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Abstract: Spatial and temporal organization of signal transduction is coordinated through the segregation of
signaling enzymes in selected cellular compartments. This highly evolved regulatory mechanism ensures the
activation of selected enzymes only in the vicinity of their target proteins. In this context, cAMP-responsive
triggering of protein kinase A is modulated by a family of scaffold proteins referred to as A-kinase anchoring
proteins. A-kinase anchoring proteins form the core of multiprotein complexes and enable simultaneous but
segregated cAMP signaling events to occur in defined cellular compartments. In this review we will focus on the
description of A-kinase anchoring protein function in the regulation of cardiac physiopathology. (Circ Res. 2012;
111:482-492.)
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Spatial and temporal control of signal transduction events
is frequently achieved by compartmentalization of intra-

cellular effectors through adaptors or anchoring proteins. In
particular, elements of the cAMP signaling cascade are localized
in the cell via scaffold proteins referred to as A-kinase
anchoring proteins (AKAPs).1 cAMP is a second messenger
involved in the regulation of different cellular events that
occur in response to extracellular stimuli. Binding of an
extracellular stimulus to a selective G-protein coupled recep-
tor (GPCR) triggers the activation of a heterotrimeric Gs
protein and its effector, the adenylyl cyclase (AC), which
generates the second messenger cAMP. In turn, cAMP exerts
its effects through the activation of 3 effectors: protein kinase
A (PKA), the exchange protein directly activated by cAMP
and the cyclic nucleotide-gated ion channels.2,3 The primary
effector of cAMP in the heart is PKA, a tetramer formed by
2 catalytic subunits that are inactivated by the binding of the
2 regulatory subunits. Binding of cAMP to the regulatory
subunits induces the dissociation and the activation of the
catalytic subunits, resulting in the phosphorylation of local
substrates.4

Several studies have demonstrated that cAMP is not
uniformly distributed throughout the cell.5,6 Indeed, numer-
ous imaging studies have shown that cAMP levels rise
selectively in a specific cellular compartment in a stimulus-
specific manner and do not diffuse from one compartment to
the other, allowing fidelity of the response.7 Spatially re-
stricted activation of PKA is guaranteed by the binding of this
kinase with AKAPs, a family of functionally related proteins
that interact with the regulatory subunits of the PKA holoen-
zyme. The molecular feature of AKAPs is to possess a

structurally conserved PKA anchoring domain, consisting of
an amphipatic helix of 14 to 18 residues that selectively binds
the dimerization and docking domain at the N-terminus of the
PKA regulatory subunit dimer.8–10 Although the vast majority
of AKAPs bind the type II regulatory subunit of PKA, several
AKAPs are referred to as dual-function anchoring proteins
because they bind both the type I (RI) and the type II (RII)
regulatory subunits of PKA.11 More recently, type I PKA
specific anchoring proteins have been described.12–14 Several
evidences have demonstrated that PKA-RI and PKA-RII
isoforms are indeed anchored to specific subcellular sites via
binding to these different AKAPs.7

AKAPs do not only position PKA inside the cell but they
also ensure that this kinase is coupled to its upstream
activators, including membrane receptors and ACs, and to
signal termination enzymes, such as phosphodiesterases
(PDE) and phosphatases.15–17 In this way, AKAPs help to
establish intracellular cAMP gradients, generated via activa-
tion of a specific GPCR and uniquely modulated by different
subsets of PDEs, resulting in stimulus-specific activation and
action of PKA.7 AKAPs also coordinate signaling enzymes
such as other kinases, GTPases, and regulatory proteins into
multivalent transduction signalosomes. Thus, AKAPs pro-
vide the structural integrity for multiprotein complexes that
often represent hubs for processing of multiple signals. A
further layer of specificity proceeds through protein- or
lipid-targeting domains on AKAPs that direct AKAP signal-
ing complexes to intracellular membranes.18 A concerted
research effort over the past 20 years has identified more than
50 genes encoding distinct anchoring proteins.19 Furthermore,
numerous splice variants are transcribed from each gene in a
cell type and tissue-specific manner.
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To narrow the focus of this article, we will restrict our
discussion to the actions of compartmentalized cAMP signal-
ing and AKAP function in the cardiovascular system. In the
heart, several AKAPs play a critical role in modulating
multiple signaling pathways at the basis of cardiac physiopa-
thology (Table).20 This review will especially focus on the
importance of anchored-PKA in the regulation of cardiac
cAMP compartmentation.

Cardiac AKAPs
Cardiac Development
The heart is the first organ to form during embryogenesis and
all subsequent events in the life of the organism are depen-
dent on its function. Cardiac organogenesis is characterized
by the precise temporal and region-specific regulation of cell
proliferation, migration, death, and differentiation.21,22 All
these processes are finely tuned by a variety of signal
transduction pathways. Among these, anchored cAMP sig-
naling is essential for cardiomyocyte differentiation and heart
morphogenesis. AKAP-Lbc (also referred to as AKAP13 or
BRX) is a key regulator of these events and the deletion of
this AKAP in the mouse results in a thin and enlarged
myocardium that leads to an arrest in cardiac development
and subsequent embryonic lethality.23 This failure in cardiac
formation is consistent with decreased activity of the small
GTPase Rho, a direct target of AKAP-Lbc.24 Reduced Rho
function in turn correlates with a repressed activity of the
myocyte enhancer factor-2, a transcription factor important
for the proper regulation of cardiac gene expression.25

AKAP-Lbc is thus a platform that links Rho signaling to an
essential transcription program that drives cardiomyocyte
development.26

Contractility
In the adult heart, cardiac contractility and relaxation are
mediated by rapid changes in cytoplasmic Ca2� concentration

Non-standard Abbreviations and Acronyms

�-AR �-adrenergic receptor

AC adenylyl cyclase

AKAP A-kinase anchoring protein

cAMP cyclic AMP

GPCR G protein-coupled receptor

GRK-2 G protein-coupled receptor kinase 2

HIF-1� hypoxia-inducible factor 1�

LTCC voltage-gated L-type Ca2� channel

NFAT nuclear factor of activated T cells

PDE phosphodiesterase

PKA protein kinase A

PLN phospholamban

ROS reactive oxygen species

RyR ryanodine receptor

SERCA sarcoplasmic reticular Ca2�-adenosine triphosphatase

SR sarcoplasmic reticulum

Table. AKAPs in the Heart

Gene
Name Alternative Name Function Intracellular Localization Signaling Partners

AKAP1 D-AKAP1, s-AKAP84,
AKAP121, AKAP149

Hypertrophy Mitochondria, nuclear envelope,
endoplasmic reticulum

PKA RI, PKA RII, PKC�, Src, PP1, PP2A, PP2B,
PTPD1, PDE7A, AMY-1, Lfc, RSK1

AKAP5 AKAP75, AKAP79, AKAP150 Contractility Plasma membrane, T tubules PKA RII, PKC, PP2B, LTCC, KCNQ2, �-AR, AC5,
AC6, CAV3, SAP97

AKAP6 mAKAP Hypertrophy, contractility,
hypoxia

Nuclear envelope PKA RII, PDE4D3, AC5, RyR2, CaNA�, PP2A,
NFATc, ERK5, MEK5, Epac1, Rap1, HIF1�, VHL,

Siah2, PDK1, RSK3, NCX1, nesprin-1�, myopodin

AKAP7 AKAP15, AKAP18 Contractility Plasma membrane,
endoplasmic reticulum

PKA RII, LTCC, PLB, PP1, inhibitor1

AKAP9 Yotiao, AKAP350, AKAP450,
CG-NAP, Hyperion

Cardiac repolarization Plasma membrane, golgi,
centrosome

PKA RII, PP1, PP2A, PKC�, PKN1, casein kinase 1,
AC, PDE4D3, IP3-R, KCNQ1, CLIC

AKAP10 D-AKAP2 Cardiac rhythm Mitochondria PKA RI, PKA RII, PDZK1, Rab4, Rab11

AKAP12 Gravin, AKAP250, SSeCKS �-AR signaling Plasma membrane PKA RII, �-AR, PKC, PDE4D, Src, PP2B

AKAP13 AKAP-Lbc, Ht31, BRX Hypertrophy and
development

Cytoskeleton PKA RII, G�12/13, RhoA, actin, 14-3-3, PKC, PKD,
KSR1, Raf, MEK1/2, ERK1/2, PKN�

PDE4DIP Myomegalin, MMGL,
CMYA2

Contractility Sarcomere PKA, PDE4D

PIK3CG p110� �-AR downregulation Membrane PKA RII, p101, p84/87, Ras, PDE3B, Bcr

SYNM Synemin Cytoskeletal organization Plasma membrane, sarcomere PKA RII, desmin, zyxin, talin, vinculin, vimentin,
dystrobrevin, desmuslin, utrophin, �-actinin

TNNT2 Troponin T Contractility Sarcomere PKA RII, troponin I, troponin C, actin

AKAP indicates A-kinase anchoring protein; PKA RI, type I regulatory subunit of protein kinase A; PP, protein phosphatase; PKA RII, type II regulatory subunit of
protein kinase A; PDE, phosphodiesterases; LTCC, L-type Ca2� channels; �-AR, �-adrenergic receptor; AC, adenylyl cyclase; CAV3, caveolin 3; RyR2, ryanodine
receptor 2; NFAT, nuclear factor of activated T cells; Epac, exchange protein directly activated by cAMP; HIF1�, hypoxia-inducible factor-1; VHL, von Hippel-Lindau;
Siah2, Seven in Absentia Homolog 2; PKN, protein kinase N; PTPD1, protein tyrosine phosphatase D1; AMY-1, associate of Myc-1; RSK, ribosomal S6 kinase; SAP97,
synapse-associated protein 97; NCX1, sodium-calcium E changer-1; PLB, phospholamban; KSR1, kinase suppressor of Ras1.
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following the electric stimulation of the myocardium. During
the excitation-contraction coupling, brief openings of sar-
colemmal voltage-gated L-type Ca2� channels (LTCCs) in
response to an action potential generate local elevations in
intracellular Ca2�. This highly localized Ca2� rise in turn
activates closely apposed ryanodine receptors (RyRs) in the
sarcoplasmic reticulum (SR), via a mechanism referred to as
Ca2�-induced Ca2� release. This results in a substantial
release of Ca2� form the SR, thereby inducing a global
increase in Ca2� concentration that activates cardiac contrac-
tile proteins. LTCCs and RyRs are rapidly inactivated by
Ca2�-dependent mechanisms and allow the cardiac sarcoplas-
mic reticular Ca2�-adenosine triphosphatase (SERCA2)
pump to recover the released Ca2� in the SR before the next
heart beat.27 Tight regulation of Ca2� handling is thus
required for proper force and rate of contraction of the heart.
The sympathetic nervous system (SNS) is one of the major
regulators of heart rate in response to exercise or emotional
stress. SNS controls cardiac electric activity through the
activation of �-adrenergic receptors (�-ARs) that modulate
the function of selected ion channels via phosphorylation
by PKA.28 These Ca2�-related signaling events are regu-
lated by different combinations of AKAPs that finely
modulate the PKA-dependent signaling (Figure 1). Dis-
placement of PKA from AKAPs by PKA anchoring dis-
ruptor peptides results in altered phosphorylation of key
players in excitation-contraction coupling, thus leading to com-
promised cardiac contractility.29–32 Under this scenario, a
pivotal role in regulating cAMP and Ca2� transients is played
by multiple AKAPs, including AKAP79/150, gravin, AKAP15/
18, mAKAP, AKAP18� and a group of sarcomeric AKAPs that
have just recently been identified.

AKAP-�AR Complexes
Beta-adrenergic receptors (�-ARs) impact Ca2� handling by
increasing the force of contraction and by accelerating the
rate of relaxation.28 The effect of catecholamines on the heart

is mainly mediated by �1-ARs and �2-ARs. Although both
receptors are very similar in structure, they perform different
functions. Whereas �1-ARs couple only to Gs, agonist-bound
�2-ARs undergo sequential coupling to both Gs and Gi.33

Functional differences between �1-ARs and �2-ARs can also
be attributed to subtype-specific targeting to different cellular
compartments.34,35 Compartmentalization of �-ARs in differ-
ent plasma membrane microdomains can explain subtype-
specific signaling.36–38 Likewise, different AKAPs organize
distinct �-AR-containing signalosomes. Of note, AKAP79/
150 (also referred to as AKAP5) is bound to the plasma
membrane through a N-terminal polybasic targeting domain
that binds phospholipids and a palmitoylation domain that
specifically targets AKAP79/150 to lipid rafts, at the level of
the synaptic junction.39,40 The functional consequence of this
targeting event is to confine PKA within lipid rafts.41 In this
compartment, AKAP79/150 organizes a complex containing
PKA, �1-AR, AC5/6, PP2B, Cav1.2, and caveolin 3 (CAV3)
and controls a �1-AR-stimulated microdomain of cAMP that
impacts on Ca2� transients. Accordingly, in cells lacking
AKAP79/150, �-AR activation does not modulate intracellu-
lar Ca2� signaling.42 On the other hand, �2-ARs bind both
AKAP79/150 and another anchoring protein called gravin
(also referred to as AKAP12 or AKAP250 or SSeCKS).43

AKAP79/150 appears to function in switching signaling path-
ways of the receptor from AC to activation of the mitogen-ac-
tivated protein kinase cascade. In contrast, gravin targets the
receptor to the plasma membrane of cardiomyocyte-like H9c2
cells.44,45 Within this context, gravin is bound to PKA, �2-AR
and PKC.44,46–48 Perturbation of this signaling complex leads to
disruption of �-AR internalization and resensitization, critical
events in G-protein coupled receptors regulation.47,49 Further-
more, although AKAP79/150 is essential to mediate the activa-
tion of the MAP kinase cascade on catecholamine stimulation,
gravin is required for the ability of cells to recover from
agonist-induced desensitization and recycling.50 Collectively,
these findings offer a compelling argument for the spatial
activation and segregation of different adrenergic receptors by
selective AKAP signaling complexes.

AKAP-LTCC Complexes
LTCCs are the primary source of Ca2� influx to initiate
excitation-contraction coupling.28 From a molecular point of
view, cardiac LTCCs include the pore-forming �1C subunit
(also referred to as Cav1.2) and three auxiliary subunits (�,
�2� and �) that are involved in trafficking Cav1.2 to the
sarcolemma and in modulating the voltage dependence of
channel gating.51 Alterations in LTCC density or function
have been implicated in a variety of cardiovascular diseases,
including atrial fibrillation, ischemic heart disease and heart
failure.52 For these reasons, in cardiac physiology, LTCCs are
regulated by a variety of neurotransmitters, hormones and
cytokines. Of note, �-adrenergic system is a crucial regulator
of LTCC-mediated Ca2� homeostasis.53 During the “fight or
flight” response, stimulation of �-ARs increases LTCC cur-
rents through PKA-mediated phosphorylation of the channel
itself (Cav1.2 or � subunit) or of its associated proteins.54–56

The increase in Ca2� currents induced by PKA activation is
due to an enhancement of the open-state probability of the

Figure 1. Regulation of cardiac contractility by A-kinase
anchoring protein (AKAPs). Intracellular distribution of AKAP
complexes involved in myocardial contractility modulation. PKA
indicates protein kinase A; PP2B, protein phosphatase 2B; PDE,
phosphodiesterase; SERCA PLN, sarcoplasmic reticular Ca2�-
adenosine triphosphatase phospholamban; SR, sarcoplasmic
reticulum; AR, adrenergic receptor. (Illustration: Ben Smith.)
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channel, resulting from a shift in gating mode.57 Regulation
of LTCCs requires PKA targeting to the distal C terminus
(DCT) of the channel. Truncation of Cav1.2 DCT abolishes
the regulation of LTCCs by the �-AR/PKA pathway,58

consistently with the finding of PKA phosphorylation sites at
the distal C terminus of Cav1.2.59–61 Several lines of evidence
have emphasized the importance of AKAPs in targeting PKA
in the vicinity of LTCCs.62 In skeletal muscle and in
cardiomyocytes, a low molecular weight AKAP, AKAP15/18
(also known as AKAP18� or AKAP7) has been identified as
the anchoring protein that targets PKA to Cav1.2.53,62–64 In
higher detail, AKAP15/18 targets PKA to the C terminus of
Cav1.2 through a modified leucine zipper motif located in its
C-terminal region. Disruption of this interaction inhibits
PKA-dependent enhancement of LTCC activity, both in
skeletal muscle cells and in rat ventricular cardiomyo-
cytes.64,65 The C terminus of Cav1.2 undergoes proteolytic
processing in vivo, giving rise to two isoforms that differ by
truncation of the C terminus. The proteolytically cleaved
DCT acts as a regulatory domain of LTCC normal function,
by binding to the truncated channel and inhibiting its func-
tion.66 Accordingly, mice expressing only truncated Cav1.2
develop severe cardiac hypertrophy and die perinatally.
Deletion of the DCT disrupts the expression and localization
of the AKAP15/18-PKA complex, resulting in an impaired
regulation of LTCC function.58

Ca2� signaling is regulated not only by AKAP15/18-PKA-
Cav1.2 complex at the cell surface but also at the level of the
sarcoplasmic reticulum. In this respect, two different AKAPs
are involved: mAKAP and AKAP18�.

mAKAP-RyR Complex
The muscle specific AKAP (mAKAP) is prominently ex-
pressed in cardiomyocytes and it is localized both at the
sarcoplasmic reticulum, where it regulates Ca2�-induced
Ca2� release,67 and at the nuclear envelope, where it assem-
bles a macromolecular complex integrating cAMP and Ca2�

signals.68 Accordingly, it has been shown that a mAKAP–
PKA–RyR complex is strategically located within the cell to
modulate both SR-dependent cytoplasmic Ca2� rise and the
perinuclear Ca2� fluxes.67 mAKAP functions as a scaffold for
a wide range of proteins including type II PKA,68 PDE4D3,16

AC5,69 protein phosphatase 2A,67 the MAP kinases MEK5
and ERK5, the small GTPase Rap1, and the cAMP-activated
Rap1 exchange factor Epac1.70 Within this macromolecular
complex, mAKAP-mediated PKA phosphorylation of the
RyR is considered to promote opening of this channel and to
increase cardiac function.71 Within this context, cAMP may
increase Ca2� fluxes via PKA-dependent phosphorylation of
the RyR, in a manner tightly controlled by the PKA-activated
PDE4D3 and protein phosphatase 2A-mediated dephosphor-
ylation. Alternatively, recent studies report that PKA/PDE4D3-
mediated control of RyR phosphorylation is irrelevant to
normal cardiac function and sympathetic stimulation of the
heart.72–74

AKAP18�-SERCA2 Complex
SERCA2 controls Ca2� reuptake into the sarcoplasmic reticu-
lum, a rate-limiting step for cardiac relaxation. SERCA2 activity
is regulated by numerous factors, including the cytoplasmic/SR

Ca2� gradient, the protein concentration of SERCA2, and the
SR inhibitory protein phospholamban (PLN). Dephosphorylated
PLN binds to SERCA2 and suppresses its activity, whereas
phosphorylation of PLN on Ser16 by PKA dissociates PLN
from SERCA2, increasing the Ca2� reuptake into the SR. This
PKA-mediated phosphorylation of PLN is strictly dependent on
the function of AKAP18�, a long splice variant of the AKAP18
gene.75,76 Both the displacement of AKAP18� from PLN or the
silencing of AKAP18� significantly reduce the PKA-dependent
PLN phosphorylation after �-adrenergic stimulation, resulting in
a decrease in Ca2� reuptake into the sarcoplasmic reticulum.
Alterations in the function of PLN-SERCA2 complex are linked
to cardiac dysfunction.77 Because AKAP18� mediates PLN
phosphorylation and subsequent increase in SERCA2 activity,
modulation of AKAP18� could represent a novel pharmacolog-
ical target in the treatment of heart failure.78

Sarcomeric AKAPs
Several actin-associated (ezrin, gravin, WAVE-1, and AKAP79/
150) and microtubule-associated (MAP2, AKAP350/450,
hAKAP220, pericentrin, flagellar radial spoke protein 3)
AKAPs have been described in different tissues.79 In the heart,
multiple evidences have demonstrated the crucial role of AKAPs
in targeting PKA at the sarcomere.80 In particular, 3 different
AKAPs are involved in mediating PKA-dependent phosphory-
lation of sarcomeric proteins, crucial regulators of myocardial
contractile function.

Synemin is the first intermediate filament protein shown to
bind PKA RII and to localize a pool of PKA, allowing local
substrate phosphorylation within the myocyte cytoskeleton.
Intermediate filament-targeted PKA could phosphorylate sub-
strates found at the Z-line or regulate intermediate filament
structure. Synemin is overexpressed in failing hearts: this
correlates with an increase in PKA targeting to sites under-
going molecular remodeling.81

Cardiac troponin T has been recently characterized as a
novel dual-specificity AKAP able to dock PKA at the thin
filaments in proximity of its main sarcomeric substrates.82

Within the myocardial contraction machinery, PKA phos-
phorylates cardiac myosin binding protein C and this event
results in enhanced cardiac contractility due to the rearrange-
ment of the myosin crossbridges and thick filament struc-
ture.83 This configuration ensures that PKA is tethered near
its substrate thanks to the recently characterized dual AKAP
myomegalin (MMGL). Myomegalin is a PDE4D-interacting
protein84 involved in assembling a cAMP/PKA/PDE signal-
ing module at the sarcomere.85 The translocation of myomegalin
to the sarcomere is therefore compatible with a mechanism that
would lead to increased �-adrenergic-stimulated phosphoryla-
tion of cardiac myosin binding protein C and cTnI, thus
enhancing cardiac contraction as well as cardioprotection.86,87

Cardiac Rhythm and Arrhythmias
Cardiac contractility and rhythm respond rapidly to physical
activity and emotional stress to meet the changes in the
metabolic needs of the organism. The sympathetic nervous
system is the main player of this response and acts by
enhancing the current amplitude of the slowly activating
delayed rectifier IKs potassium channel (also referred to as
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HERG).88 IKs channel is composed by the pore-forming
�-subunit KCNQ1 that conducts the ionic current and the
auxiliary �-subunit KCNE1 that controls the biophysical
properties of the channel.89,90 IKs channels are regulated by
the sympathetic nervous system via the �-AR/cAMP/PKA
pathway. High cAMP levels cause an increase in the IKs

amplitude and a slowdown in the current decay during
deactivation.88 This cAMP-mediated regulation of the chan-
nel is controlled by the scaffold protein Yotiao (also referred
to as AKAP9), which recruits PKA and the protein phospha-
tase 1 to the C-terminal domain of the KCNQ1 subunit.91,92

PKA-dependent functional regulation of IKs channels is lost
when the binding site for Yotiao on the KCNQ1 subunit is
mutated (KCNQ1-G589D).91,93 Mutations in both subunits
of the IKs channel are associated with at least 2 heritable
arrhythmic syndromes, referred to as catecholaminergic poly-
morphic ventricular tachycardia94 and long-QT syndrome.95

Variants of long-QT syndrome have been shown to be caused
by mutations in both the IKs channel � (KCNQ1, LQT1) and
� (KCNE1, LQT5) subunits.96,97 Recently, a cohort of pa-
tients with genotype-negative long-QT syndrome have been
described to carry a missense mutation in Yotiao (S1570L).
The S1570L mutation is in the binding domain of Yotiao for
KCNQ1. Disruption of the Yotiao/KCNQ1 interaction re-
duces the PKA-mediated phosphorylation on KCNQ1 amino
terminus (Ser27) and eliminates the functional response of IKs

channel to cAMP.98 The interaction between Yotiao and
KCNQ1 is thus essentially required for the maintenance of a
normal heart rhythm.

Recent evidences suggest that AKAP79/150 is also involved
in heart rhythm regulation. In physiological conditions,
AKAP79/150 coordinates the binding of PKA and PKC� to
Cav1.2 and facilitates the coordinated opening and closing of
the channel.99,100 A gain of function mutation (G406R) in a
cytoplasmic loop of Cav1.2 correlates with an abnormal
coupling with AKAP79/150, eventually leading to LQT8, a
disease also known as Timothy syndrome.101 This occurs
through a mechanism whereby AKAP79/150 functions like a
subunit of Cav1.2 that stabilizes the open conformation of the
channel. Ablation of this anchoring protein restores normal
gating of Cav1.2 and protects the heart from arrhythmias.101

Besides Yotiao and AKAP79/150, heart rhythm modulation
involves D-AKAP2 (also referred to as AKAP10). D-AKAP2
controls the sensitivity of pacemaker cells to cholinergic stimu-
lation, both in mouse embryonic stem cell-derived cardiomyo-
cytes and in vivo, in mouse hearts. Accordingly, D-AKAP2–
deficient mice display heart rhythm abnormalities, eventually
leading to premature death from arrhythmia.102 Interestingly,
a human polymorphism (I646V) affecting the affinity of
D-AKAP2 for the regulatory subunit RI of PKA has been
described. This variant correlates with increased basal heart
rate and decreased heart rate variability, 2 events that are
indicative of high risk of sudden cardiac death.102 Thus, heart
rhythm regulation relies on the coordinated action of Yotiao,
AKAP79/150, and D-AKAP2. Furthermore, a growing body
of evidence indicates that arrhythmogenesis can also be
linked to mitochondrial function.103

Oxidative Stress (Mitochondria, Hypoxia)
Mitochondria constitute a major generator of cellular energy
and their activity is controlled by normal cellular homeosta-
sis. A key aspect of mitochondrial function is the dynamic
balance of fusion and fission, events that alter mitochondrial
morphology and activity.104 Control of mitochondrial dynam-
ics is evolutionary conserved and its deregulation is impli-
cated in pathological conditions, including cardiovascular
disorders such as dilated cardiomyopathy, myocardial infarc-
tion, and heart failure.105–107 The cAMP/PKA pathway has
been recently found to regulate mitochondrial respiration,
dynamics, and cellular apoptosis.108 Localization of PKA in
proximity to mitochondrial substrates ensures efficient prop-
agation of cAMP signals from the plasma membrane to this
target organelle. cAMP signals are carried to mitochondria by
a set of mitochondrial AKAPs that regulate mitochondrial
function through the organization of signalosomes in this
cellular compartment.109

mAKAP
Reduced oxygen levels, referred to as hypoxia, affect mitochon-
drial function by increasing glycolysis and lactate production. At
the molecular level, hypoxia stabilizes hypoxia-inducible factor
1� (HIF-1�), which controls transcription of a wide range of
genes, including factors implicated in the regulation of mito-
chondrial energy metabolism.110,111 Under normoxic conditions,
the levels of HIF-1� are kept low through its ubiquitin-mediated
proteasomal degradation.112 This multiprotein signaling com-
plex is compartmentalized inside the cell by mAKAP. mAKAP
sequesters HIF-1� at the perinuclear membrane, thereby mini-
mizing the translocation distance to its site of action in the
nucleus. Furthermore, mAKAP assembles and compartmental-
izes components of the protein ubiquitin machinery that deter-
mine the bidirectional control of HIF-1� stability.113 During
normoxia, mAKAP clusters HIF-1� with negative regulatory
factors, like prolyl hydroxylase domains and Von Hippel
Lindau, that enhance the efficiency of its degradation. Under
hypoxic conditions, positive regulatory factors, including the
ubiquitin E3 ligase seven in absentia homolog 2, bind to
mAKAP and favor the stabilization of HIF-1�. The expression
of HIF-1� target genes protects the heart from oxygen-depriva-
tion injury that occurs under pathological stresses, and, in this
condition, mAKAP favors the enhancement of the hypoxic
response. Displacement of mAKAP from perinuclear mem-
branes of cardiomyocytes alters the stability of HIF-1� and the
transcription of genes associated with hypoxia.

AKAP121
Under hypoxic conditions, HIF-1� availability is controlled
by the ubiquitin E3 ligase seven in absentia homolog 2.114

Seven in absentia homolog 2 is normally bound to mitochon-
drial AKAP121 and the expression levels of this ubiquitin E3
ligase are induced during hypoxia, thereby causing a degra-
dation of AKAP121 and an attenuation of the cAMP/PKA
signaling at the mitochondria.115 In normal physiology,
AKAP121 regulates mitochondrial morphology by serving
as a docking site for PKA at the mitochondrial membrane.
Within this compartment, PKA phosphorylates and inhibits
the mechanoenzyme dynamin-related protein 1, resulting in
an inhibition of mitochondrial fission. Deregulation of
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AKAP121, that occurs on increased seven in absentia ho-
molog 2 expression in ischemia-induced cardiomyocyte cell
death, alleviates dynamin-related protein 1 inhibition, result-
ing in mitochondria fission.116

AKAP-dependent activation of the cAMP-PKA signaling
at the mitochondria also controls oxidative stress, mainly
caused by reactive oxygen species (ROS) production. These
cAMP-mediated effects are mainly associated with PKA-
dependent phosphorylation of complex I subunits117 that
results in an enhanced functional capacity of the mitochon-
drial respiratory chain and in a reduced ROS production.118 In
cardiac physiology, AKAP121 tethers PKA at the mitochon-
dria and is thus involved in the control of ROS production,
thereby protecting the cardiomyocyte from oxidative stress.
Deregulated ROS production within the cardiomyocyte may
contribute to the development of cardiac dysfunction. Indeed,
displacement of AKAP121 from mitochondria by competi-
tive peptides increases ROS levels and promotes cardiomyo-
cyte death. Furthermore, in response to pressure-overload,
AKAP121 protein expression is downregulated, thus result-
ing in mitochondrial stress, increased ROS production and
cell death.119 All these evidences suggest that deregulated
mitochondrial cAMP signaling could contribute to the devel-
opment of cardiac dysfunction.

Hypertrophy
Cardiac hypertrophy is an adaptive remodeling process of
the myocardium that occurs in response to various cardiac
stresses. It is associated with an increase in cardiomyocyte
size, a qualitative and quantitative change in the expression
levels of contractile proteins and an activation of fetal cardiac
genes.120,121 Because hypertrophy can ultimately progress to
ventricular dilation, contractile dysfunction, and heart failure,
significant efforts have been made to investigate the molec-
ular players at the basis of this pathological process. Cardi-
omyocyte hypertrophy is controlled by membrane receptors
that trigger multiple networks of intracellular mediators, which
in turn transmit the hypertrophic signal to the nucleus.122 An
emerging concept in the field of signal transduction is the
existence of hubs where multiple signaling pathways converge
and share common molecules, thereby facilitating crosstalk
between pathways. In this respect, mAKAP, AKAP-Lbc, and
AKAP79/150 are attractive candidates that could coordinate
hypertrophic signals elicited from multiple stress stimuli
(Figure 2).

mAKAP
In addition to its role in regulating cardiac contractility and
oxidative stress, mAKAP is also implicated in cardiac hypertro-
phy. Within this scenario, mAKAP assembles a perinuclear
macromolecular complex that regulates gene transcription in
response to multiple hypertrophic stimuli. This mAKAP com-
plex includes at least 3 enzymes that are involved in the
hypertrophic responses: the mitogen activated kinase ERK5,70

the Ca2�/calmodulin-dependent protein phosphatase calcineurin
A�123 and the epsilon isoform of PLC.124 cAMP-dependent-
triggering of the MAP kinase signaling activates the prohyper-
trophic transcription factor myocyte enhancer factor-2c and its
regulated genes.70 On the other hand, Ca2�-induced activation of

the mAKAP-associated calcineurin A� results in a dephosphor-
ylation and in a nuclear translocation of the transcription factor
nuclear factor of activated T cell (NFATc) that promotes the
transcription of hypertrophic genes.125,126 The control of hyper-
trophic gene expression by the epsilon isoform of PLC impli-
cates both the myocyte enhancer factor- and NFAT-dependent
transcription.124 Whereas ERK-mediated hypertrophy is trig-
gered by cytokine receptors70 and calcineurin A� is activated
through the �-AR/cAMP/PKA/RyR2 mediated Ca2� release,123

the epsilon isoform of PLC integrates multiple upstream signal-
ing pathways that regulate hypertrophy, including endothelin-,
norepinephrine-, insulin-like growth factor-1- and isoproterenol-
activated signaling.124 The crucial role of mAKAP in the
hypertrophic process has been further demonstrated by the
reduction of cardiac hypertrophy on the peptide-mediated dis-
placement of mAKAP from the nuclear envelope.70,124

AKAP-Lbc
Several lines of evidence indicate that �-adrenergic transmis-
sion, through the activation of heterotrimeric G proteins Gq
and G12/13, triggers the GTPase RhoA and its signaling
cascade that controls the transcription of genes involved in
cardiomyocyte hypertrophy.127 At the cellular level, the
activation of small GTPases is controlled by guanine nucle-
otide exchange factors that facilitate GDP-GTP exchange and
the activation of the enzyme. Recent works have identified
AKAP-Lbc not only as an AKAP that scaffolds PKA, PKC,
and PKD,128 but also as a guanine nucleotide exchange factor
for the small GTPase RhoA.24 AKAP-Lbc is activated in
response to agonists that stimulate the �1-AR-G12/13 signal-
ing pathway129 and is inactivated via anchored PKA-mediated
phosphorylation and subsequent recruitment of the regulatory
protein 14-3-3, which prevents AKAP-Lbc from being able to
activate Rho.130 Thus, suppression of the Rho-specific ex-
change factor AKAP-Lbc correlates with a negative modula-
tion of the hypertrophic signaling in response to GPCR-Gq/
G12/13 stimulation. Furthermore, prolonged �-adrenergic

Figure 2. Regulation of cardiac hypertrophy by A-kinase
anchoring protein (AKAPs). Intracellular localization of AKAP
complexes controlling hypertrophic signaling pathways. PKA
indicates protein kinase A; PKD, protein kinase D; PP2B, protein
phosphatase 2B; SR, sarcoplasmic reticulum; NFAT, nuclear
factor of activated T cells; MEF2, myocyte enhancer factor-2.
(Illustration: Ben Smith.)
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stimulation results in an upregulation of AKAP-Lbc protein
levels, thereby directing the hypertrophic signal to the tran-
scriptional machinery.26 In more detail, AKAP-Lbc facilitates
the activation of PKD that inactivates the histone deacetylase
HDAC5, thereby favoring myocyte enhancer factor-2–depen-
dent transcription and the onset of cardiac hypertrophy.131

Therefore, AKAP-Lbc may provide a platform for crosstalk
between PKD and Rho signaling pathways, in the context of
cardiac hypertrophy.

AKAP79/150
Cardiac hypertrophy is also controlled by the calcium depen-
dent Ser/Thr phosphatase calcineurin (CaN or PP2B) and the
downstream transcriptional effectors, including NFAT. In-
deed, hyperactivation of the CaN/NFAT pathway in cardio-
myocytes of transgenic mice results in profound hypertrophy
that rapidly progresses to heart failure.132,133 Several studies
have demonstrated the positive effect of the inhibition of the
CaN/NFAT signaling pathway in the treatment of cardiac
hypertrophy.134–136 AKAP79/150 has a CaN-binding domain
and is one of the endogenous inhibitors of CaN in the brain.15

Cardiac-restricted transgenic mice overexpressing the CaN
inhibitory domain of AKAP79/150 display inhibited CaN
activity that is associated with attenuated cardiac hypertrophy
in response to catecholamine stimulation and pressure over-
load.137 These findings suggest a primary role for AKAP-
mediated control of CaN in the hypertrophic response, even if
the precise role of AKAP79/150 in this context still remains
to be fully understood.

Heart Failure
Heart failure is a complex and multifactorial disease, character-
ized by the inability of the heart to pump sufficient blood to meet
the metabolic needs of the body and represents a leading cause
of mortality worldwide. Heart failure can result from aberrant
signaling events that normally regulate myocardial function. In
addition, altered gene expression is a peculiar feature of the
failing heart. Gene expression profiles have pointed out a large
scale of rearrangement in the AKAP-PKA signaling modules
during end-stage heart failure. For instance, the expression of
AKAP-Lbc, AKAP18�, AKAP2, and SPHKAP was found
upregulated, whereas AKAP121 levels were diminished in the
failing human heart.138,139 An example of altered cAMP com-
partmentation in the failing human myocardium is given by
increased protein levels of AKAP18�. The enhanced association
of PKA RII� with AKAP18� may result in abnormal calcium
reabsorption in the sarcoplasmic reticulum, ultimately leading to
altered myocardial contractility.78

Another distinctive feature of failing hearts is a chronic
activation of the �-AR signaling pathway that initially com-
pensates for contractile dysfunction but then progresses to
deterioration of cardiac structure and function. At the molec-
ular level, �-ARs are downregulated and desensitized through
the action of a complex signaling module that includes PKA,
G protein-coupled receptor kinase 2 (GRK2), and �-arrestin.140

Tight control of cellular cAMP levels is thus required for normal
myocardial contractility. The catalytic subunit of phosphoinosi-
tide-3 kinase gamma (p110�) is an AKAP that controls cAMP
levels.141 p110� tethers PKA in the vicinity of its negative

modulator PDE3B, thereby constituting a feedback module that
negatively controls cardiac contractility. Moreover, in physio-
logical conditions, the �-AR pathway activates PKA, which in
turn phosphorylates and inhibits the lipid kinase activity of the
PKA-bound p110�. In pressure overload-induced heart failure,
p110� is upregulated and escapes PKA-mediated inhibition.
Activated p110� reduces cell surface expression of �-ARs,
thereby contributing to the development of heart failure.142

Genetic and pharmacological inhibition of p110� activity renor-
malizes �-AR density and improves contractility in failing
hearts, thus establishing p110� as a potential target for the
treatment of heart failure.141 Importantly, the spatial localization
of �-ARs also plays a critical role in cardiac physiology and in
the development of heart failure.140 Indeed, redistribution of
�2-AR signaling from the T-tubules to the cell crest in failing
cardiomyocytes results in uncoupling of the �2-AR from the
localized pools of PKA that are responsible for the compartmen-
tation of the �2-AR–cAMP signaling.143 This results in a
cell-wide cAMP propagation on �2-AR activation in failing cells
that is similar to the patterns observed for �1-ARs, thus contrib-
uting to the heart failure phenotype. These findings, together
with a still required more complete analysis of the AKAP
function in failing cardiomyocytes, will provide a deeper under-
standing of this cardiac disease and will facilitate the develop-
ment of new therapeutic strategies.

Figure 3. Disruption of A-kinase anchoring protein (AKAP)-
protein kinase A (PKA) signaling underlies different cardiac dis-
eases that finally lead to heart failure. Broken AKAPs corre-
spond to disruption of the scaffolding function. SR, sarcoplasmic
reticulum; PLN, phospholamban; SERCA, sarcoplasmic reticular
Ca2�-adenosine triphosphatase. PKA indicates protein kinase A.
(Illustration: Ben Smith.)
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Conclusion
Evidence accumulated in decades of studies on AKAP and
their partners clearly indicate that alteration of such com-
plexes represents a key contributing factor for cardiac dis-
eases (Figure 3). Manipulation of protein–protein interaction
at AKAPs is thus emerging as a promising therapeutic
strategy. Proof of concept studies show that small molecules
can in principle act to pharmacologically modulate AKAP-
based signaling complexes.29 However, the limited number
of such attempts has only scratched the surface of a vast
potential of pharmacological intervention. Complexes at car-
diac anchoring proteins can encompass 10, 20, or more
components where each interaction is in principle amenable
to pharmacological modulation. Our knowledge of the
biological and chemical properties of these protein–protein
complexes is only at its infancy. To better define targets of
therapeutic interest, future work has to focus on the biochem-
ical details and the pathophysiological meaning of such
protein–protein interactions. First, 3-dimensional structures
of protein–protein interactions are necessary to define how
and where these interactions occur.9,10 Native mass spectros-
copy, small angle X ray scattering and cryo-electron micros-
copy have recently proven to be valuable tools suitable to
tackle this issue.144,145 Second, the role of such interactions in
relevant disease conditions needs a detailed validation. Ge-
netic modeling of the disruption of selected AKAP com-
plexes in knock-in mice will likely provide conclusive proofs
for the therapeutic value of such interventions. Third, new
biochemical assays that simplify the search for disrupting
moieties are required to select small molecules of pharmaco-
logical interest. Finally, it is tempting to speculate that the
identification of small molecules that act on spatial and
temporal restricted signaling will eventually prove to be more
effective treatments for different aspects of heart failure,
especially because our current therapeutic arsenal of drugs is
still inadequate to combat this global health problem.
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