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-Kinase Anchoring Proteins (AKAPs) orchestrate and synchronize cellular events by tethering the 

cAMP-dependent protein kinase (PKA) and other signaling enzymes to organelles and membranes. The 

control of kinases and phosphatases that are held in proximity to activators, effectors, and substrates 

favors the rapid dissemination of information from one cellular location to the next. This article charts 

the inception of the PKA-anchoring hypothesis, the characterization of AKAPs and their nomenclature, 

and the physiological roles of context-specific AKAP signaling complexes. 
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Introduction

In the 1950s, Earl Sutherland defined how hormones stimulate 
the production of the second messenger 3′-5′-cyclic adenosine 
monophosphate (cAMP) by adenylyl cyclase (AC) (1). Today, 
the list of hormones, neurotransmitters, and effectors that work 
through cAMP is expansive. So why do organisms utilize such 
a diversity of ligands that all stimulate production of the same 
second messenger? Although it is generally accepted that tis-
sue- and cell-specific expression of cAMP signaling components 
[such as kinases, guanine nucleotide exchange factors (GEFs), 
cyclic nucleotide gated ion channels, and phosphodiesterases] cre-
ate an element of selectivity in these second messenger responses 
[reviewed in (2–5)], it is evident that other factors organize these 
enzymes to favor the catalysis of particular intracellular responses. 
This review works from the premise that this signal specificity is 
achieved through the local activation of signaling enzymes that are 
anchored to subcellular organelles and membranes. In particular, 
we highlight the A-kinase anchoring proteins (AKAPs), a family 
of functionally related intracellular proteins that coordinate and 
control cAMP-responsive events and a range of other second mes-
senger mediated cellular processes. 

Protein Kinase A

A recognized function of AKAPs is to tether the cAMP-dependent 
protein kinase (PKA or A-kinase) holoenzyme. The PKA holoen-
zyme is a heterotetramer consisting of two regulatory (R) subunits 
that maintain two catalytic (C) subunits in an inhibited state (6). 
This enzyme is the principal intracellular receptor of cAMP (7). 
When cAMP levels are low, the PKA holoenzyme is dormant; how-
ever, when cAMP levels are elevated, two molecules bind to each R 
subunit, thereby releasing the active C subunits. The PKA C sub-
units phosphorylate serine–threonine residues on target substrates, 
typically within the sequence context of -R-R-X-S/T-X (8). The 
prominence of PKA as a principal mediator of cAMP responsive 
events is reflected by the prevalence of multiple R and C subunit 
genes in mammalian genomes. Two C subunit genes encode the 
ubiquitously expressed Cα and Cβ isoforms whereas a third iso-
form, Cγ, is found in primate testis. The four R subunit genes are 
subdivided into two classes: RI (RIα and RIβ) and RII (RIIα and 
RIIβ). Although all R subunits share 75% identity in their cAMP 
binding pockets, the RI and RII classes differ in their sensitivity to 
cAMP, phosphorylation patterns, and subcellular location (9, 10). 

Discovery and Identification of AKAPs

It is now widely accepted that subcellular targeting of R subunits 
occurs through interaction with AKAPs. This growing family of for-
ty-three functionally related genes is defined on the basis of their 
ability to interact with the R subunits of PKA. The first anchoring 
proteins were detected as protein contaminants that co-purified 

with R subunits on cAMP-agarose affinity columns (11). Later, 
the use of far-western blotting protocols that utilized RII as the 
probe, expression-cloning strategies, and yeast two-hybrid analyses 
uncovered many more members of the AKAP family (12–14). As 
the number of AKAPs increased, a rather haphazard nomenclature 
evolved. AKAPs are often named on the basis of their apparent 
molecular weight when detected in the far-western assay (generally 
referred to as the “RII overlay”). Slight differences in the electro-
phoretic mobility of AKAP orthologs sometimes led to a disparity 
in naming of the same anchoring protein in different species (15). 
Consequently, the Human Genome Organization (HUGO) pro-
posed an alternative nomenclature that categorized anchoring pro-
teins according to their gene name. For example, bovine AKAP75, 
human AKAP79, and murine AKAP150 all refer to the products of 
the AKAP5 gene (15–17). However, there are significant limitations 
to this logical AKAP gene nomenclature, as only fourteen of the 
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Figure 1. Structural aspects of AKAP interactions with the regulatory 
subunits of PKA. A. Structure of AKAP-IS in complex with the RII X-type 4 
helix bundle. The AKAP-IS helix (top) interacts with the dimerization/docking 
(D/D) domain of RII through interactions within the core hydrophobic interface 
(yellow), and polar contacts that form hydrogen bonds with RII. B. Detailed 
top-view of the protein-protein interactions between AKAP-IS and RII. The 
residues important for AKAP-RII interactions (hydrophobic and H bonding) are 
numbered, with corresponding interaction sites in RII highlighted. C. Helical 
wheel rendering of the AKAP-IS amphipathic helix, showing a face of hydro-
phobic residues (yellow). D. Sequence alignment of the RII binding domain of 
AKAP peptides. The pdb accession number 2izx was used in A and B. 
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forty-three currently known 
AKAP protein family members 
are designated in this manner. 
Furthermore, a recurring fea-
ture of AKAPs is intricate alter-
native splicing patterns, result-
ing in multiple isoforms of the 
same gene. The AKAP9 gene, 
for example, has six known 
splice variants including 
yotiao, AKAP350, AKAP450, 
and centrosome- and golgi-
localized PKN-associated pro-
tein (CG-NAP) (18–23). Thus, 
a complex and often cumber-
some nomenclature has arisen 
where the protein products 
of a single AKAP gene often 
have multiple designations. 
Table 1 lists the various names 
and subcellular locations of 
selected AKAP isoforms and 
orthologs and includes the 
HUGO gene nomenclature. 

Structure and 
Function of AKAP 
Binding to PKA

Despite idiosyncrasies in the 
nomenclature, the singular, 
defining feature of an AKAP remains the ability to anchor the PKA 
holoenzyme. This protein-protein interaction involves an α-helical 
region on each anchoring protein that binds tightly to a docking/
dimerization (D/D) domain formed by the first forty-five amino 
acids of each RII monomer. Structural analyses reveals that the 
D/D domain folds into an antiparallel X type four-helix bundle 
that creates a docking site for the AKAP followed by twenty amino 
acids which are responsible for RII homodimerization (24–28) 
(Figure 1A, B). Most AKAPs exhibit high affinity for the RII sub-
unit of PKA; however, the dual-specificity AKAPs (e.g., ezrin, 
D-AKAP1, D-AKAP2, merlin, and AKAP220), are able to interact 
with RI dimers, although typically with 10-100–fold lower affinity 
(29). The apparent lower affinity of RI for AKAPs can be attributed 
to structural differences in the N-terminal D/D domain of RI, lead-
ing to a faster dissociation rate for RI than for RII from AKAP’s 
amphipathic helix in vitro; however, the dynamics of these protein 
interactions in vivo is less well-studied. 

The reciprocal binding surface on the anchoring protein 
is an amphipathic helix (15, 24). The structural organization of 
this 14–18 amino-acid helix places hydrophobic residues on the 
interior face of the helix and hydrophilic residues on the exterior 

surface (Figure 1B, C). This creates a high-affinity binding surface 
that fits into a groove formed by the D/D domain of the R subunits. 
Any mutations that perturb the conformation of this helix have 
deleterious effects on PKA anchoring. Historically, helix perturba-
tion (and the importance of individual resudes within the helix) 
has been demonstrated by substitution of various residues with 
proline, thereby ablating the high affinity RII interaction (15, 24). 
RI binding to dual-specificity AKAPs can be enhanced through an 
additional sequence outside of the amphipathic helix, termed the 
RI specifier region (RISR), originally identified in ezrin (30). To 
date, there are few reports of RI-specific AKAPs, including PAP7 
(31), which may be a consequence of technical difficulties with the 
screening for RI interacting proteins or that the structure of RI has 
proven to be less accommodating to variations in the amphipathic 
helix than RII (32). However, there is reason to believe that a select 
few proteins may anchor PKA through alternative means. For 
example, the cytoplasmic tail of integrin α4, which is not predicted 
to form an amphipathic helix, binds to a C-terminal region of the 
type I regulatory subunit of PKA (33). Likewise, pericentrin tethers 
PKA to the centrosome through a 100 amino-acid domain in peri-
centrin that interacts with a leucine rich region of RII (34).
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Figure 2. The coordination of PKA signaling events in a cardiac myocyte by localized scaffolding of AKAPs. A. In 
a cardiomyocyte, multiple AKAPs (yellow) coordinate physiologic and pathophysiologic signaling events, including excita-
tion-contraction coupling, hypertrophic remodeling, gene transcription, and oxygen homeostasis.  B. Adult mouse cardio-
myocytes were fixed and incubated with antibodies against RIIα (blue) and AKAP-Lbc (green), and actin was visualized 
by phalloidin staining (red). Cells were then imaged using immunofluorescence microscopy. RyR, ryanodine receptor; 
βAR, β-adrenergic receptor; NCX, sodium-calcium exchangr ; CG-NAP, centrosome- and golgi-localized PKN-associated 
protein; MAP2, mitochondrial-associated protein 2 ; LTCC, L-type calcium channel; AC5/6, adenylyl cyclase 5 or 6; PLB, 
phospholamban; SERCA2, Sarcoplasmic-endoplasmic calcium pump 2.
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A functional role for PKA 
anchoring is frequently inferred 
by delivery of anchoring inhibitor 
peptides. Peptides derived from the 
amphipathic helix of AKAP-Lbc, 
also known as human thyroid 31 
(Ht31), were initially character-
ized for their ability to disrupt the 
PKA interaction with AKAPs (35, 
36). Employing the optimal Ht31 
peptide (amino acids 493–515), the 
function of AKAP-anchored PKA 
has been investigated using bio-
chemical analyses, electrophysiol-
ogy, and multiple cell-based meth-
ods to discern the role of AKAPs 
in cardiac excitation-contraction 
(EC) coupling, synaptic plasticity, 
reproduction, insulin secretion, 
and renal homeostasis (36–41). In 
some cases, cell-permeable stear-
ated or myristoylated Ht31 pep-
tides or plasmid-based transfection 
methods were used to overcome 
impermeability of cell membranes. 
Subsequent bioinformatic and 
peptide array studies led to the 
development of the AKAP–in silico 
(AKAP-IS) peptide, and a cell per-
meable TAT-AKAP-IS, which are 
selective for RII over RI (Figure 
1D) (42, 43). Complementary stud-
ies led to the development of two 
RI-selective peptides; PV-38 and RI 
anchoring disruptor (RIAD), with 
RIAD having twentyfold higher 
potency than PV-38 and 1000-
fold selectivity for RI over RII (32, 
44, 45). Further honing of these 
reagents through high-resolution 
structural analyses has shown 
which residues in the amphipathic 
helix contact the R subunit dimer 
(Figure 1B) (46, 47). These stud-
ies have led to the development 
of the next generation of RI and 
RII selective peptide disruptors. 
For example, RIAD-RISR exhibits 
increased selectivity and affinity for 
RI than its predecessor RIAD (30). 
Likewise, SuperAKAP-IS has been 
reported to exhibit a fourfold great-

Table 1. Nomenclature and Subcellular Localization for AKAPs,  
Splice Variants, Isoforms, Orthologs, and Associating Molecules

AKAP Associating Molecules Targeting Motifs/Localization References
AKAP-Lbc
Brx
proto-Lbc
Onco-Lbc
AKAP13

PKD
PKCη
Rho
14-3-3
LC3

α-Catulin Actin cytoskeleton
cytoplasm

(51–55, 
57–60, 87, 
88)

AKAP18 (α, β, γ, δ)
AKAP15
AKAP7

CaV1.1/1.2
PLB
PDE4D

AQP2
NaV1.2a
5’-AMP

Plasma membrane (α and β myristoyla-
tion, dual palmitoylation)

Cytosolic and nuclear (γ and δ NLS)

(89–97)

AKAP79
AKAP150
AKAP75
AKAP5

PKC
GluR1
mGluR1/5
AC5/6
KCNQ2
Kir2.1
TRPV1
IQGAP1

β1-AR
SAP97
PSD-95
PP2B
CaV1.2
ASIC1a/2a
NMDAR

Plasma membrane (Polybasic domain 
interaction with PIP2)

Postsynaptic densities (SAP97)

(15, 17, 
61–64, 74, 
76, 83, 
88–108)

mAKAP
AKAP100
AKAP6

PDE4D3
Nesprin-1α
Epac
PDK1
Siah2
VHL

RyR
NCX
MEK/ERK5
AC5
HIF-1α

Nuclear envelope (Nesprin-1α)
Sarcoplasmic reticulum (RyR)

(80, 109–
117)

Gravin (α,β,γ)
AKAP250
AKAP12

PKC
β2-AR
CyclinD

Myristoylated
Membrane
Cytoskeleton

(118–124)

D-AKAP1
AKAP84
S-AKAP84
AKAP121
AKAP140
AKAP149
AKAP1

PP1
PTPD1
Lamin B
PDE7A
AMY-1
HIV-1 RT
mRNA

RSK1
PP2Ac

Mitochondria
Endoplasmic reticulum

(14, 125–
136)

CG-NAP
Yotiao
Hyperion
AKAP350
AKAP450
AKAP120
AKAP9

PP1
NMDAR
KCNQ1
IP3R
PKCε
CK1 
PDE4D3

PKN 
GCP2/3
CLIC
PP2A

Centrosome (PACT domain)
Golgi
Plasma membrane

(19–21, 137)

Rab32 Varp CD44
ICAM-1/2
RhoGDI
S100P
WWOX

Myofilaments (138–141)

Myospryn Desmin
Dysbindin

Dystrophin N-Terminal prenylation (142–144)

Pericentrin PKC Tubulin Centrosome (PACT domain) (34, 145–147)

MAP2
A,B,C,D

Tubulin
F-actin
Src
Grb2

Myosin VIIa
Fyn
CaV1.2

Microtubules (98, 148–
153)

AKAP220
AKAP11

PP1
GSK3β

GABACR
AQP2

Vesicles (154–159)

Ezrin
AKAP78
EZR

CFTR
EBP50
NHERF
FAK
Merlin

Actin cytoskeleton (160–166)

AKAP95
AKAP8

Condensin
PDE7A
AMY-1

p68 RNA 
helicase

MCM2

Nuclear matrix (129, 132, 
166–170)
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er selectivity for the displacement of anchored type II PKA than 
the original AKAP-IS (Figure 1D) (46). Although the selectivity 
and of these peptides and their further characterization was calcu-
lated in vitro, RIAD-RISR was recently utilized to implicate a role 
for RI-anchored AKAPs in T cell function, and AKAP-IS was used 
to implicate RII-anchored AKAPs in antigen presentation (44, 48). 
Future studies will likely elucidate the specific AKAPs involved in 
these immunological responses. 

AKAPs Organize Multivalent Complexes

Another property of AKAPs is the ability to simultaneously asso-
ciate with several binding partners (Table 1). This concept has 
been well established by numerous subcellular fractionation, yeast 
two-hybrid screening, and mass spectrometry approaches. The net 
result of these screens has been clear evidence that most, if not all, 
AKAPs have the capacity to interact with different combinations of 
activators, effectors, signal transduction and termination enzymes, 
and substrates (49, 50). This confers the ability of AKAP signal-
ing complexes to facilitate rapid and efficient signal transmission 
in local environments. Some AKAPs are ubiquitously expressed, 
whereas others serve a specific function in specialized cell types. 
For example, in cardiomyocytes, numerous AKAPs occupy pre-
cise cellular locations to coordinate critical functions of the heart, 
including excitation-contraction coupling, oxygen homeostasis, 
energy expenditure, and transcriptional control (Figure 2A), 
AKAP-Lbc, for instance, is localized to the cytosol to coordinate 
multiple cardiac signaling events discussed in detail below (Figure 
2B). This review will highlight progress in our understanding of 
the AKAP-Lbc and AKAP79/150 signaling complexes. 

The ability to integrate spatially constituents of different sig-
naling pathways is clearly illustrated by AKAP-Lbc. This multipur-
pose signaling molecule not only anchors several protein kinases 
but also functions as a guanine nucleotide exchange factor (GEF) 
for the small-molecular-weight GTPase Rho (51–53). As a result, 
AKAP-Lbc has been implicated in the control of diverse signal-
ing events that range from the synchronization of transcriptional 
reprogramming events in the heart to the control of cell shape and 
motility in transformed cells. The PKA anchoring region of this 
molecule, which contains the sequence of the Ht31 peptide, has 
been exhaustively used to define the biochemical parameters of 
PKA-AKAP interactions (35). However, subsequent analyses have 
shown that this anchoring protein also acts as a scaffold for PKCs 
and PKDs (51). We have shown that the AKAP-Lbc associated 
pools of atypical PKCη and PKA act sequentially to generate an 
activation cascade for PKDs (Figure 3). This two-step process is 
initiated by PKC phosphorylation of sites in the catalytic core of 
PKD, whereas PKA phosphorylation of AKAP-Lbc at serine 2737 
releases active PKD from the scaffold (51). This signaling complex 
functions in the heart where AKAP-Lbc integrates signals from 
α1-adrenergic and endothelin receptors to mobilize the PKD acti-
vation cascade (54, 55). The analysis of tissue samples from dis-

eased hearts revealed that the expression of AKAP-Lbc is increased 
in response to hypertrophic stimuli (54, 55). Increased amounts of 
this anchoring protein augment signaling through a PKD-mediated 
transcriptional activation pathway that elicits a hypertrophic gene 
reprogramming phenomenon resulting in the reversion of car-
diomyocytes to the developmental state, known as the fetal gene 
response. Live-cell imaging of cardiomyocytes reveal that the rate 
of nuclear export of the DNA effector protein HDAC5 was dou-
bled in the presence of AKAP-Lbc (Figure 3) (55). Consequently, 
gene reprogramming via the myocyte-specific enhancer-binding 
factor (MEF-2) pathway was accelerated. Recently these findings 
have been corroborated and extended by studies in genetically 
modified mice that uncover a critical requirement for the AKAP-
Lbc/AKAP13 gene in the developing heart (56).

AKAP-Lbc also contains tandem Dbl homology–pleckstrin 
homology (DH-PH) domains that function as a Rho-GEF. The gua-
nine nucleotide exchange activity residing in AKAP-Lbc is stimu-
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Figure 3. AKAP-Lbc integrates multiple signaling pathways. GPCRs such 
as M1 muscarinic receptor (M1-R) initiate a signaling cascade involving PKC-
mediated activation of PKD and phosphorylation of HDAC in the nucleus. 
In another pathway, Gα12-coupled receptors such as the lysophospholipid 
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Rho-GEF activity relatively high. Gαs-coupled receptors such as βAR stimu-
late production of cAMP (orange cloud) by adenylyl cyclases (bottom panel), 
leading to the activation of PKA. Phosphorylation of AKAP-Lbc by PKA 
accentuates PKD signaling and curtails Rho-GEF activity. For simplicity, both 
panels show conditions where Gαq/11 and Gα12 pathways are active. HDAC, 
histone deacetylase; LPA-R, Lysophosphatidic acid receptor; βAR, beta-
adrenergic receptor; LC3, microtubule associated protein light chain 3.
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lated by the heterotrimeric G protein Gα12. Cell-based studies 
have shown that overexpression of AKAP-Lbc favors remodeling 
of the actin cytoskeleton to increase stress-fiber formation (53). 
Suppression of Rho activation, however, involves two AKAP-Lbc 
binding partners (57–59). First, AKAP-Lbc is phosphorylated by 
PKA at serine 1565 to promote oligomerization and the binding of 
14-3-3 proteins (Figure 3) (60). This prevents the recruitment and 
GTP loading of Rho (57, 58). Second, binding of the ubiquitin-like 
protein LC3 prevents Rho interaction with AKAP-Lbc (59). It has 
yet to be established whether 14-3-3 and LC3 act synergistically 
to modulate GEF activity or whether both proteins simultaneously 
associate with this anchoring protein. Nevertheless, these findings 
illustrate how different combinations of AKAP-Lbc binding part-
ners can influence diverse cellular processes and precisely control 
of intrinsic enzyme activity. 

The capacity to interact with multiple binding partners to 
form customized signaling units may be best exemplified by 
AKAP79/150. This anchoring protein, initially discovered as an 
RII binding protein, was later shown to anchor the calcium/phos-
pholipid-dependent kinase (PKC) and the calcium-calmodulin–
dependent phosphatase (PP2B, also known as calcineurin) (15, 16, 
61, 62). AKAP79/150 signaling complexes reside on the inner face 
of the plasma membrane in neurons, cardiomyocytes, and a lim-
ited number of other cell types (15). At this location, the anchored 
enzymes are optimally positioned to respond to the generation 
of intracellular second messengers such as cAMP, calcium, and 
phospholipid (63). Molecular and cellular approaches have further 
demonstrated that AKAP79/150 directs its cohort of anchored 
enzymes toward selected transmembrane proteins to facilitate their 
efficient regulation (Figure 4). 

One role for these signaling complexes is the regulation of 
cAMP production (64, 65). AKAP79/150 is one of the anchoring 
proteins that directs PKA toward β-adrenergic receptors and plays 
a role in their phosphorylation-dependent downregulation (Figure 
4A) (64–66). The same AKAP signaling complex also coordinates 
PKC-mediated phosphorylation events that influence the onset of 
angiotensin II-induced hypertension by increasing the likelihood 
of persistent Ca

V
1.2 channel activity (67, 68). In other contexts, 

AKAP79/150 physically associates with the adenylyl cyclase 5 

isoform, favoring phosphory-
lation of the enzyme to ter-
minate cAMP synthesis. This 
finding supports real-time 
cellular imaging experiments 
showing that PKA anchoring 
to adenylyl cyclase 5 ensures 
rapid termination of cAMP sig-
naling upon activation of the 
kinase (64, 69). This protein 
configuration permits the for-
mation of a negative-feedback 
loop that temporally regulates 

cAMP production in the heart and endothelial cells (70). This 
important signal termination process can be achieved by altering 
the action of two AKAP79/150-associated proteins. PKA phospho-
rylation of β-adrenergic receptors leads to the desensitization and 
down-regulation of these receptors and shuts off adenylyl cyclase 
activity to cease the production of cAMP. 

Another fascinating aspect of AKAP79/150 is that this 
anchoring protein can also couple its anchored enzymes to 
selected substrates. Functional studies in multiple cell types have 
shown that different AKAP79/150 complexes regulate the activity 
of ion channels. For example, direct association of AKAP79/150 
with ion channels, such as the L-type calcium channels or M-type 
K+ channels, can regulate the activity of these channels (Figure 4A, 
B) (71–73). However, in other contexts, intermediary scaffolding 
proteins such as PSD-95 and SAP-97 link AKAP79/150 to synaptic 
glutamate receptor ion channels (Figure 4C) (71–76). The molecu-
lar details of these protein-protein interactions have recently been 
reviewed elsewhere (49, 50).

These findings emphasize the flexible design of the 
AKAP79/150 scaffold that allows it to not only to control cAMP 
generation through the modulation of G protein–coupled receptor 
and adenylyl cyclase activity, but also to facilitate the phosphoryla-
tion dependent modulation of ion channels. Thus, the next level 
of study is to assess the individual contributions of each anchored 
enzyme in downstream signaling events. This exploration is par-
tially illustrated by the opposing roles for PKA and PP2B on AMPA 
receptor currents, a result that was obtained by systematic intro-
duction of mutant forms of AKAP150 that could not anchor PKA, 
PKC, or PP2B in neurons where the expression of the endogenous 
anchoring protein was silenced (73, 74).

The contribution of individual AKAP79/150 signaling com-
plexes may also be assessed in AKAP150 knock-out mice. These 
animals exhibit reduced cerebellum-mediated coordination of 
motor control and altered long-term depression (LTD), further 
emphasizing the role of AKAP150 in anchoring PKA and addi-
tional enzymes in neurons (77). To dissect the role of AKAP150-
anchored PKA, a line of mice was generated where AKAP150 
was mutated to preclude PKA binding (78). This protein was 
designated Δ36, as a stop codon was introduced to prevent trans-
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Figure 4. AKAP79/150 forms customized signaling complexes. Different combinations of enzymes and substrates 
are anchored by AKAP79/150. A. PKA stimulates calcium channel (Cav1.2) currents while also negatively regulating the 
action of adrenergic receptors and adenylyl cyclase, which are responsible for PKA activation. B. Signaling through the 
M1 muscarinic receptor activates PKC which phosphorylates and terminates M-current through the potassium channel 
KCNQ2. C. SAP97 recruits AKAP79/150 and its anchored enzymes PP2B and PKA, whose opposing actions regulate 
amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) current through GluR1.
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lation of the last thirty-six amino acids, which encompass the 
amphipathic helix. The resulting mouse displayed perturbations in 
multiple neuronal functions, including reduced long-term poten-
tiation (LTP) in the hippocampus, which is involved in learning 
and memory. Ongoing studies that compare the phenotype of the 
AKAP150 knock-out to a range of AKAP150 knock-in mice that 
express forms of the anchoring protein that bring together selected 
combinations of enzyme binding partners are likely to shed light 
on the unique roles of anchored PKA, PKC, and PP2B in neurons 
and other tissues.

Measuring the Timing and Efficiency  
of Anchored Kinase Activity

Although AKAPs function to control spatially enzyme activity, they 
also contribute to the temporal resolution of signaling events. Live-
cell imaging has proven to be the most useful technique to study 
this phenomena. Accordingly, a fluorescence resonance energy 
transfer (FRET)-based PKA activity reporter (AKAR) was developed 
and adapted to function like an AKAP (79, 80). The rate of AKAR 
activation is increased when PKA is anchored to the reporter, dem-
onstrating the influence of kinase compartmentalization for optimal 
signal transduction. Subsequent studies have utilized a third genera-
tion AKAR (AKAR3) to visualize the activation of PKA in distinct 
subcellular compartments (81). Using wild type and AKAP79 
mutants that cannot bind specific targeting enzymes, combined 
with electrophysiological measurements, AKAP79 was found to pro-
vide distinct subsets of enzyme complexes to regulate the M-type 
K+, AMPA, and GluRI channel activities (Figure 4) (73, 82–84).

Recently, AKARs and other fluorescent kinase reporters for 
PKC and Erk have been used to investigate how anchored kinases 
can influence the timing and efficiency of channel activity. More 
specifically, FRET kinase activity reporters were fused to AKAP79 to 
probe how the signaling complex functions to regulate the M-type 
KCNQ2 channel (84). Whereas PKA does not appear to be involved 
in this signaling process, PKC is known to phosphorylate serine 
541 on the channel, leading to termination of M-current (Figure 
4B) (83). Using the PKC FRET reporter C-kinase activity reporter 
(CKAR), simultaneous measurements of current and PKC activ-
ity were recorded upon stimulation with the muscarinic agonist 
oxotremorine-M (Oxo-M). Oxo-M stimulated a rapid suppression of 
the KCNQ2 current with a t

½
 occurring 13.5 seconds post stimula-

tion, whereas the increase in CKAR activity had a t
½
 of 24.2 seconds 

post stimulation (84). To emulate anchoring of PKC, AKAP79 was 
fused to CKAR and the experiment was repeated. Strikingly, under 
these conditions there was no delay in PKC activity as compared 
to the timing of channel current (84). These results highlight how 
AKAP79 can optimize the transmission of the muscarinic signals to 
generate rapid and transient KCNQ2 channel activity. 

AKAP79 Modifies the Pharmacodynamic 
Properties of Anchored Kinases

Another emerging principle is the ability of AKAP79 to modify the 
catalytic activity and solvent accessibility of its anchored enzymes. 
AKAP79/150 inhibits PP2B-mediated dephosphorylation of the 
nuclear factor of activated T cells (NFAT) transcription factor (61, 
85). However, more recent pharmacological studies visualized 
anchored PKC-mediated phosphorylation of CKAR concurrently 
with electrophysiological changes in KCNQ2 channels to show 
that the AKAP79-bound PKC is resistant to the small-molecule 
competitive ATP analog inhibitors staurosporine and bisindolylma-
leimide. Using the same system, it was shown that anchored PKC 
responds to calphostin C, another small-molecule inhibitor that 
targets a different region of PKC (84). The ramifications of this 
discovery may reach well beyond the AKAP field as it implies that 
signaling complexes may acquire reduced sensitivities to small-
molecule inhibitors. As a result, these protein-protein interactions 
may create pockets of active kinase in situ and influence the phar-
macological profile of certain kinase inhibitor drugs. This could 
have important consequences for drug discovery and research 
projects predicated on the selectivity of protein kinase inhibitors.

Conclusions

Nearly two decades have passed since the first discovery of 
AKAPs. In that time we have come to appreciate that AKAPs are 
found in every tissue, orchestrate various signaling mechanisms at 
all stages of life, and assemble a variety of signaling enzymes into 
localized signaling units. With so much diversity in localization 
mechanisms, a few general principles can still be drawn. The first 
seems obvious but deserves mention: AKAPs are almost invari-
ably associated with membranes or other particulate cell fractions. 
Second, very few AKAPs are found inside the nucleus, which is 
not surprising given that PKA R subunits are also excluded. Third, 
precise positioning of AKAPs requires targeting to specific sub-
cellular locations through protein-lipid interactions followed by 
protein-protein interactions within those regions. Fourth, multiple 
AKAPs are expected to occupy the same microdomain and even to 
simultaneously reside in the same signaling complex (Figure 2B). 

Although the AKAP field remains very much in the discovery 
phase, and the identification of the components in each AKAP 
signaling complex remains a priority, several new concepts have 
appeared on the horizon. Can each of the known interacting part-
ners of a particular AKAP bind simultaneously and how dynamic 
is the organization the complexes? Does one binding partner 
preferentially interact with the anchoring protein at the expense 
of another and what regulates that preference? The resolution of 
the 3-dimensional organization of these multivalent complexes 
will certainly yield valuable information regarding their functions. 
In addition, the further characterization of mutant AKAPs with 
specific domains deleted should reveal how the multiple signal-
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ing molecules cooperate through AKAP interactions. Collectively, 
these approaches should shed more light on the physiological 
roles of AKAP complexes in normal and pathological states.  
doi:10.1124/mi.10.2.6
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