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Kinase anchoring has gained acceptance as a means to

synchronize spatial and temporal aspects of cell signaling.

A-kinase anchoring proteins (AKAPs) are a diverse

group of functionally related proteins that target protein

kinase A and other enzymes to coordinate a range of

signaling events. Recent advances in this field have

shown that incorporating phosphodiesterases into

AKAP signaling complexes exerts local control of cAMP

metabolism, that phosphorylation of some AKAPs

potentiates downstream signaling events, that anchoring

of distinct enzyme combinations functions as a

mechanism to expand the repertoire of cellular events

controlled by a single AKAP, and that fluorescent

biosensors can be used to visualize dynamic aspects of

localized cAMP signaling.
Introduction

A half-century of work has proclaimed protein phos-
phorylation as a principal means of reversibly controlling
biochemical events. It began when Fischer and Krebs [1]
demonstrated that conversion of inactive muscle phos-
phorylase b into active phosphorylase a requires ATP and
is catalyzed by a phosphorylase b kinase. They then
showed that phosphorylase b kinase itself is controlled by
a serine kinase that is responsive to the second messenger
cAMP. Together with their colleagues, they subsequently
discovered protein kinase A (PKA) and the concept of a
‘kinase cascade’ [2].

From these humble beginnings the field of protein
kinase research was born, paving the way for the
discovery of phosphotyrosine by Hunter and co-workers
[3], the identification of Src tyrosine kinase by Brugge and
Ericsson et al. [4], the seminal work of Pawson and
associates on phosphotyrosine recognition motifs [5], and
the resolution of a crystal structure of the PKA catalytic
subunit by Taylor and colleagues [6]. Consequently, we
now recognize that the w518 members of the human
kinome represent a superfamily of enzymes that partici-
pate in all aspects of cellular regulation [7].

Protein kinase research is now focusing on how these
enzymes are organized in relation to their effectors and
substrates within the three dimensions of the cell.
Interestingly, the study of PKA is shedding new light on
the complexity of these protein–protein interactions.
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A-kinase anchoring proteins (AKAPs) have emerged
as important signal-organizing components for PKA and
other kinases. Here, we discuss their role in the spatio-
temporal control of cAMP signaling and other
transduction events.
In the beginning*

It was clear from early physiology experiments that
stimulation of cAMP synthesis by different agonists
produces distinct physiological outputs, even within the
same tissue. It was subsequently suggested that the
occupancy of particular G-protein-coupled receptors
(GPCRs) favored the activation of PKA pools located in
different subcellular compartments. Conclusive evidence
supporting this concept was not obtained until the early
1980s, however, when it was shown that adrenergic
stimulation selectively activates a pool of PKA associated
with the particulate fraction of cardiomyocytes, whereas
stimulation with prostaglandin E1, which induces
different physiological effects, activates a cytosolic pool of
PKA in the same cells [8]. These findings were consistent
with earlier biochemical evidence showing that the PKA
holoenzyme, which comprises two regulatory subunits
and two catalytic subunits, exists in two forms: a type I
PKA holoenzyme, which was then thought to be
cytoplasmic; and a type II PKA holoenzyme, which
was considered to be exclusively particulate. There
was no evidence, however, to indicate how the two
PKA holoenzymes were retained in different
subcellular compartments.

The vital link was provided in 1982 by Theurkauf and
Vallee [9], who demonstrated that type II PKA co-purifies
with microtubules and that its regulatory RII subunit
binds to the microtubule-associated protein MAP2 [9].
Thus, the first AKAP was identified. Many more of these
RII-binding proteins were detected when Lohmann et al.
[10] developed an overlay technique to probe proteins
immobilized on nitrocellulose membranes with the
purified RII subunit. By the late 1980s, Rubin, Erlichman
and co-workers [11,12] had used this technology to
characterize a bovine brain protein, called P75, and its
murine ortholog, P150 (these proteins are now known as
AKAP75 (human AKAP79) and AKAP150, respectively;
see Box 1 for AKAP naming conventions).
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Box 1. What’s in a name?

Originally AKAPs were named according to their apparent molecular

mass determined by SDS polyacrylamide gel electrophoresis or

by prediction from the open reading frame: AKAP79, for example,

migrates at w79 kDa on a gel. Several AKAPs, such as the muscle-

selective mAKAP (also known as AKAP100) and AKAP-Lbc, were

subsequently found to be fragments or smaller transcripts of larger

genes and were renamed. More recently, proteins such as Gravin,

Ezrin, Rab32 and WAVE-1 have been identified as AKAPs but retain

their original designation.

With the sequencing and annotation of several genomes has

arisen a new nomenclature in nucleotide and protein databases in

which AKAPs are numbered sequentially with no regard to their

order of discovery or reference to their traditional name. Added

confusion is introduced because the database curators have not

included AKAPs such as Ezrin, Rab32 and WAVE-1 in their

classification. Although we understand the necessity for a standard

nomenclature, we have noted several recent examples in which an

individual AKAP, such as AKAP79, is simply referred to as ‘AKAP’.

This nomenclature is not correct and leads to confusion regarding

the anchoring protein that is actually being studied. We therefore

recommend the continued use of the original AKAP nomenclature.

See Tasken and Aandahl [27] for a comprehensive table of AKAPs.
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Armed with the overlay assay, our laboratory (http://
www.ohsu.edu/vollum/faculty/scott) entered this field in
the early 1990s, showing that the RII subunit must be
dimerized for interaction with AKAPs and that each
anchoring protein contains a reciprocal binding sequence
of 14–18 amino acids that form an amphipathic helix
[13,14]. The RII overlay assay was adapted to screen
phage cDNA libraries and has been used to clone several
novel AKAPs [15]. One of these proteins, initially called
Ht31 but now known as AKAP-Lbc, contains a sequence of
18 amino acids that has been used as a peptide disruptor
of RII–AKAP interactions inside cells [16,17]. The utility
of this peptide as a disruptor of PKA anchoring was first
demonstrated when we were involved in studies showing
that perfusion of Ht31 into cultured hippocampal neurons
disrupts the location of PKA in relation to a key substrate,
the a-amino-3-hydroxy-5-methyl-4-isoxazole propionic
acid (AMPA)-type glutamate receptor [18]. The functional
consequence of this disruption was to decrease the
responsiveness of the ion channel to synaptic signals
[18]. At the same time, Caterall’s group [19] used the Ht31
peptide to demonstrate that disruption of PKA anchoring
uncouples cAMP-dependent regulation of the L-type
Ca2C channel.

In 1997, a cell-soluble version of Ht31 was generated by
conjugating a steroyl group to the N terminus [20]. This
peptide and other Ht31 derivatives are now widely used to
establish whether anchored pools of PKA participate in
various cAMP signaling events [21,22]. Elegant structural
studies from Jennings and colleagues [23,24] have shown
that a hydrophobic face on Ht31 fits into a groove created
by the N-terminal regions of the RII dimer, forming a
nanomolar-affinity complex. Related work from Taylor’s
group [25,26] has shown that a subset of dual-specificity
AKAPs can also interact with the type RI subunit. Thus,
by the late 1990s, two important biochemical properties of
AKAPs were emerging: first, AKAPs bind the R subunit
dimer through a well-conserved amphipathic a-helical
motif; and second, each anchoring protein is targeted to
www.sciencedirect.com
a unique localization in a given cell type by an identifiable
targeting motif [27].

AKAP signaling complexes

Another biological role of AKAPs became apparent when it
was discovered that AKAP79 (the human ortholog of
AKAP75 and AKAP150) not only anchored PKA but also
bound the protein phosphatase PP2B [28]. This finding
changed the way in which we think about AKAPs because
it suggested that signals controlling phosphorylation and
dephosphorylation of a single substrate can pass through
the same AKAP signaling complex.

The notion of multivalent AKAPs continued to evolve
when subsequent studies showed that AKAP79 also binds
protein kinase C (PKC), thereby providing a means to
integrate cAMP with Ca2C and phospholipid signals at the
same subcellular locus [29]. We now know that Gravin
(AKAP250) and AKAP-Lbc colocalize PKA with PKC,
whereas AKAP220 and AKAP149 place PKA in close
proximity to the type 1 protein phosphatase PP1 [30–33].
In fact, there is reason to believe that most, if not all,
anchoring proteins bring PKA together with other protein
kinases, protein phosphatases and various signal termin-
ation enzymes. In the following sections, we discuss the
role of these AKAP signaling complexes in the synchroni-
zation of compartmentalized signal transduction events.

AKAPs and phosphodiesterases: compartmentalization

of cAMP action

Spatiotemporal control of cAMP flux requires the
concerted action of two enzyme classes: adenylyl cyclases,
which synthesize cAMP; and compartmentalized pools of
phosphodiesterases (PDEs), which locally metabolize
cAMP into 5 0-AMP. The laboratories of Houslay (http://
www.gla.ac.uk/ibls/BMB/mdh) and Conti (http://www-
med.stanford.edu/profiles/Marco_Conti) have identified
several PDE-binding proteins that target distinct iso-
zymes to specific cellular microenvironments [34]. A
prototypical example is PDE4D3, which is differentially
localized via interactions with scaffolding proteins such as
myomegalin and b-arrestin [35–37]. Likewise, many
AKAPs cluster PKA with PDEs to terminate cAMP signals
as they diffuse into the cell [38,39].

In cardiomyocytes, the muscle-selective AKAP
(mAKAP) assembles a negative feedback loop containing
PKA and PDE4D3 [38] (Figure 1a). PKA-mediated
phosphorylation of Ser13 in PDE4D3 augments mAKAP
binding [40], whereas phosphorylation of Ser54 enhances
the catalytic efficiency of the enzyme to favor cAMP
metabolism [41]. These effects are counterbalanced by
extracellular-signal-regulated kinases (ERKs) that phos-
phorylate PDE4D3 on Ser579 to suppress PDE activity
[42]. This latter phosphorylation event might be catalyzed
by ERK5, which is also a component of the mAKAP
complex [43,44]. This configuration not only ensures
bidirectional control of PDE4D3 activity but also has
been postulated to generate local fluctuations in cAMP
and concomitant pulses of PKA activity (Figure 1a).

Work from Tasken et al. [45] suggests that AKAP450
performs an analogous function at centrosomes, where it
organizes a signaling complex of PKA, PDE4D3 and
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Figure 1. AKAPs that bring together PKA and PDEs. (a) mAKAP tethers PKA and PDE4D3 at the nuclearmembrane to regulate the local flux of cAMP. An increase in local cAMP

activates PKA, which phosphorylates PDE4D3 to increase its catalytic activity and to enhance its association with mAKAP. The activity of PDE4D3 eventually reduces cAMP

back to basal concentrations and shuts off the kinase. PDE4D3 also acts as a scaffold to bring ERK5 (and its upstream activating kinase MEK5) into the complex. ERK5

negatively regulates PDE4D3 activity by phosphorylating it on distinct sites. This arrangement enables mAKAP and PDE4D3 to act as integrators of cAMP and mitogenic

signaling pathways. (b) AKAP450 has a similar function at centrosomes, where it anchors PKA, PDE4D3 and two phosphatases. (c) Members of theMTG family are localized to

the Golgi, where they target PKA and the PDE7A isoform.
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the protein phosphatases PP1 and PP2A (Figure 1b).
Likewise, AKAP110 targets the PDE4A isoform to the
acrosome of sperm, whereas AKAP149 and AKAP121 and
the Nervy and myeloid translocation gene (MTG) anchor-
ing proteins, respectively, target the PDE4A and PDE7A
isoforms to various subcellular locations [46,47]
(Figure 1c). These AKAP–PKA–PDE units respond to
upstream signals that emanate from GPCR and adenylyl
cyclase networks, creating a complex and continually
changing signaling environment in which cAMP concen-
trations are distributed unevenly in the cell. These
findings underscore the pleiotropic nature of this import-
ant second messenger and highlight the central role of
AKAPs in the customized regulation of cAMP signaling.
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Figure 2. Phosphorylation of AKAPs regulates their function. (a) Yotiao couples PKA

and PP1 to KCNQ1 subunits that are part of the channel responsible for IKS currents.

b2-Adrenergic signaling activates PKA, which then phosphorylates the channel and

Yotiao, leading to cAMP-dependent activation of the channel. Yotiao seems to act

as both a scaffold for coordinating local phosphorylation or dephosphorylation

events and an accessory subunit that shapes channel output. (b) AKAP-Lbc is a Rho-

GEF that also anchors PKA, PKC and PKD. Phosphorylation of AKAP-Lbc by

anchored PKA regulates the activation of PKD via PKC and inhibits Rho-GEF activity

by inducing 14–3-3 binding.
Phosphorylation in AKAP complexes

Soon after AKAPs were discovered, it was postulated that
they that would be the preferred substrates for their
associated kinases [48]. Although experimental evidence
supporting this prediction has been slow in coming, three
recent examples suggest that it might be correct.

First, the AKAP Yotiao associates with various ion
channels, including the KCNQ1 subunit of KC channels
responsible for IKS currents that shape the duration of
cardiac action potentials in response to b-adrenergic
agonists [49] (Figure 2a). Inherited mutations in KCNQ1
subunits have been linked to long QT syndrome (LQTS), a
disease characterized by cardiac arrhythmias and sudden
death [50]. Intriguing work from Kass and co-workers
[51,52] shows that the anchored PKA phosphorylates
Ser43 in Yotiao to enhance cAMP-dependent activation of
IKS. Although the precise mechanism is not clear, it seems
that a disruption of interactions between the AKAP and
the KCNQ1 subunit might be responsible for the impaired
b-adrenergic regulation of IKS detected in some individ-
uals with KCNQ1 mutations.

Second, Gravin (also known as AKAP250) is another
anchoring protein that binds PKA and PKC. Work from
Malbon and colleagues [53,54] suggests that Gravin is a
substrate for its own associated kinases and that
phosphorylation facilitates the association of this AKAP
with agonist-occupied b-adrenergic receptors.
www.sciencedirect.com
Third, AKAP-Lbc is a multifunctional PKA- and PKC-
anchoring protein that acts as a guanine nucleotide
exchange factor (GEF) for the small GTPase Rho and
synchronizes the activation of a third protein kinase called
protein kinase D (PKD) [31,55,56]. Work published
concurrently by the Diviani [57] and Pawson [58] groups
has shown that PKA-mediated phosphorylation of
Ser1565 in AKAP-Lbc generates a binding site for 14–3-
3 proteins, which suppress the Rho-GEF activity of AKAP-
Lbc (Figure 2b). The synergistic actions of anchored PKA
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and PKC also contribute to activation of PKD. Phos-
phorylation by PKCh primes PKD for activation, whereas
PKA-mediated phosphorylation of Ser2737 in AKAP-Lbc
releases PKD from the activation complex [31] (Figure 2b).

These examples of highly localized phosphorylation
events that occur in AKAP signaling complexes highlight
the utility of kinase anchoring as a means to restrict the
substrate accessibility of broad-spectrum enzymes such as
PKA and PKC.

Combinatorial assembly of distinct AKAP signaling

complexes

A basic premise of AKAP action is that signaling
specificity is obtained when enzymes are targeted towards
selected substrates. This use of distinct enzyme
combinations provides a way in which to expand the
repertoire of cellular events that can be modulated by a
given AKAP. This concept is illustrated by work published
in 2005 by Hoshi et al. [59] showing that AKAP79/150
coordinates different enzyme combinations to modulate
the activity of two distinct neuronal ion channels:
AMPA-type glutamate receptors and KCNQ2 KC channels
(Figure 3a,b) [59]. These studies investigated the
mechanism of agonist-induced rundown of AMPA
currents, a process that is known to involve AKAP79/150
(Figure 3a). PKA-mediated phosphorylation of the AMPA
channel stabilizes the current [60]; this process is opposed
by PP2B-mediated dephosphorylation of the channel [61].

Using a new technique combining RNA interference of
the endogenous protein in neurons and replacement with
AKAP79/150 forms unable to anchor selected binding
partners, Hoshi et al. [59] have shown that PP2B
anchoring is primarily responsible for AMPA channel
rundown. The same strategy applied to cervical ganglion
neurons (SCGs) demonstrated that AKAP79/150 and PKC
are involved in modulating M current (a KC conductance
that negatively regulates neuronal excitability) [59].
These data point to a fascinating situation. In hippo-
campal neurons, AKAP79/150 coordinates PKA- and
PP2B-mediated modulation of AMPA currents, but any
AKAP79/150-associated PKC remains inactive in this
process. By contrast, AKAP79/150 enables PKC to
facilitate M-current regulation in SCG neurons, whereas
PKA and PP2B seem to be non-essential (Figure 3b).
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Figure 3. Combinatorial assembly of distinct enzyme complexes on AKAP79. This AK
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AKAP79 complex that functions in the muscarinic suppression of M currents in SCG neu

Different combinations of AKAP79-binding partners are used with each substrate.
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Interestingly, AKAP79/150 can also bind to b-adrenergic
receptors [62–64]. Potentially, this binding permits the
assembly of a third AKAP79/150 signaling complex in
which PKA contributes to phosphorylation-dependent
downregulation of the b-adrenergic receptors (Figure 3c).

Although the contextual cues that drive the prefer-
ential assembly of these three different AKAP79/150
complexes are unclear, one possibility is that the initial
binding event between the anchoring protein and its
target substrate promotes a sequence of conformational
changes that directs recruitment of the next binding
partners. For example, the association of AKAP79/150
with the KCNQ2 channel might provide a configuration
that retains the membrane tethering and anchoring of
PKC. Similarly, the formation of a ternary complex
containing AMPA channels, the MAGUK adaptor protein
and AKAP79/150 might have to be established before
PKA and PP2B can be orientated towards the channel.
Other factors, however, such as the co-translational
assembly of protein complexes via localized protein
synthesis, or species-specific or cell-type-specific
expression of particular binding partners might also
influence the composition of these ‘context-dependent’
signaling networks [65] (Figure 3).

Another way in which to vary the ‘context-dependent’
modulation of signaling networks might be to induce time-
dependent changes in AKAP complexes. For example,
pathophysiological changes in the mAKAP complex have
been recently linked to some forms of heart failure.
Ryanodine receptors (RyRs) are intracellular Ca2C release
channels that are present in multiprotein signaling
complexes at the sarcoplasmic reticulum in muscle
cells to mediate excitation–contraction coupling. Upon
b-adrenergic stimulation, anchored PKA phosphorylates
the RyR to sensitize the channel to activation by an
increase in Ca2C. Much work suggests that chronic
changes in the mAKAP–RyR1 complex, including loss of
anchored PDE4D3 and hyperactivation of the anchored
PKA, correlate with the onset of ‘leaky’ channels found in
some models of exercise-induced cardiac arrhythmias and
heart failure [66,67]. Whether these changes in the
mAKAP complex can be detected routinely in individuals
affected with some types of heart disease, or whether
this protein represents a viable therapeutic target for
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fluorescently labeled regulatory (R) and catalytic (C) subunits were microinjected into cells for monitoring intermolecular FRET. (b) By 2001, activation of cAMP could be

detected by imaging the Ca2C flux through CNG ion channels that are highly responsive to cAMP. Inset, data show that isoproterenol stimulation of HEK293 cells causes rapid

accumulation of cAMP, as measured by changes in the signal from the Ca2C indicator dye Fura-2. (c) In 2002, a genetically encoded reporter of PKA activation was developed

that detects a loss of intermolecular FRET on dissociation of a CFP-conjugated R subunit from a YFP-conjugated C subunit. (d) In 2004, a FRET-based biosensor directly
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intervention, remains to be seen. Nonetheless, these
findings yet again support an active role for AKAPs in
synchronization of physiologically relevant
signaling events.

Time: the final frontier

Although we have identified most, if not all, of the proteins
that make up the cAMP signal transduction cascade, we
still face the challenge of resolving the mechanics of their
action in real time. Fluorescent probes that report the
activation dynamics of cAMP effector proteins such as
PKA, cyclic-nucleotide-gated (CNG) ion channels and
Epac-GEFs have become the methods of choice to visualize
the dynamics of cAMP signaling inside cells. Pioneering
work by Roger Tsien’s laboratory (http://www.tsienlab.
ucsd.edu/) led to the development of a PKA-based probe
that could monitor cAMP production by the loss of
fluorescence resonance energy transfer (FRET) between
recombinant regulatory (R) and catalytic (C) subunits
conjugated with fluorescein and rhodamine dyes, respect-
ively [68] (Figure 4a).

A decade later, Zaccolo and Pozzan [69] improved this
technique by creating a genetically encoded PKA reporter
that recorded FRET between a yellow fluorescent protein
(YFP)-conjugated C subunit and a cyan fluorescent protein
(CFP)-conjugated R subunit (Figure 4b). This reporter was
successfully used to measure microdomains of cAMP along
sarcomeric Z lines in cardiomyocytes in response to
adrenergic stimulation. More recently, Zaccolo, Pozzan
and co-workers [70] have shown that AKAPs are involved
in anchoring the kinase to these regions and that
compartmentalized pools of PDE3 and PDE4 suppress
signals located in these cAMP microdomains.

Other investigators have created biosensors based on
the properties of CNG channels and Epacs. Ca2C influx
through CNG ion channels is stimulated in response to
an increase in cAMP. When coupled with the Ca2C-
sensitive indicator Fura-2 and PDE inhibitors, mutants
of cAMP-selective CNG channels function as real-time
biosensors of cAMP accumulation at the plasma
membrane [71–73] (Figure 4c). Likewise, the cAMP-
binding domain of the Epac-GEF has been used to
generate fluorescent cAMP biosensors that detect
compartmentalized accumulation of the second messen-
ger [74,75] (Figure 4d).

FRET-based reporters of PKA activity provide an
alternative to measuring cAMP concentrations. AKAR2
is a chimeric protein consisting of CFP, a consensus PKA
substrate sequence, a Forkhead Homology (FHA) domain
that binds phosphoamino acids, and the YFP variant
citrine. PKA-mediated phosphorylation of the PKA
consensus site engages the FHA domain to enhance
FRET between the fluorescent moieties [76,77]
(Figure 4e). This reporter also samples local phosphatase
2001 [77], the AKAR reporters use phosphorylation-dependent intramolecular interactio

FRET donor and acceptors (ECFP and citrine), a consensus PKA site and an FHA dom

phosphothreonine and FRET increases. This reporter has been modified to study signal

(PKA BD), as in AKAR–PKA (bottom left), or an RII-binding peptide and a PDE4D3-bindin

long-lasting PKA activity and FRET (left). The duration of this signal is attenuated when
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activity, because FRET decay is dependent on depho-
sphorylation of the PKA site and relaxation of the
molecule. AKAR2 reporters have been recently used to
examine two aspects of PKA activation dynamics.

First, chronic insulin treatment delays activation of
PKA through b-adrenergic receptors in differentiated
3T3-L1 adipocytes. Work by Zhang et al. [76] suggests
that in chronic hyperinsulinemia complexes of the
b-adrenergic receptor and AKAP are decompartmenta-
lized in relation to the cAMP synthesis machinery.

Second, Dodge-Kafka et al. [43] have used a modified
AKAR2 reporter to show that recruitment of PKA and a
PDE into the FRET reporter complex generates
localized pulses of cAMP that are shorter in duration
than when PDE is not present (Figures 4e). Thus,
various cAMP-responsive events that have differing
durations and are responsive to distinct thresholds of
cAMP might emanate from the same microdomain. This
possibility would be particularly relevant to mAKAP
signaling complexes that contain three functionally
distinct cAMP-dependent enzymes (PKA, PDE4D3 and
Epac1): PKA is responsive to nanomolar concentrations
of cAMP and would become active early in a second
messenger response; by contrast, the activities of
PDE4D3 (Michaelis constant, KmZ1–4 mM) and Epac1
(dissociation constant, KdZ4 mM) would commence only
when cAMP accumulated to micromolar concentrations
[43]. Conversely, inactivation of PDE4D3 and Epac1
would precede reformation of the PKA holoenzyme as
the cAMP concentrations declined.
Concluding remarks

We anticipate that these cutting-edge imaging tech-
nologies will be central to obtaining precise definitions of
the spatial and temporal patterns of anchored kinase
function in the next decade. The information gained could
be used in conjunction with computational models of
signal transduction to predict the effects of perturbing the
system. Ultimately, a balance of both approaches might
contribute to the development of therapeutics that target
‘signaling diseases’ such as heart failure, asthma, diabetes
and cancer. Therefore, pharmacological manipulation of
kinase signaling in space and time will ultimately give us
more control over where and when things happen in
the cell.
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