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Basic Concepts in Heart Failure

A-Kinase Anchoring Proteins
Getting to the Heart of the Matter

John D. Scott, PhD; Luis F. Santana, PhD

The heart is a sophisticated organ that continuously pumps
blood to ensure that oxygen and nutrients reach the brain,

other organs, and peripheral tissue. The right side of the heart
pumps blood to the lungs, where oxygen is taken up and
carbon dioxide is removed. The left side of the heart then
pumps blood to the rest of the body, where oxygen and
nutrients are delivered to tissues. This cycle is sustained by
the repeated contraction of cardiomyocytes, specialized mus-
cle cells that are designed to contract and respond rapidly to
physiological stimuli.

Normally, contraction of atrial and ventricular myocytes is
activated by action potentials that originate in the sinoatrial
node in the wall of the right atrium, often referred to as the
pacemaker of the heart. Coupling of this electric signal to
contraction (EC coupling) in cardiac myocytes is initiated
with Ca2� influx through L-type Ca2� channels, which
activates intracellular Ca2� release via ryanodine receptors
located in the sarcoplasmic reticulum (SR) and thus induces
a global increase in [Ca2�]i that triggers contraction.1,2 The
rate at which the sinoatrial node myocytes fire action poten-
tials is modulated by 2 opposing nervous systems. The
sympathetic nervous system uses the catecholamine hor-
mones noradrenaline and adrenaline to increase the force and
rate of atrial and ventricular contraction. In contrast, the
parasympathetic nervous system releases the neurotransmitter
acetylcholine to reduce action potentials from the sinoatrial
node. Together, these neural systems ensure that cardiac
output is matched to the physiological needs of the organism,
a process that is often termed “stimulus-response coupling.”

Although numerous signal-transduction cascades are oper-
ational in cardiomyocytes, G-protein–coupled receptor–sig-
naling pathways play a prominent role. Agonists such as
noradrenaline, adrenaline, angiotensin II, and endothelin-1
promote the interaction of their respective receptors with a
G-protein heterotrimer comprising �-, �-, and �-subunits.3

This transient interaction promotes exchange of GTP for
GDP on the G� subunit and thereby activates or inhibits
effector molecules and ion channels. Effector molecules,
which include enzymes such as adenylate adenylyl cycla-
ses and phospholipases, regulate the production of second
messengers.3

Second messengers are small molecules that are mobilized
or generated in response to extracellular stimuli. In the heart,
Ca2� and cAMP are the second messengers most frequently
used by cardiac signaling pathways. They act at defined
intracellular sites to initiate signaling events4 that control
excitability, contraction, and gene expression. Occupancy of
�-adrenergic receptors engages the cAMP-signaling pathway
to activate protein kinases, guanine nucleotide exchange
factors, and ion channels.5,6 Combinations of these cAMP-
responsive enzymes modulate cardiac contraction force (in-
otropy), heart rate (chronotropy), and muscle relaxation
(lusitropy).7 Not surprisingly, there is a significant degree of
cross talk between the Ca2�-and cAMP-signaling pathways.
This is achieved in part because Ca2�-and cAMP-responsive
proteins are often brought together in multiprotein complexes.8

The goal of the present review is to highlight recent progress on
our understanding of how anchored signaling complexes
influence cardiomyocyte physiology. We will focus on cardio-
myocyte A-kinase anchoring proteins (AKAPs), a family of
scaffolding proteins that compartmentalize cAMP- and Ca2�-
responsive enzymes in proximity to preferred substrates such as
ion channels, contractile proteins, Ca2� pumps, and the tran-
scriptional machinery.

A-Kinase Anchoring Proteins
Seminal experiments in the 1950s demonstrated that
hormone-mediated stimulation of cAMP synthesis by differ-
ent agonists induced distinctive physiological outputs, even
within the same tissue.9 Thirty years later, it was shown that
adrenergic stimulation selectively activated a pool of the
cAMP-dependent protein kinase (PKA) associated with the
particulate fraction of cardiomyocytes, whereas prostaglandin
E1 stimulation activated a cytosolic pool of PKA in the same
cells to induce different physiological effects.10 As more
investigators pondered this concept, it became clear that
cAMP was not distributed uniformly throughout the cell.11–14

This led to the hypothesis that the opposing actions of
adenylyl cyclases and phosphodiesterases (PDEs) generate
intracellular gradients and compartmentalized pools of
cAMP.15,16 More recently, a genetically encoded fluores-
cence-based biosensor was used to measure microdomains of
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cAMP along sarcomeric Z lines in cardiomyocytes in re-
sponse to adrenergic stimulation.17

Although it was accepted that cAMP levels were distrib-
uted unevenly within the cell, it remained unclear exactly
how PKA was retained within different subcellular compart-
ments.18 Soon, a variety of protein-protein interaction screens
identified a set of molecules that interact with the R subunits
of the PKA holoenzyme (a tetramer consisting of a regulatory
[R] subunit dimer and 2 catalytic [C] subunits).19,20 These
proteins were named AKAPs in recognition of their ability to
anchor PKA at defined subcellular locations.21 A principal
function of AKAPs is to position PKA and other cAMP-
responsive enzymes in proximity to their substrates.6,22,23

However, AKAPs also serve to cluster regulatory enzymes
with the cAMP synthesis machinery.24,25 For example, inter-
actions between AKAP79/150 and the adenylyl cyclase
isoforms ACV or ACVI facilitate the preferential PKA
phosphorylation of the enzyme to inhibit cAMP synthesis.
Such a PKA-AKAP79/150-ACV complex forms a negative-
feedback loop that generates pulses of cAMP production.24

This configuration may be particularly relevant in the pace-
maker cells, because studies in ACV-knockout mice suggest
that this adenylyl cyclase isoform participates in sympathetic
and parasympathetic regulation of cardiac contractility.26,27

Functional analysis of AKAP action often takes advantage
of reagents that can displace PKA from anchoring proteins.
Detailed biochemical analyses have demonstrated that
R-subunit dimerization is necessary for PKA interaction with
AKAPs and that each anchoring protein contains a reciprocal
binding sequence of 14 to 18 amino acids that forms an
amphipathic helix.28,29 One of these proteins, initially called
Ht31 but now known as AKAP-Lbc, contains an 18–amino
acid sequence that can be used as a peptide disruptor of
RII-AKAP interactions inside cells.19 The utility of Ht31
peptide as a universal PKA-anchoring disruptor was initially
demonstrated on perfusion into cultured hippocampal neu-
rons to disrupt the location of PKA in relation to a key
substrate, the AMPA-type glutamate receptor.30 Later, it was
shown that perfusion of Ht31 peptide into cardiomyocytes
uncoupled cAMP-dependent regulation of the L-type calcium
channel.31 More recently, adenoviral gene transfer of Ht31

analogs into rat hearts has suggested that anchored pools of
PKA contribute to ß-adrenergic stimulation of cardiomyocyte
contractility.32,33 Mislocalization of PKA alters the phosphor-
ylation of key proteins that participate in this process, such as
L-type calcium channels, the ryanodine receptors, phospho-
lamban, and myofibrillar troponin I.34,35 Calcium imaging and
echocardiogram analyses have concluded that disruption of
PKA anchoring (1) affects cardiac contractility as measured
by changes in the rate of calcium transients and (2) increases
the left ventricular ejection fraction and stroke volume.33

These studies provide a compelling rationale for more mech-
anistic studies to assess the contribution of individual AKAP
complexes in the regulation of different aspects of cardiac
function under normal and pathophysiological conditions.

AKAPs Signal Cardiac Contractility
As noted above, EC coupling is the process whereby an
action potential triggers a myocyte to contract. This involves
a transient rise in intracellular calcium that drives contraction
(reviewed by Bers2). From a signaling perspective, EC
coupling can be considered to occur in 3 phases (Figures 1A
through 1C). Phase 1 is initiated by brief openings of
voltage-gated L-type Ca2� channels. Small amounts of Ca2�

enter specialized regions of the ventricular myocyte where
the junctional SR is close to the sarcolemma.36–38 In phase 2,
this localized Ca2� influx triggers the synchronous activation
of multiple ryanodine-sensitive Ca2� channels (RyRs) in the
SR to produce a global Ca2� transient.39,40 The concomitant
activation of Ca2�-responsive contractile proteins such as
cardiac troponin C initiates contraction. Phase 3 requires
termination of SR Ca2� release and the transport of Ca2�

back into the SR through the ATP-dependent Ca2� pump
SERCA2 (sarcoplasmic/endoplasmic reticulum Ca2� pump
2), which decreases [Ca2�]i and begins myocyte relaxation.
Recent evidence suggests that distinct AKAP complexes
contribute to each phase of EC coupling by optimizing the
phosphorylation of ion channels and contractile proteins.

The junction between the sarcolemma and the SR is
decorated with local Ca2� signaling complexes that contain
between 10 and 25 L-type Ca2� channels and approximately
100 to 200 RyRs.2 �-adrenergic agonists stimulate PKA to

Figure 1. Schematic of the role of AKAPs in EC coupling in cardiomyocytes. A, Phase 1 of EC coupling: AKAP79/150 and the short
forms of AKAP15/18 (� and �) maintain signaling complexes tethered to L-type calcium channels to enable calcium influx. B, Phase 2
of EC coupling: RyRs at the SR are bound to the mAKAP signaling complex as it responds to the increased cytosolic Ca2�. mAKAP
clusters PKA, PDE4D3, and PP2A to regulate the phosphorylation status of the RyR and the resultant Ca2� release from the SR. C,
Phase 3 of EC coupling: Active transport of calcium back into the SR via SERCA2 is regulated by phospholamban. The AKAP15/18�
long isoform brings PKA into complex with phospholamban and SERC2, where it can augment the phosphorylation of phospholamban
and the reuptake of calcium into the SR.
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increase the amplitude of L-type Ca2� currents to favor Ca2�

influx. The AKAP79/150 family of anchoring proteins (hu-
man AKAP79, bovine AKAP75, and murine AKAP150)
facilitates this process by directing the phosphorylation of
L-type Ca2� channel subunits (Figure 1A).41,42 Biochemical
and electrophysiological studies initially showed that expres-
sion of recombinant AKAP79 enhanced the cAMP-dependent
stimulation of L-type Cav1.2 currents.43 AKAP79/150 also
associates with the calcium/calmodulin-dependent phospha-
tase PP2B and a variety of calcium/phospholipid-dependent
protein kinase (PKC) isoforms.44 – 46 These additional
AKAP79/150 binding partners are important in other aspects
of cardiac myocyte function.47

Recent studies suggest that AKAP79/150 has multiple
regulatory roles in the cardiovascular system. For example,
AKAP79/150-associated pools of PKC� have been impli-
cated in the induction of persistent Ca2� sparklets, local Ca2�

signals produced by recurrent openings of L-type Ca2�

channels in arterial myocytes that enhance vascular tone
(Figure 1A).48 Arterial myocytes isolated from AKAP150-
knockout mice do not generate persistent Ca2� sparklets.
Furthermore, AKAP150�/� mice are naturally hypotensive
and do not develop angiotensin II–induced hypertension.48

Collectively, these results suggest that local modulation of
L-type Ca2� channels by AKAP150-targeted pools of PKA,
PKC�, and PP2B may control different aspects of Ca2�

influx that contribute to cardiac EC coupling, vascular tone,
and changes in blood pressure.

Another AKAP also modulates cardiac L-type Ca2� chan-
nels. Alternate splicing of the AKAP15/18 gene yields
several isoforms that reside in distinct subcellular locations.49

The �- and �-isoforms of AKAP15/18 are found at the
plasma membrane in complex with L-type Ca2� chan-
nels.50,51 Lipid modification of 3 residues in the extreme
amino terminus of the anchoring protein is required for
association with the inner face of the plasma membrane,
whereas a leucine zipper–like motif in the carboxyl terminus
interacts with the cytoplasmic domain of the L-type Ca2�

channel.50,52 This arrangement ensures that an anchored pool
of PKA is optimally positioned and available to phosphory-
late the channel (Figure 1A). Experimental support for this
notion has been provided by electrophysiological analysis
showing that expression of a targeting-defective mutant of
AKAP15/18� that lacks the sites of lipid modification re-
duces the rate of cAMP-dependent stimulation of L-type
Ca2� currents.50 Complementary studies have shown that
peptide-mediated disruption of the AKAP15/18�-channel
interaction with a leucine zipper peptide mimetic has similar
effects on myocyte L-type Ca2� currents (Figure 1A).52 A
leucine zipper–like motif has also been identified in
AKAP79/150 (Figure 1A).53 Thus, it would appear that
cardiac myocytes use AKAP15/18� or AKAP79/150 to
modulate the entry of extracellular Ca2� through L-type
calcium channels.54,55 Although both anchoring proteins ap-
pear equally adept at coordinating cAMP-signaling events
that initiate EC coupling by virtue of their ability to anchor
PKA, AKAP79/150 has the capacity to recruit additional
binding partners such as PKCs and the phosphatase PP2B
into its channel-associated complex.56,57 In addition, PP2B

may interact directly with cardiac L-type Ca2� channels,
because phosphatase-binding sites have been mapped to the
cytoplasmic regions of the �1-1.2 subunit of the channel.58

The formation of these more sophisticated multiprotein sig-
naling complexes that are mediated by AKAP79/150 may
permit the more precise transmission of second-messenger
signals to this Ca2� channel. Another advantage of the
formation of more sophisticated AKAP signaling complexes
in proximity to Ca2� channels is that it may permit integra-
tion of cAMP and calcium/phospholipid signals at this
intracellular locus.

The second phase of EC coupling begins when openings of
L-type Ca2� channels cause a local increase of [Ca2�]i from
100 nmol/L to approximately 10 to 20 �mol/L, which
activates nearby RyRs to release Ca2� from the SR (Figure
1B). Planar bilayer work suggests that phosphorylation of the
RyR by PKA increases the sensitivity of the channel to Ca2�

and accelerates the kinetics of adaptation.59 In the intact cell,
PKA is recruited to the RyR complex by the muscle-selective
anchoring protein (mAKAP).60–63 mAKAP is a multivalent
anchoring protein that brings PKA and the cAMP-
metabolizing enzyme phosphodiesterase PDE4D3 to the
RyR.64–66 The clustering of a cAMP-metabolizing enzyme
with PKA limits the availability of cAMP to ensure that
kinase activation is transient (Figure 1B).64 Furthermore, the
phosphorylation state of the RyR is constantly monitored by
the mAKAP-associated phosphatase PP2A.60 Loss of an-
chored PDE4D3 and hyperactivation of the anchored PKA
may correlate with the onset of “leaky” channels found in
certain models of exercise-induced cardiac arrhythmias and
heart failure.67–69 However, an equally plausible explanation
is that compensatory changes in calcium content of the SR
make the RyR leaky during arrhythmias. These latter events
could be critical in determining whether abnormal calcium
waves and sparks are propagated.70

The third phase of EC coupling involves active transport of
Ca2� back into the lumen of the SR to initiate myocyte
relaxation (Figure 1C). The SERCA2 pump and its modulator
protein, phospholamban, control this process.71–73 Mono-
meric phospholamban is a 52–amino acid protein that re-
presses SERCA2. However, �-adrenergic stimulation favors
PKA phosphorylation of phospholamban. This promotes its
pentamerization and the derepression of SERCA2.72,74,75

Precise regulation of this system is achieved in part because
all of the components are organized into a supramolecular
complex that consists of the SERCA2, phospholamban, PKA,
and a high-molecular-weight isoform of AKAP15/18.76,77

Elegant biochemical and imaging studies show that disrup-
tion of PKA interaction with the AKAP15/18� isoform
interferes with the phosphorylation of phospholamban (Fig-
ure 1C). This prevents the release of phospholamban from
SERCA2 to blunt Ca2� reuptake and myocyte relaxation.76

Reversible control of the cAMP response may be provided by
an anchored pool of type 4 PDE, which is believed to
associate with AKAP15/18�.78,79

AKAP Signaling Under
Pathophysiological Conditions

Adverse genetic profiles and unfavorable environmental fac-
tors contribute to the origin of many cardiac disorders.
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Because AKAPs orchestrate signaling events that modulate
cardiac contractility, it appears reasonable that defects in
anchoring protein genes or pathophysiological changes in
AKAP signaling complexes may underlie certain heart dis-
eases. Several recent reports now support this notion.

Sudden death due to arrhythmia kills more than 400 000
people a year in the United States and many more throughout
the world. As a result, there is a concerted international effort
to identify genes that regulate heart rhythm. Several indepen-
dent findings point toward a role for dual-function anchoring
proteins (d-AKAP-2) in heart rhythm control. A genetic
screen of single-nucleotide polymorphisms in DNA pools of
6500 age-stratified healthy European, Asian, and American
individuals detected an amino acid change from Ile to Val at
position 646 in d-AKAP-2 (AKAP10).80 Individuals harbor-
ing the d-AKAP-2 646Val variant often exhibited a decrease
in the length of the PR interval on ECGs (the time from the
onset of atrial depolarization to the beginning of ventricular
depolarization). In vitro biochemical analyses of the
d-AKAP-2 646Val variant suggested that this amino acid
substitution in the PKA-anchoring domain of the protein
enhanced its affinity for the type 1 PKA holoenzyme 3-fold.81

Although a mechanistic connection between these 2 observa-
tions remains unclear, d-AKAP-2 mutant mice expressing a
truncated form of d-AKAP-2 that are unable to anchor PKA
develop cardiac arrhythmias and die prematurely.82 Further-
more, cultured myocytes isolated from these mice were
reported to display an increased contractile response to
cholinergic signals.82

Long-QT syndrome is a rare congenital heart condition that
can result in sudden death as a consequence of exercise- or
excitement-induced arrhythmia. This condition occurs be-
cause of the delayed repolarization of myocyte membranes.
This prolongs the duration of the ventricular action potential
and thus is diagnosed as a lengthening of the QT interval.
Myocyte repolarization requires the movement of potassium
ions out of the cell. Consequently, the most common type of
long-QT syndrome (LQT1) is associated with mutations in
the KCNQ1 subunit of a potassium channel.83 The anchoring
protein Yotiao associates with a variety of ion channels,
including the KCNQ1 subunit responsible for IKs currents that
shape cardiac action potential duration in response to
�-adrenergic agonists.84 The primary function of Yotiao is to
facilitate phosphorylation of Ser27 on KCNQ1 to modulate
ion channel activity; however, anchored PKA also phosphor-
ylates serine 43 on Yotiao to enhance cAMP-dependent
activation of IKs.85,86 Inherited mutations in another region of
Yotiao (S1570L) that reduce the interaction between KCNQ1
suppress cAMP-induced phosphorylation of the IKs channel.
The functional consequence of the S1570L mutation in mice
is delayed repolarization of the ventricular action potential, a
recognized symptom of LQT1 (Figure 2A).87 Taken together,
these findings suggest that spatial organization of the cAMP-
signaling enzymes by Yotiao is important to orchestrate ion
channel activity during myocyte repolarization.88 More recent
evidence suggests that the phosphodiesterase PDE4D3, a
negative regulator of anchored PKA, is also present in the
Yotiao signaling complex (Figure 2A). Electrophysiological
studies have shown that pharmacological inhibition of an-

chored PDE activity enhances cAMP-dependent stimulation
of IKs.89 In this context, the recruitment of a PDE4D3
constrains the local availability of cAMP to more precisely
regulate the anchored pool of PKA.

Another means to vary the modulation of signaling scaf-
folds may be to induce time-dependent changes in the
composition or amount of AKAP complexes. There have
been recent reports suggesting that temporal changes in
AKAP complexes can occur, either in response to sudden
physiochemical changes in the environment or more gradu-
ally as a cellular adaptation to stress. For example, activation
of �-adrenergic receptors during periods of cardiac stress
initially improves cardiac output by increasing heart rate and
contractility; however, chronic mobilization of the same
signaling pathway ultimately harms the heart.90

Elevated catecholamines in the heart evoke transcriptional
activation of the myocyte enhancer factor pathway to induce
a cellular response known as pathological myocardial hyper-
trophy.91,92 This initiates a developmental gene reprogram-
ming paradigm known as the fetal gene response.93,94 A
clearer picture of how individual steps in this hypertrophic
signaling pathway are linked is beginning to emerge. The
anchoring protein AKAP-Lbc is one of the genes upregulated
in hypertrophic myocytes and functions as a scaffolding
protein for PKA and PKC to mediate activation of a third
enzyme, protein kinase D (PKD1; Figure 3A).95 A combina-
tion of cellular and live-cell imaging approaches supports a
model in which AKAP-Lbc facilitates activation of protein
kinase D, which in turn phosphorylates the histone deacety-
lase HDAC5 to promote its nuclear export. Finally, the
concomitant reduction in nuclear histone deacetylase activity
favors myocyte enhancer factor-2 transcription and the onset
of cardiac hypertrophy.96 Although most of the study was
conducted in neonatal rat cardiomyocytes, further support for
this concept was provided by analysis of human heart tissue
samples obtained after death from individuals who exhibited
hypertrophic cardiomyopathy, which showed that AKAP-Lbc
mRNA increased 2�0.5-fold over normal age-matched pa-
tient control subjects.96 Because myocardial hypertrophy is
extremely common, affecting 14% to 18% of the general
adult population, further investigation of the AKAP-Lbc/

Figure 2. Schematic of Yotiao and IKs currents. A, In myocytes,
Yotiao associates with the KCNQ1 subunit of the IKs potassium
channel. Anchored PKA phosphorylation of Yotiao enhances
activation of the channel. B, The S1570L Yotiao mutant has
reduced interaction with KCNQ1 and delayed repolarization of
ventricular action potential.
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PKD/HDAC5 pathway is warranted to establish whether
AKAP-Lbc is a valid biomarker for hypertrophic
cardiomyopathy.

AKAP79/150 may also be involved in pathophysiological
changes of gene expression that occur in vascular smooth
muscle during the development of hypertension.97 In these
cells, activation of PKC� induces persistent Ca2� sparklets,
producing an increase in local Ca2� influx that activates
nearby AKAP150-targeted PP2B. On activation, PP2B de-
phosphorylates NFATc3, which allows this transcription
factor to translocate into the nucleus of arterial myocytes,
where it modulates gene expression (Figure 3B). AKAP79/
150-associated phosphatase PP2B and NFATc3 activity lev-
els are low in arterial smooth muscle under physiological
conditions because of low levels of persistent Ca2� sparklet
activity; however, in hypertension, elevated PKC� activity
increases persistent Ca2� sparklet activity, thereby increasing
PP2B activity and consequently the NFATc3 nuclear import
rate, which leads to high nuclear accumulation of this
transcription factor. This in turn leads to downregulation of
the b1 subunit of the large-conductance, Ca2�-activated K�

channel and the Kv2.1 channel subunit in arterial myo-
cytes.98,99 When these findings are considered in light of
evidence that abnormalities in the AKAP79/150-associated
PKC contribute to the onset of hypertension, it appears
reasonable to speculate that an anchored pool of PP2B may
work via a distinct mechanism to counteract this process.

Like all organs, the heart needs a constant supply of
oxygen-rich blood. A system of arteries and veins supplies
the myocardium with oxygen-rich blood and then returns
oxygen-depleted blood to the right atrium. As a result, the
concentration of cellular oxygen is maintained within a
narrow range (termed “normoxia”). A key cellular response
to a state of reduced oxygen tension (hypoxia) involves the
induction of genes by the transcription factor known as
hypoxia-inducible factor 1� (HIF-1�).100 Under normoxic
conditions, HIF-1� is kept low through its ubiquitin-mediated
proteasomal degradation. The half-life of HIF-1� under
normoxic conditions has been calculated to be approximately
5 minutes.101 However, if the oxygen supply suddenly drops,
myocytes enter a hypoxic state, and the continual destruction
of HIF-1� halts instantly (Figure 3C). This allows the protein

to form a stable heterodimeric complex with the HIF-1�
subunit to initiate transcription of proangiogenic, metabolic,
and antiapoptotic genes to promote cell survival in response
to a sudden ischemic event.102–104 Accordingly, the accumu-
lation of HIF-1� is an early marker of myocardial
infarction.105

Although the molecular mechanisms underlying the de-
struction or maintenance of HIF-1� are well defined,106 the
subcellular organization of the factors that regulate these
processes has not been investigated. It has recently been
shown that mAKAP organizes ubiquitin E3 ligases that
manage the stability of HIF-1� and optimally position it close
to its site of action inside the nucleus.107 Functional experi-
ments in cardiomyocytes showed that depletion of mAKAP
or disruption of its targeting to the perinuclear region altered
the stability of HIF-1� and transcriptional activation of genes
associated with hypoxia.107 Compartmentalization of oxygen-
sensitive signaling components may influence the fidelity and
magnitude of the hypoxic response (Figure 3C). These
findings infer a link between hypoxia and hypertrophic
signaling pathways. Indeed, mAKAP may provide such a
link, because the abundance of mAKAP is increased in
response to hypertrophic stimuli.61 Further support for this
notion comes from evidence that mAKAP anchors 2 signal-
ing enzymes that act sequentially to influence cardiomyocyte
hypertrophy and the stability of HIF-1�. One of these, the
cAMP-responsive guanine nucleotide exchange factor
Epac-1, is the upstream element in a signaling pathway that
modulates the activity of extracellular signal–regulated ki-
nase 5 (ERK5), a protein kinase that augments the hypertro-
phic response and influences the stability of HIF-1�.65,108,109

Thus, certain mAKAP complexes may create cellular micro-
environments in which cAMP signals can feed into oxygen-
responsive transcriptional activation pathways.

Cardiomyocytes are exquisitely adapted to facilitate rapid
changes in heart rate in response to sympathetic and para-
sympathetic nervous impulses. AKAPs are central to this
process because they position protein kinases, phosphatases,
and PDEs in proximity to selected substrates. The material
discussed in the present article draws attention to the impor-
tance of anchored enzyme activity in the spatial and temporal
synchronization of persistent intracellular process such as

Figure 3. Schematic of the role of AKAPs in transcriptional regulation in the heart. A, An upregulation of AKAP-Lbc facilitates PKD acti-
vation and phosphorylation of HDAC5, which leads to transcriptional activation of the myocyte enhancer factor (MEF) pathway and the
onset of hypertrophy. B, Calcium-mediated activation of AKAP150-targeted PP2B leads to dephosphorylation of NFATc3 in arterial
myocytes. Dephosphorylated NFATc3 accumulates in the nucleus, where it leads to decreased gene expression of channel subunits. C,
mAKAP organizes ubiquitin E3 ligases that managed the stability of the transcription factor HIF-1�. During hypoxia, HIF-1� translocated
to the nucleus initiates transcription of proangiogenic, metabolic, and antiapoptotic genes that promote cell survival during hypoxia.
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cardiac contractility. However, recent evidence suggests that
the anchoring proteins themselves may play a more active
role in the regulation of cardiac contractility than merely
functioning as scaffolding proteins. For example, Yotiao
binding to IKs channels is believed to evoke allosteric changes
that increase the magnitude of IKs currents,88 and interaction
with AKAP15/18� is believed to enhance the phospholamban
rate of multimerization.77 Finally, anchoring proteins such as
AKAP-Lbc and mAKAP interface with the protein acetyla-
tion and ubiquitination machinery, respectively, to evoke
changes in transcriptional activation pathways.96,107 These
latter observations imply that AKAPs not only contribute to
the bidirectional control of second-messenger phosphoryla-
tion events but also shape broader aspects of cardiovascular
physiology and pathophysiology.
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