anticipated
physics in the problem, thus ensuring that the data grid will
not interfere with the process of extracting features of O
from I. For both XAS and XRS spectra, we use linear inter-
polation to map the original data onto this finer grid.

Second, there is considerable prior information about the
spectra for both XAS and XRS. While a comprehensive
treatment of RL deconvolution would make use of all prior
information, we find good performance at small computa-
tional cost simply by imposing that the spectra should not
have features sharp compared to the reconstruction grid spac-
ing. We suppress the generation of high-frequency fine struc-
ture in the O�n� by smoothing at each iteration, i.e.,

O�n+1� � F � �O�n��P*
�

I

P � O�n�� , �5�

where F is a Gaussian function with unit integrated ampli-
tude and with a standard deviation �Gauss considerably less
than the width of P. We use �Gauss between 0.05 and 0.5 eV,
depending on the noise level in I and the expected energy
scale for the relevant fine structure in O. Even with a
smoothing filter, convergence often requires several thousand
iterations, as we find below. However, this does not provide
a practical difficulty: we find typical computation times of
about 1 sec per 200 iterations when running interpreted func-
tions in MATHEMATICA on a modern workstation.

Third, we adopt a common criterion for the quality of the
O�n� by using the �2 measure at each iteration,

��n�
2 =

1

N
�

i

N
	�P � O�n���xi� − I�xi�
2

I�xi�
. �6�

For real �noisy� data in the absence of a regularizing filter,
noise amplification often results in a local minima in ��n�

2

and/or ���n�
2 /�n.7 Sufficiently large filter widths converge the

RL estimate, with larger widths converging faster but at
larger asymptotic values of ��n�

2 .
Fourth, it is advisable to examine the stability of the de-

convolution with a few straightforward tests. The effect of
additional uncorrelated noise in the initial spectra on the de-
convolution is a natural test of stability against perturbations
in the initial conditions. The effect of uncertainties in P

should also be investigated by repeating the deconvolution
process for several examples of physically allowed P, e.g., to
allow for uncertainty in �core hole.

Finally, the loss of high-frequency information due to the
inclusion of filters, the finite energy spacing in the original
data, and the limited bandwidth in P can compromise the
ability to reconstruct sharp edges and narrow features.
Hence, for each deconvolution problem, we find it necessary
to model the deconvolution of a broadened step function and
various widths of broadened Lorentzian-shaped resonances
to accurately gauge systematic errors near the edge and the
amount of remnant broadening after the deconvolution. Ex-
amples of this type of modeling will be shown in the next
two sections. Our software package for RL deconvolution,
together with representative examples, is available as supple-
mental material.35

In concluding this section, one additional fine detail de-
serves careful consideration. When spectral broadening in
XAS occurs as a consequence of both lifetime effects and
also instrumental resolution, the situation is not in fact ex-
actly described by Eq. �1�. The absorption coefficient ��E� is
indeed broadened by the core-hole lifetime as per the above
discussion, but the instrumental resolution instead affects the
measured transmission function, i.e., exp�−�d�, where d is
the sample thickness. The two convolutions clearly do not
commute. This second effect is responsible for one of the
famous “thickness effects” in XAS.36 In cases where
�core hole and the experimental energy resolution are compa-
rable, the method that we propose here will likely be inap-
plicable, or will at least result in systematic errors which
would need careful consideration; it should be noted that the
same will be true of all other XAS deconvolution algorithms
discussed to date,1,4,6,9,11,21 as they are all based on the model
of Eq. �1�. For the case considered here �Sec. III�, however,
�core hole is significantly greater than the experimental broad-
ening and we therefore find good performance with the ad
hoc practice of combining the two broadening mechanisms
through convolution, with the resulting effective point-
spread function acting directly on ��E�.

III. CORE-HOLE BROADENING IN XAS FOR THE Ag K
EDGE

We first apply RL deconvolution to the Ag K-edge XAS,
as measured by Kvitky et al.37 Their spectrum is shown in

FIG. 1. Original XAFS spectrum taken at the Ag K edge by
Kvitky et al. �Ref. 37�.
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Fig. 1. This spectrum was measured with 0.75 eV spacing in
the near-edge region, giving way to constant spacing in pho-
toelectron momentum in the extended regime. For example,
the energy spacing between measurements is �3 eV at
25 750 eV and �5 eV near the end of the energy range
shown in the figure. For P, we use the convolution of a
4-eV-wide Gaussian experimental response function with an
8.32-eV-wide Lorentzian core-hole lifetime �both FWHM�,
resulting in a 9.25 eV FWHM point-spread function �PSF�.
The core-hole lifetime is estimated using an interpolation of
empirical standards.21,38

We focus initially on the near-edge region of the spec-
trum, as this region has the sharpest intrinsic features and
hence is most adversely affected by spectral broadening. Our
first attempt to deconvolve the Ag K-edge XAS spectrum is
shown in Fig. 2, where the estimates O�n� for exponentially
increasing iteration number n are represented by successively
darker lines. For reference, the point-spread function is also
shown. Clearly, the oscillatory structure in the deconvolved
spectra is better resolved and several new features have
emerged from shoulders in the original data. Unfortunately,
the spectrum shows little convergence in the first 50 eV,
likely due to amplification of sharp features. To better control
this problem we incorporate a Gaussian filter at each itera-
tion, i.e., as in Eq. �5�. The effect of filter width on the
convergence rate is shown in Fig. 3, where we see that the
RL algorithm converges within 6000 iterations for �Gauss
	0.05 eV.

In Fig. 4 we further investigate the beneficial stabilization
provided by even modest filtering in the deconvolution itera-
tion. In Fig. 4�a� we show the original data. In Fig. 4�b�, we
show a density-contour plot demonstrating the evolution of
O�n� as a function of n �from top to bottom� for �Gauss=0.
The topmost shading indicates the original data. Note the
lack of convergence, indicated by the repeated bifurcations
�when moving down the figure� even at high iteration num-
ber, together with the angled contours indicating systematic
motion in features with increasing n. The resulting estimate
is shown in Fig. 4�c�. On the other hand, note the improved
convergence in O�n� when using �Gauss=0.05 eV, as we show
in Fig. 4�d�. The contours completely stabilize toward the
bottom of the page, with no further bifurcation or drift in
spectral features. We show the converged estimate �at n
=20 000� in Fig. 4�e�. Given these results, we feel confident
in the quality of convergence for �Gauss=0.05 eV. However,
it is also important to verify the stability of this solution with
respect to perturbation in the initial spectrum.

To this end, we show in Fig. 5 the effect of additive un-
correlated Poisson-distributed noise on the RL deconvolu-
tion, again for �Gauss=0.05 eV. The top curve in the figure is
the original data and the successive curves show 0.1%, 0.3%,
and 1% noise levels. For the 0.1% additional noise level, the
key features in the deconvolved spectra are only weakly af-
fected. Higher noise levels result in strong realization-to-

FIG. 2. Four unfiltered RL estimates for O�n� such that the
darker lines indicate higher iteration number n. For reference, the
point-spread function �PSF� is also shown.

FIG. 3. ��n�
2 convergence parameter 	Eq. �6�
 for the Ag K edge

for four different Gaussian filter widths. ��n�
2 was calculated from

25 510 to 25 600 eV for the reconvolved estimate with respect to
the original data. Note the convergence for n�6000 for �Gauss

	0.05 eV.

FIG. 4. Evolution from the original data �a� for the Ag K edge
for unfiltered 	�b� and �c�
 and filtered 	�d� and �e�
 RL estimates.
The density contour plots 	�b� and �d�
 represent the logarithmic
evolution of the O�n� spectrum as a function of iteration �n�, with
the top representing the original data and the bottom the decon-
volved estimate at 20 000 iterations.
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realization variation in the converged RL estimate O�6000�.
This can be compensated by a larger �Gauss but at the cost of
poorer final energy resolution. Given that the noise from
counting statistics in the original data is far below 0.1%, we
conclude that the RL inversion with �Gauss=0.05 eV is stable
against the expected experiment-to-experiment variation
from Poisson statistics. Increasing �Gauss would stabilize the
deconvolution of data with worse counting statistics, at the
price of further restricting the degree of deconvolution.

A remaining source of systematic error is the choice of P.
In the present case, we expect a possible 10% error in our
estimate of �core hole. In Fig. 6, we show the result of RL
deconvolution for several P incorporating this error. The
range in effective lifetimes �ef f introduces a natural spread in
the height of the deconvolved fine structure, while features
near the edge experience an additional energy shift due to the
rapid change in shape at the absorption edge. These modest
changes would be unlikely to affect quantitative structural
analysis based on the near-edge region.

Restricting high-frequency Fourier components in the
spectrum due to finite sampling and, especially, filters in the

deconvolution algorithm can broaden and introduce system-
atic errors near the edge step. As shown in Fig. 7, we have
simulated attempted recovery of a step function �representing
the edge step in O� using the above energy spacing and PSF
for three widths of Gaussian filters. Note that the step func-
tion has been given only a small positive offset to avoid
division by zero in the ratio step of the RL deconvolution. In
each case, various degrees of ringing also appear in the first
5 eV past the edge, introducing a �10% effect in the inten-
sity near the edge. This phenomenon is localized near the
edge, and the first feature at 25 525 eV in Fig. 4�e� is weakly
influenced by this effect. The asymmetry in this effect, i.e.,
that it occurs only at the top of the step and not symmetri-
cally in the preedge region, is due to the positive-definite
nature of all O�n�.

An additional consequence resulting from the loss of
high-frequency information is the remnant broadening of
sharp features. To model the ability to resolve an individual,
sharp feature in O, we deconvolve a set of trial Lorentzians
with widths ��O� ranging from 0.1 to 15 eV that have been
broadened by the PSF used for the Ag K edge. The results
are shown in Fig. 8, where all feature widths are FWHM.
Closer to the edge, the deconvolution is �80% successful for
features with widths near the finest energy feature allowed
by the sampling theorem �2
E=1.5 eV� and increasingly
successful thereafter. Beyond the first 10 eV, where feature
widths are generally 8 eV or larger, we find nearly complete
removal of core-hole and experimental broadening.

This conclusion is further validated in Fig. 9. At the top of
the figure, we show the original data I, P � O�final�, and the
results of a real space full multiple scattering calculation that
includes core-hole lifetime broadening using the FEFF8 ab
initio XAS code.39 Outstanding agreement between I and P
� O�final� is evident; if the broadening effects were not sub-
stantially removed, then P � O�final� would appear broadened
with respect to original data, I. In the bottom of the figure we
show O�final� and the analogous calculations which exclude
core-hole lifetime effects. While the agreement between the

FIG. 5. �a� Uncorrelated Poisson noise added to the original Ag
K-edge data at three noise levels: 0.1%, 0.3%, and 1.0%. The
curves have been offset for clarity. �b� The RL estimate from three
realizations at each noise level for a 0.05-eV-width Gaussian filter.

FIG. 6. Systematic spread in the converged RL estimate due to
variation in the effective core-hole width 10% above and below the
quoted lifetime, using a Gaussian filter width of 0.05 eV.

FIG. 7. From top to bottom: a model for an object O represent-
ing an unbroadened edge step; O broadened with the PSF used for
the Ag K-edge measurements; and the RL estimates for three types
of Gaussian filters.
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broadened theoretical calculation and the original experi-
mental spectrum is good, the comparison between the un-
broadened theory and the deconvolved spectrum is much
richer. For example, several features have been inferred
which existed at best as weak shoulders or inflections in the
original spectrum. The disagreement between theory and ex-
periment rests primarily in the relative amplitude of near-
edge features; it is unclear if this discrepancy is due to sys-
tematic errors �i.e., as in Fig. 7�, incomplete information in I,
or the limitations of the calculation.

RL deconvolution can also be applied beyond the near-
edge regime. Recall that XAS oscillations are periodic in
photoelectron momentum k, not in photoelectron kinetic en-
ergy. Consequently, the fine structure has steadily larger en-
ergy spacing as photon energy increases past the edge—this
is the motivation for the increased spacing between measure-
ments in the original spectrum, mentioned above. However,

in the present context, the fact that the original measurement
grid in the extended region is not significantly finer than the
width of P has a negative consequence. The relative paucity
of information on this scale results in more difficulties with
noise amplification, relative to deconvolution in the near
edge region. As a consequence, we use a larger, �Gauss
=0.5 eV filter. Using the IFEFFIT XAS analysis codes40 with
a fixed edge energy of 25 525 eV and a sine window for
Fourier transforms, we show k��k� in Fig. 10�a� for the first
670 eV of fine structure using RL estimates up to n=130.
The deconvolution dramatically affects the amplitude of the
Fourier transform of k��k�, as we show in Fig. 10�b�. In
particular, note that the amplitude and intensity of higher
coordination shells are greatly enhanced.

IV. INSTRUMENTAL RESOLUTION IN XRS: C K EDGE
FOR DIAMOND

The choice of incident photon energy in an XRS measure-
ment involves a competition between energy resolution and
count rate. As incident photon energy increases the experi-
mental resolution becomes poorer. However, the count rate
can be expected to increase because stray absorption effects
rapidly decrease, the incoherent portion of the total scattering
cross section increases, and the incident flux from the third-
generation hard x-ray synchrotrons increases for photon en-
ergies used in XRS experiments. Balancing these factors
typically results in an incident energy of �10 keV with an
overall energy resolution of �1 eV. Here, we show that re-
liable knowledge of the point-spread function, together with
the good statistics available in contemporary XRS measure-
ments, allow beneficial use of the RL algorithm to improve
the effective energy resolution. This then changes the bal-

FIG. 8. Investigation of the efficiency of the RL algorithm as a
function of feature width. Simple Lorentzian objects O having full
widths at half maximum �0 �dashed line� are convolved with the
appropriate PSF for the Ag K-edge XAS to give images I �gray
solid line�, which are then deconvolved for 1000 iterations of the
RL algorithm having �Gauss=0.05 eV to yield estimates O�1000�

�solid line�.

FIG. 9. �a� Ag K-edge XAS spectrum, the reconvolution of the
RL estimate P � O�20000�, and a theoretical calculation of the Ag
K-edge XAS after broadening from the combined effects of the
core-hole lifetime and the experimental resolution. The curves have
been offset for clarity. �b� RL estimate O�20000� and the unbroadened
theoretical calculation. A Gaussian filter with �Gauss=0.05 eV is
used in the RL deconvolution.

FIG. 10. Normalized extended XAS �a� and its Fourier trans-
form �b� for the full range of the data at various stages of deconvo-
lution for the Ag K edge using a �Gauss=0.5 eV filter. Higher values
of iteration n are denoted by darker lines in each plot.
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ance of factors in favor of higher incident photon energies
for some experiments. Given the recent, dramatic improve-
ments in counting rates for XRS that have resulted from
improvements in the efficiency of spherically bent analyzer
crystals41 and from the development of dedicated multiele-
ment XRS spectrometers,25,26 we believe that the present re-
sults may have significant consequences for future XRS ex-
perimental practice.

XRS measurements on the C K edge of diamond were
performed at the Advanced Photon Source using the lower-
energy resolution inelastic x-ray scattering �LERIX� user
facility.25 This previously reported data25 have �200 000
counts at each energy point and were taken at a momentum
transfer q=3.9 Å−1. The spacing of the energy grid in the
original measurement is 0.2 eV. The incident photon energy
is �10 keV with experimental energy resolution FWHM of
1.35 eV. Unlike the previous section, where the accuracy of
the PSF was in question, the experimental PSF for an XRS
experiment is measured at the peak corresponding to elastic
scattering. It should be noted that, for more tightly bound
edges, the monochromator’s energy resolution will broaden
slightly, which can be a �10% effect for energy losses be-
yond 1 keV.

The top two spectra of Fig. 11 are the measured C K edge
and the RL-deconvolved spectrum after convergence with a
filter having �Gauss=0.05 eV. The stability of the RL inver-
sion was tested using the previously described protocol. The
RL-deconvolved spectrum compares favorably with
0.3-eV-resolution soft x-ray results taken by Ma et al.33 as
we show in the bottom of the figure.

Following the discussion in Sec. III �and Fig. 7�, we show
in Fig. 12 a systematic investigation of the effect of the
sharpness of the underlying edge step on the deconvolution.
At the top of the figure, we show absorption edges modeled
as step functions convolved with Lorentzians �thus resulting
in the usual arctan functional form at the edge�, with �
=0.1, 0.2, and 0.4 eV. Note that �core hole is �0.1 eV for the
C 1s initial state. This data is then broadened by convolving
with P from the above XRS experiment �approximately a

Gaussian with FWHM of 1.35 eV�. Moving down the figure,
these spectra are then deconvolved, using Gaussian filters
with the indicated characteristics. Hence, the lost
intermediate-frequency information in the measurement pro-
cess again results in a spurious near-edge feature, followed
by weak ringing at higher energies.

The case with �Gauss=0.05 eV reproduces the data pro-
cessing for the deconvolution in Fig. 11. We therefore con-
clude that the near-edge peak in our deconvolved diamond
spectrum, having apparent agreement with the diamond 1s
exciton, is largely a spurious consequence of the deconvolu-
tion process. The rapid damping of the spurious features in
Fig. 12 does, however, reassure us as to the accuracy of the
deconvolution for diamond when more than �3 eV past the
edge. In the remainder of the figure we show the benefit of
better instrumental energy resolution. An improvement to
0.9 eV experimental resolution for LERIX is available
through use of the Si �311� monochromator available at the
host beamline. In this case, the integrated intensity in the
spurious features is decreased and the deconvolution appears
uncorrupted when more than �2 eV past the edge.

To gauge the degree of deconvolution possible in the dia-
mond data, we performed the analogous test to our treatment
of the Ag K edge in Fig. 8. The results, shown in Fig. 13, are
similar to the previous case, although full deconvolution now
occurs at a much lower feature width due to the narrower
PSF. Also, there is not a linear dependence between the

FIG. 11. Comparison of XRS data for diamond �top curves�
with published C K-edge XAS data �Ref. 32�. The original XRS
data are given by the lighter, solid line and are overlaid with the
converged, 0.05-eV-filtered RL estimate, given as the darker line.
To aid comparison the XRS results have been offset from the XAS
data.

FIG. 12. Systematic error at the edge resulting from the lack of
information from higher-frequency components for a simulated
edge step convolved with a Lorentzian for three lifetimes: 0.1, 0.2,
and 0.4 eV. The top curve represents the original simulated edge
step, followed by two sets of simulated data with 1.35 and 0.9 eV
additional, Gaussian broadening. In each case, three RL estimates
using the Gaussian PSF are shown beneath the simulated data cor-
responding to Gaussian filtering of width 0, 0.05, and 0.1 eV.
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FWHM of the broadened signal and the object in this case,
since the PSF is not Lorentzian. Here, the deconvolved esti-
mate is not able to fully resolve features with widths below
�2 eV. As this is well above the finest energy feature pre-
served by the sampling frequency �2
E=0.4 eV�, we expect
that all features will be fully deconvolved beyond the edge
step and the core exciton at 290 eV.

V. DISCUSSION AND CONCLUSION

Deconvolution algorithms are inherently ill conditioned
because of information lost to the limited Fourier-spectral
range of P and the consequent sensitivity to noise. The im-
portance of this lost information must be evaluated on a
case-by-case basis, as must the decision to reintroduce �or at
least constrain� the lost information through the details of the
deconvolution algorithm. We find here that typical XAS and
XRS spectra, especially a few eV away from the absorption
edge, are only modestly bandwidth-limited so that accurate
and near-complete deconvolution can be obtained while add-
ing little prior information. It is, however, important to un-
derstand several limitations of our approach, as they directly
affect the practical implementation of the RL algorithm to
typical XAS or XRS spectra and, as a result, suggest changes
to common data collection practice.

First, there is a natural competition between final energy
resolution �i.e., degree of removal of broadening� and noise
amplification. We have consequently introduced the method-
ology described in Sec. IV for testing the numerical reliabil-
ity and stability of the deconvolution estimate. We believe
that such procedures should be generically applied, for both
iterative and Fourier-based methods.

Second, special care is often necessary in validating the
accuracy of RL deconvolution very near to the absorption
edge. As shown in the case of diamond, the sharp intrinsic
edge step cannot be completely recovered. This issue should
always be modeled, as shown, for example, in Fig. 12. It
would be interesting to add prior information about the shape

of the edge in O to the deconvolution process. This informa-
tion could be incorporated into a more complex filter func-
tion. It would also be interesting to separate the treatment of
the edge step from the fine structure, in analogy to the
Fourier-transform-based approach of Filipponi.6

Third, while we find good performance with the RL algo-
rithm, which is optimal for Poisson additive noise, there may
be cases were additional benefits accrue from the corre-
sponding maximum likelihood approach for Gaussian addi-
tive noise, i.e.,

O�n+1� = O�n� + �P*
� �I − P � O�n�� . �7�

This approach was used by Babanov et al.1 Specifically,
there may be cases where this algorithm converges more
quickly, as the parameter � can be tuned to aid convergence.
As a practical point, it would be interesting to compare how
the rate of convergence for the two algorithms is affected for
different filter functions incorporating prior information.

Fourth, as pointed out in detail by Klementev,9 it may not
be strictly correct to use the same core-hole lifetime at all
photoelectron kinetic energies. This can be investigated
through use of a shift-variant point-spread function in the RL
approach, should it prove important in particular applica-
tions.

Finally, the sampling theorem provides an additional
mechanism for information loss which we have not ad-
dressed. While it is common practice to use relatively wide
energy steps 
E in measurements of broadened spectra, this
results in an unnecessary loss of information �and possibly
aliasing� for energy frequencies above � /
E. For the Ag
K-edge data addressed in Sec. IV, this was not a major con-
cern because the experimenters used 
E=0.75 eV in the
near-edge region and �as it turned out� the sharpest features
in O were �2 eV wide. However, sampling limitations
would have become apparent in the diamond XRS results if
the deconvolution at the edge was not contaminated by the
ringing phenomenon shown in Fig. 12. The core exciton has
a width of �0.1 eV, while the experimental 
E was 0.2 eV.
Even in the absence of the issues associated with the very
sharp edge step in diamond, it would have been impossible
to recover the core exciton in O from this experimental data.
Consequently, experimenters interested in maintaining the
option of deconvolving core-shell x-ray spectra are well ad-
vised to use an energy step in the near-edge region, which is
safely smaller than the finest features that they hope to re-
cover in O, rather than safely smaller than the finest features
which they immediately observe in I.

In conclusion, we find that the Richardson-Lucy deconvo-
lution algorithm is well suited to the problem of removing
core-hole lifetime effects and instrumental resolution from
x-ray absorption fine structure and nonresonant x-ray Raman
scattering spectra. We have developed a systematic approach
for application of the RL algorithm, including the application
of a smoothing filter and several tests for the convergence
and accuracy of the deconvolved spectrum. We find near-
complete removal of the combined broadening effects of ex-
perimental resolution and the core-hole lifetime at the K edge
of Ag. We also find greatly improved energy resolution for
studies of nonresonant x-ray Raman scattering, wherein de-

FIG. 13. Investigation of the efficiency of the RL algorithm as a
function of feature width. Simple Lorentzian objects O having full
widths at half maximum �0 �dashed line� are convolved with the
appropriate PSF for the diamond K-edge XRS to give images I
�gray solid line�, which are then deconvolved for 1000 iterations of
the RL algorithm having �Gauss=0.05 eV to yield estimates O�1000�

�solid line�.
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convolved XRS spectra for diamond compare favorably with
soft x-ray XAS measurements having much finer experimen-
tal energy resolution. Our software implementation of the RL
deconvolution of broadening effects from XAS and XRS
spectra is available as supplemental material.35
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