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Phosphorylation events that occur in response to the second messenger cAMP are
controlled spatially and temporally by protein kinase A (PKA) interacting with A-kinase
anchoring proteins (AKAPs). Recent advances in understanding the structural basis for
this interaction have reinforced the hypothesis that AKAPs create spatially constrained
signaling microdomains. This has led to the realization that the PKA/AKAP interface is a
potential drug target for modulating a plethora of cell-signaling events. Pharmacological
disruption of kinase–AKAP interactions has previously been explored for disease
treatment and remains an interesting area of research. However, disrupting or enhancing
the association of phosphatases with AKAPs is a therapeutic concept of equal promise,
particularly since they oppose the actions of many anchored kinases. Accordingly,
numerous AKAPs bind phosphatases such as protein phosphatase 1 (PP1), calcineurin
(PP2B), and PP2A. These multimodal signaling hubs are equally able to control the
addition of phosphate groups onto target substrates, as well as the removal of these
phosphate groups. In this review, we describe recent advances in structural analysis of
kinase and phosphatase interactions with AKAPs, and suggest future possibilities for
targeting these interactions for therapeutic benefit.

Keywords: protein kinase A (PKA), protein phosphatase 2B (PP2B), calcineurin, A-kinase anchoring protein
(AKAP), intrinsic disorder, cAMP signaling, short linear interaction motifs (SLiMs)

Characterizing Protein Kinase A (PKA) Anchoring

The cAMP-dependent protein kinase A (PKA) was first identified and described by Edwin G.
Krebs in 1968 as catalyzing the transfer of phosphate from ATP to a target serine or threonine
residue in substrate proteins (Walsh et al., 1968). Since the initial identification of this ubiquitous
kinase, many studies have defined its regulation by regulatory subunits (R-subunits), of which there
are four isoforms (RIα, RIβ, RIIα, RIIβ; Taylor et al., 2012). PKA regulatory subunits inhibit the
activity of the PKA catalytic subunit (C-subunit) by occupying the substrate binding site of the
C-subunit and preventing the phosphorylation of substrate proteins (Corbin et al., 1978). When
cAMP binds to the R-subunits and inhibition is released, the C-subunit is able to assume its
catalytic activity and phosphorylate nearby targets. In addition, each R-subunit isotype contains an
N-terminal docking and dimerization domain (D/D domain) that is the basis for the formation of a
heterotetramer composed of two R-subunits, each of which bind one C-subunit (2:2 stoichiometry;
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Corbin et al., 1975; Newlon et al., 1999). In addition to the
formation of R-subunit dimers, this D/D domain is responsible
for docking to a genetically diverse but functionally related family
of proteins called A-kinase anchoring proteins (AKAPs; Scott
et al., 1990; Newlon et al., 2001).

The first AKAP to be identified was microtubule-associated
protein 2 (MAP2) by analysis of associated cAMP-dependent
kinase activity (Theurkauf and Vallee, 1982). The number
of AKAPs identified since has vastly increased due to use
of a far-western technique known as the RII overlay (Carr
et al., 1991), as well as through more recent development of
computational algorithms designed to predict R-subunit binding
regions (Burgers et al., 2015). Some of the most characterized
AKAPs include AKAP79/150, gravin, AKAP15/18, and mAKAP
(Wong and Scott, 2004). In addition, some AKAPs have been
shown to bind RI subunit isoforms, either with dual-specificity
for RI and RII, or preference for the RI types (Huang et al.,
1997a,b; Lacana et al., 2002; Kovanich et al., 2010; Means et al.,
2011). However, the majority of AKAPs interact primarily with
RII isoforms.

A-kinase anchoring proteins tether pools of readily stimulated
PKA holoenzymes to subcellular compartments and organelles
through a variety of mechanisms (Langeberg and Scott, 2015).
Importantly, AKAPs also bind other signaling enzymes such
as phosphodiesterases (PDEs), G-protein coupled receptors
(GPCRs), ion channels, and protein phosphatases to form
complexes that are able to integrate and modulate multiple
second messenger signaling pathways and fine-tune cellular
signaling responses. Many excellent reviews have described the
range of binding partners these AKAPs associate with (Wong
and Scott, 2004; Carnegie et al., 2009; Welch et al., 2010;
Diviani et al., 2011; Sanderson and Dell’Acqua, 2011). In this
review, we focus on the structural basis for anchoring of PKA
as well as the protein phosphatases that oppose cAMP-mediated
signaling.

Structural Basis for PKA Anchoring

Though AKAPs are not typically related to one another on a
sequence level, a common unifying feature is their ability to
bind the D/D domain of R-subunit dimers through a short
(14–18 residues) amphipathic helix, which appears to have arisen
relatively early in evolution (Peng et al., 2015). This helix is
often one of the few ordered regions, as most AKAPs are
intrinsically disordered (Gold et al., 2008). Therefore, this helix
serves as a short linear motif (SLiM), which is an emerging
concept in cellular signaling that has important implications
for protein–protein interactions and drug development (Van
Roey et al., 2014). For example, a recent study examining
the scaffolding properties of the yeast deubiquitinating enzyme
Ubp10 showed that the interplay of SLiMs and intrinsic disorder
is essential for facilitating interactions with diverse substrates
and binding partners (Reed et al., 2015). SLiMs are often
isolated within intrinsically disordered proteins and can serve to
facilitate transient interactions which allows a single anchoring
protein to interact with a dynamic range of signaling partners

(Ren et al., 2008). The first atomic model of an AKAP helix
was solved using peptides derived from AKAP79 and Ht31
(AKAP-Lbc) (Newlon et al., 1999). It was obtained using NMR
techniques and was solved in complex with the D/D domain
(residues 1–44) of RIIα. Subsequently, other structures of the
D/D domain in complex with various AKAP-derived helices
have been solved using X-ray crystallography (Figure 1A; Gold
et al., 2006; Kinderman et al., 2006; Sarma et al., 2010). The
D/D domain has been shown to adopt an anti-parallel four-
helix X-type bundle that forms a platform with a hydrophobic
groove. This groove is the basis for a high affinity interaction
with the hydrophobic face of amphipathic AKAP helices. The
D/D domain is then connected via a flexible linker to two cAMP-
binding cassettes per protomer that display cooperative binding
of cAMP (Vigil et al., 2004; Zawadzki and Taylor, 2004). Upon
binding of cAMP, a conformational change occurs that relieves
inhibition of the PKA C-subunit and allows it to phosphorylate
nearby substrates. Crystal structures have been solved for the
cAMP-binding cassettes in complex with C-subunit or with
cAMP (Figure 1B; Su et al., 1995; Diller et al., 2001; Wu et al.,
2007; Zhang et al., 2012). Together with the known structure of
the D/D in complex with AKAP helices, these structures have
provided insights at the atomic level about the intricate topology
and organization of the different functional elements of PKA
holoenzyme.

Yet, there is currently no high-resolution structural
information available for the 46 (inmammals) amino acid flexible
linker that connects the D/D domain to the pseudosubstrate
region that binds the C-subunit and to the tandem cAMP
binding cassettes. Therefore, a recent study used single particle
electron microscopy studies to examine the structure of an
AKAP18γ-PKA holoenzyme complex (Smith et al., 2013). This
study revealed that although many crystal structures of RII and
C-subunits showed surface contact between each heterodimer
of RII and C, the complexes likely occupy a much broader
conformational space that is constrained by the length of the
linker, yet facilitated by the intrinsic disorder of the linker
(Figure 1C). This linker-guided conformation sampling may
be a mechanism by which PKA preferentially phosphorylates
substrates within the same macromolecular complexes upon
elevation of cAMP levels. cAMP PDEs have been suggested to
form a ‘fence’ around subcellular pools of elevated cAMP (Baillie
et al., 2005). AKAP18γ has been shown to form a complex
with PDE4D3 and regulate its activity via PKA phosphorylation
(Stefan et al., 2007). In combination with local restraint of
PKA conformations by the RII flexible linker, these local PDE
fences represent an intriguing scheme by which spatiotemporal
specificity may be regulated by macromolecular signaling
complexes.

Targeting the PKA/AKAP Interaction for
Therapeutics

Since PKA activity modulates a variety of physiological events,
such as cardiac remodeling, disrupting the PKA/AKAP interface
has been a long-standing area of interest for therapeutics (Troger
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FIGURE 1 | Structural basis for protein kinase A (PKA) holoenzyme
formation and anchoring. (A) Crystal structure of the synthetic A-kinase
anchoring protein (AKAP) helix AKAP’s (orange) in complex with the RIIα
docking/dimerization (D/D) domain, residues 1–44 (blue). The AKAP
amphipathic helix binds to a hydrophobic groove created by the antiparallel
X-type helix bundle of the RII D/D domain. PDB ID: 2IZX. (B) Left: RIIβ
cAMP-binding cassettes (blue) in complex with cAMP (red). Right: RIIα cAMP
binding cassettes in complex with PKA catalytic subunit (green). With cAMP

bound at each of two sites, RII releases inhibition of the catalytic subunit.
When cAMP is not present, RII presents an inhibitory sequence to the active
site, preventing phosphorylation of PKA substrates. PDB IDs: 1CX4, 2WVS.
(C) A pseudo-atomic model of the PKA holoenzyme in complex with
AKAP18γ derived from low-resolution EM data. This illustrates that the PKA
holoenzyme has a constrained range of flexibility (∼300 Å) provided by
AKAPs, allowing the catalytic subunits to be poised near potential substrates.
PDB IDs: 3J4Q, 3J4R. Models were prepared using PyMol (Schrödinger).

et al., 2012; Table 1). One of the first disruptors of the AKAP/RII
interaction is the 24 amino acid peptide Ht31, named after
human thyroid clone 31, which was later realized to represent
a biologically active segment of the multifunctional scaffolding

TABLE 1 | Summary of molecules disrupting protein kinase A (PKA)
anchoring.

Name Type/mechanism Reference

Ht31 Derived from A-kinase
anchoring protein (AKAP)
helix

Stokka et al. (2006)

SuperAKAPis Optimized AKAP helix Gold et al. (2006)

RI-anchoring disruptor
peptide (RIAD)

Optimized AKAP helix Carlson et al. (2006)

STAD peptides Stapled AKAP helix Wang et al. (2014, 2015)

RIAD-P3 Peptidomimetic of RIAD Singh et al. (2014)

Terpyridine derivatives Peptidomimetic of AKAP
helix

Schafer et al. (2013)

Rselects Engineered R-subunit D/D
domain

Gold et al. (2013)

FMP-API-1 Allosteric interaction with
R-subunits

Christian et al. (2011)

protein AKAP-Lbc (Carr et al., 1992). The Ht31 peptide has
since been lipid modified with a stearol group to increase its
membrane permeability for treatment of cell lines and elucidation
of anchored PKA signaling events (Vijayaraghavan et al., 1997;
Gold et al., 2012). In silico approaches have resulted in optimized
peptides that mimic the AKAP amphipathic helix and bind to
RII or RI with high affinity (Alto et al., 2003). Added to this,
structure-based approaches have further increased the specificity
of the peptide superAKAPis for RII to the low nanomolar affinity
range with a 12,000-fold preference for RII over RI (Gold et al.,
2006). Conversely, the RI-anchoring disruptor peptide (RIAD)
has been engineered to specifically disrupt RI/AKAP interactions
(Carlson et al., 2006). Peptidomimetics have been developed by
several groups that mimic amphipathic helix structures and are
able to disrupt RI/RII interactions with AKAPs (Schafer et al.,
2013; Singh et al., 2014). Recent work has centered on developing
stapled AKAP-mimetic peptides that are cell-permeable and have
increased stability (Wang et al., 2014, 2015; Kennedy and Scott,
2015). This would increase the utility of these peptides for
therapeutic purposes as well as for teasing apart the molecular
mechanisms by which AKAPs influence local PKA signaling
pathways.
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Since there are numerous AKAPs and only four R-subunit
isoforms, any disruptor that relies on an interaction with an
R-subunit is by definition non-selective. In order to disrupt
a specific AKAP’s ability to bind PKA, anchoring disruptors
must bind to an AKAP helix with high affinity and recognize
the unique structural features of one AKAP helix preferentially.
Therefore, a phage-display screening approach, which used
immobilized AKAP helices to enrich for phage variants that
displayed mutant RII D/D domains, selected variants that
exhibit preferential binding to specific AKAPs. These mutant
D/D domains are termed Rselects, and have been shown in
preliminary work to bind and label AKAPs in a cellular context
as well as in to purified proteins (Gold et al., 2013). Further
development of these Rselects could lead to high affinity binding
variants that could disrupt individual pools of anchored PKA
while allowing other anchored PKA signaling events to proceed
unperturbed. The potential to isolate spatially constrained post-
translational modifications is an important step forward for
targeted therapeutics. However, utility of this approach as a cell
based means of selectively interrupting particular PKA–AKAP
interfaces has yet to be rigorously established.

Small molecule disruptors are another attractive means to
pharmacologically target the PKA–AKAP interface. Although
these studies are still in their formative stages there have been
a few successful attempts at moderate-throughput screening
for small molecule AKAP disruptors (Schachterle et al., 2015).
Perhaps the most notable example is the development of 3,3′-
diamino-4,4′-dihydroxydiphenylmethane (FMP-API-1), a small
molecule antagonist that appears to allosterically inhibit the
RII–AKAP interaction and activate anchored PKA C-subunit
(Christian et al., 2011). Yet, despite extensive characterization of
this compound the mechanism of action of FMP-API-1 has yet
to be defined. Nonetheless, the future is bright for the discovery
and development of cell soluble chemical entities that target
PKA–AKAP interfaces.

Protein Phosphatase Anchoring

Classically, protein phosphatases are considered to be responsible
for the opposing action to kinases, namely the removal
of phosphate groups from serine, threonine, or tyrosine
residues. In addition a burgeoning family of pseudokinases
and pseudophosphatases are emerging a key players in cell
signaling (Reiterer et al., 2014). Protein phosphatases fall into
two main classes – serine–threonine phosphatases, and tyrosine
phosphatases. While there are 428 serine/threonine kinases, there
are only ∼40 serine/threonine phosphatases (Moorhead et al.,
2007). This disparity in gene number infers that additional
mechanisms come into play as a means to modulate and vary
the substrate specificity of these critical regulatory enzymes.
Philip and Tricia Cohen were the first to recognize that
regulation of protein phosphatases by association with regulatory
and targeting subunits is a crucial mechanism to allosterically
modulate substrate specificity (Stralfors et al., 1985; Cohen and
Cohen, 1989). Subsequently others have shown that most of the
three classes of serine/threonine phosphatases are modulated by

targeting subunits (Langeberg and Scott, 2015). In this article we
focus exclusively on protein phosphatase 1 (PP1) and protein
phosphatase 2B (PP2B, or calcineurin), since these ubiquitous
phosphatases often oppose the action of PKA and are especially
reliant on anchoring for their regulation.

Protein Phosphatase 1 Regulation by
Auxiliary Proteins

Protein phosphatase 1 has an important role in a number of
physiological processes, notably regulation of glycogen synthesis
(Hubbard et al., 1990), nuclear events (Helps et al., 1998), and
synaptic long term potentiation (LTP) and long term depression
(LTD), (Morishita et al., 2001; Malinow and Malenka, 2002).
The latter two events occur through phosphatase opposition
of CaMKII and PKA phosphorylation of glutamate receptors
at the post-synaptic density. The PP1 catalytic subunit (PP1c)
associates with over 200 regulatory subunits, many of which bind
via a conserved short linear peptide motif called the RVxF motif
(Cohen, 2002; Roy and Cyert, 2009).

Some of these subunits serve primarily to inhibit the catalytic
activity, such as the protein Inhibitor 1 (I-1) and dopamine and
cAMP-regulated phosphoprotein 32 (DARPP32), (Williams et al.,
1986). Notably some of these inhibitors are activated by PKA
phosphorylation. Other regulatory subunits contain localization
signatures that target PP1 to specific subcellular regions and
may or may not also inhibit the enzymatic activity of PP1c.
The most recognized examples of these targeting subunits are
the myosin phosphatase targeting subunit MYPT1, the GM
regulatory subunit, p53-binding protein 2 (53BP2), and PP1
nuclear targeting subunit (PNUTS). Recent investigation of
PNUTS has highlighted several properties shared by many PP1-
binding proteins (Choy et al., 2014). First, the RVxF motif serves
as a short linear interaction motif (SLiM) and is responsible for
the primary interaction. Second, intrinsic disorder in PNUTS
facilitates extended contact with PP1 on additional surfaces
to fine-tune the phosphatase. Third, binding to these surfaces
inhibits activity toward some substrates without physically
blocking the active site of the phosphatase (Figure 2A).

A number of AKAPs have been shown to interact with
PP1c, including AKAP220 (Schillace and Scott, 1999), D-AKAP1
(Steen et al., 2000), and yotiao (Westphal et al., 1999).
Likewise, some isoforms of AKAP18 are thought to sequester
PP1, although it would appear that this occurs via indirect
mechanisms (Singh et al., 2011). All direct PP1–AKAP interfaces
utilize some version of the degenerate RVxF motif. D-AKAP1
was suggested to be involved in anchoring PP1 for efficient
nuclear envelope reassembly after mitosis (Collas et al., 1999;
Steen et al., 2000). AKAP220 has been shown to anchor PP1
through a modified KVxF motif, and this has been proposed
to play a role in regulating the activity of glycogen synthase
kinase 3β (GSK3β), through modulation of the phosphorylation
state of serine 9. Phosphorylation of this residue results in
suppression of GSK3β activity (Schillace et al., 2001; Tanji et al.,
2002; Whiting et al., 2015). Yotiao, a product of the AKAP9
gene, also contains an RVxF motif, and has been shown to
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FIGURE 2 | Structural basis for phosphatase regulation and
anchoring. (A) Left: PP1 catalytic subunit (gray) in complex with RVxF
and auxiliary anchoring motifs from protein phosphatase 1 (PP1)
nuclear targeting subunit (PNUTS; orange). Right: PP2B (gray) in
complex with PIAIIIT sequence from AKAP79 (orange). Comparison
reveals that similar surfaces are used for anchoring, and that multiple
motifs can simultaneously interact with varied portions of the molecule.
PDB IDs: 4MOY, 3LL8. (B) Left: PP2B in complex with cyclosporin

(red)/cyclophilin (yellow) complex. Right: PP2B in complex with a viral
peptide A238L, containing a PxIxIT motif, as well as an LxVP motif
(red). Cyclosporin and LxVP peptides bind to overlapping surfaces
on PP2B, formed by both the catalytic and regulatory subunits of
PP2B. This surface does not occlude the active site of the
phosphatase, yet immunosuppressants are able to allosterically inhibit
PP2B activity toward substrates. PDB IDs: 1MF8, 4F0Z. Models were
prepared using PyMol (Schrödinger).

regulate the phosphorylation state of NMDA receptors through
localization of PP1 (Lin et al., 1998; Westphal et al., 1999).
AKAP18 does not appear to interact directly with PP1, but
some reports indicate that it binds Inhibitor-1 to promote its
phosphorylation by PKA (Singh et al., 2011). The net effect of
this later phosphorylation event is to promote local inhibition of
PP1c.

PP2B Regulation by Auxiliary Proteins

PP2B, also known as calcineurin, is a broadly expressed obligate
heterodimeric protein phosphatase that is activated by calcium
and calmodulin (Stewart et al., 1982). Like PP1, PP2B is
involved in diverse processes such as synaptic plasticity (Mulkey
et al., 1994), glucose metabolism (Hinke et al., 2012), cardiac
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signaling (Tandan et al., 2009), and immune responses (Clipstone
and Crabtree, 1992). In addition, activation of PP2B can
mobilize phosphatase cascade, through dephosphorylation of
PP1 regulatory subunits (Mulkey et al., 1994). The catalytic
A subunit of PP2B contains an autoinhibitory region that
occludes the active site in the absence of calcium. Upon
elevation of calcium levels, calcium ions bind directly to
the regulatory B subunit, and to calmodulin, which in turn
interacts with the autoinhibitory region and allows PP2B
to resume catalytic activity toward phosphosubstrates (Li
et al., 2011). Because calcium transients often envelop the
whole cell rather than occurring locally, regulation of PP2B’s
activity toward substrates is accomplished primarily through
protein–protein interactions. The best-known PP2B substrate
is the nuclear factor of activated T-cells (NFAT) family.
These transcription factors contain phosphoserine-rich regions,
and when dephosphorylated, dimerize and translocate to the
nucleus, where they are responsible for controlling a range
of transcriptional responses such as inflammation in response
to immune system signaling (Li et al., 2012). The common
immunosuppressants FK506 and cyclosporine target PP2B and
have their primary effect through inhibition of NFAT signaling
(Liu et al., 1991).

Not only is NFAT a typical PP2B substrate, it also contains
two SLiMs, which are typical of PP2B interacting proteins – the
PxIxIT motif, and the LxVP motif (Roy et al., 2007; Rodriguez
et al., 2009). The PxIxIT motif forms a beta strand that binds
to a hydrophobic groove formed by a beta sheet on the PP2B A
subunit (Li et al., 2007). This surface of the PP2B A subunit is
analogous to the region of PP1 which interacts with the RVxF
motif (Figure 2A). Proteins that contain PxIxIT motifs include
NFAT, regulator of calcineurin 1 (RCAN1; Mehta et al., 2009),
TWIK-related spinal cord potassium channel (TRESK; Roy and
Cyert, 2009), and notably, AKAP79/150 (Dell’Acqua et al., 2002).
The LxVP motif is a degenerate sequence that binds to the
interface of the A and B subunits of PP2B, and only binds
to activated calcineurin (Rodriguez et al., 2009). It has been
challenging to describe a consensus LxVP sequence. Therefore,
many LxVP motifs have been identified without originally being
aware of their identity. The first LxVP motif to be described was
that of the RII subunit by Blumenthal et al. (1986), although it was
not recognized as a conserved binding mode until it was found in
NFAT. Many substrates of PP2B contain an LxVP motif, and it
has been suggested that all efficient substrates contain some type
of sequence that interacts with the LxVP binding region on PP2B
(Grigoriu et al., 2013). The characterization of multiple SLiMs
that interact with various surfaces of PP2B parallels that of PP1,
and suggests that other mechanisms may also be in common
such as fine-tuning the location and activity of PP2B through a
combination of disorder and SLiMs. Recently, a structure of PP2B
in complex with a viral inhibitor peptide from African swine
fever revealed the binding site for the LxVP motif in atomic level
detail (Grigoriu et al., 2013). This crystal structure reveals that
the leucine residue occupies a pocket formed by two aromatic
residues, and when these are mutated to alanine residues they
no longer interact with the LxVP motif. In addition, this binding
site overlaps with the binding sites for cyclosporine and FK506

complexes (Figure 2B). However, no structure has been solved
of the PP2B heterodimer bound to calmodulin in the fully active
state, so the question of how LxVPmotifs are able to impact PP2B
activity remains unclear.

Some AKAPs have been shown to bind PP2B, such as the
aforementioned AKAP79, and mAKAP (Li et al., 2010). In
addition, the AKAP gravin has been suggested to be in the
same complex as PP2B and beta-adrenergic receptors, however,
evidence for a direct interaction is not immediately apparent
(Shih et al., 1999). The mAKAP interaction has been mapped to
the residues 1286–1345 in the mAKAPα splice variant. However,
this region does not contain an easily identifiable PxIxIT or
LxVP sequence. Loss of mAKAP-PP2B binding was shown to
result in reduced cardiac myocyte hypertrophy in response
to norepinephrine, as well decreased atrial natriuretic factor
expression. Interestingly, the pool of PP2B bound to mAKAP
appeared to be active, and required to dephosphorylate NFAT
efficiently in response to phenylephrine treatment. Formation
of the PP2B/mAKAP complex was enhanced in vitro by
calcium/calmodulin, suggesting that the interaction may occur
via a similar mechanism to the LxVP motif (Li et al., 2010).

A-kinase anchoring protein 79 is perhaps the best
characterized AKAP, and its interaction with PP2B has been
extensively investigated. Although original studies suggested an
interaction site was restricted to the N-terminal third of AKAP79
(Coghlan et al., 1995), later work described the primary site
of interaction as being a PxIxIT motif from residues 337-343
(Dell’Acqua et al., 2002; Oliveria et al., 2007). Use of a transgenic
mouse model in which AKAP79 lacks this region, known as
the AKAP79�PIX mouse, has revealed that AKAP79-anchored
PP2B is required for NMDA-dependent hippocampal long-term
depression and NFAT signaling in neurons (Oliveria et al.,
2007; Sanderson et al., 2012). Intriguingly, the AKAP79�PIX
mouse shows improved insulin sensitivity, indicating that this
interaction may be a possible therapeutic target for Type II
diabetes (Hinke et al., 2012).

Because of the importance of the AKAP79–PP2B interaction,
much emphasis has been placed on understanding the structural
basis of this interaction. Native mass spectrometry and
biochemical approaches have suggested that there is an additional
interaction site for PP2B between residues 1–153 of AKAP79 that
is dependent on calcium/calmodulin (Gold et al., 2011). Although

TABLE 2 | Summary of molecules disrupting protein phosphatase-2B
(PP2B) anchoring.

Name Type/mechanism Reference

Cyclosporine Immunophilin complex,
competes with LxVP

Liu et al. (1991)

FK506 Immunophilin complex,
competes with LxVP

Liu et al. (1991)

VIVIT Optimized PxIxIT peptide Aramburu et al. (1999)

INCA-6 Allosteric disruptor of PxIxIT Kang et al. (2005)

LxVP peptide LxVP peptide derived from
NFAT

Escolano et al. (2014)

PxIxIT disruptors from
ZINC library

Organic compounds, direct
competition for PxIxIT

Matsoukas et al. (2015)
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a crystal structure of PP2B in complex with a synthetic PxIxIT
motif was solved in 2007 (Li et al., 2007), the first structure of
PP2B bound to a natural PxIxIT motif was that of AKAP79 (Li
et al., 2012). This structure matched closely with the previously
solved structure, in that crystal packing is such that each PIAIIIT
sequence contacts two PP2BA subunits along the PxIxIT binding
region. This, along with native mass spectrometry approaches,
raises the question of whether AKAP79 is capable of binding two
PP2B molecules simultaneously.

Because of PP2B’s importance in a range of physiological
contexts, there is great interest in developing disruptors that
target specific PP2B anchoring proteins (Table 2). One of
the first targeted approaches resulted in an optimized high-
affinity PxIxIT motif called the VIVIT peptide (Aramburu
et al., 1999), which is the aforementioned synthetic peptide
that was co-crystallized with PP2B. In addition, fluorescence
polarization screens for small molecules that disrupt binding
to the PxIxIT motif have yielded a potential candidate known
as INCA-6 that is able to inhibit PP2B-NFAT signaling with
similar potency to cyclosporine and FK506, but through an
alternate mechanism (Kang et al., 2005). Recently, an approach
disrupting the LxVP interaction in macrophages through
lentiviral expression of an LxVP peptide was shown to reduce
inflammation and confer resistance to arthritis and contact
hypersensitivity (Escolano et al., 2014). Understanding the
molecular basis for PP2B anchoring has led to potential for
therapeutics and the realization that primary and secondary
binding sites may both be targeted for diverse physiological effect.
Because the AKAP79–PP2B interaction is important in many
processes, specifically targeting this interaction may be of great
promise.

Conclusion

Protein kinase A phosphorylation events and the phosphatases
that oppose them are tightly regulated by anchoring proteins.
Recently, the use of new and sophisticated biochemical,
biophysical, and structural techniques have forged two important
concepts. First, the combination of SLiMs and intrinsic disorder
allow anchoring proteins to allosterically and spatially control
the range and specificity of phospho-signaling. Second, AKAPs
are not just static anchors, but are conformationally and
compositionally flexible. This allows them to adapt to a
varied and continually changing cellular signaling environment.
A recent paper characterizing binding partners of the AKAP ezrin
by quantitative mass spectrometry revealed that conformational
switches in ezrin are accompanied by changes in the complement

of enzymes present in the complex (Viswanatha et al., 2013).
This may well prove to be the case for many AKAPs allowing
them to perform cell type specific roles. Moreover, the concept
of AKAPs as conformational switches could account for how
the same anchoring protein can simultaneously perform distinct
functions at multiple locations within a single cell.

These new biological insights have been demonstrated by
using hybrid structural techniques such as x-ray crystallography,
NMR, hydrogen/deuterium exchange experiments and
crosslinking/mass spectrometry (Burns-Hamuro et al., 2005;
Gold et al., 2011; Choy et al., 2014). The advent of direct
electron detectors for cryo-electron microscopy has increased
attainable resolutions (Campbell et al., 2012), and will likely
contribute to increased structural understanding of these flexible
multi-protein complexes. In addition, computational advances
in understanding heterogeneous cryo-EM samples will also
advance our knowledge of multiple conformational states
(Behrmann et al., 2015). Already, negative-stain approaches
such as random conical tilt (RCT) experiments are allowing
researchers to understand structural heterogeneity in protein
complexes (Veesler et al., 2014). Combining these approaches
with biosensors for enzymatic activity (Mehta and Zhang, 2014;
Mehta et al., 2014) will provide a more comprehensive picture of
how the structural properties of anchored kinase and phosphatase
complexes are able to influence local signaling in a cellular
context. Finally, as exemplified by a recent structure-guided
pharmacophore screen for inhibitors of PP2B anchoring, atomic
resolution structural insights will guide design of small molecules
that target anchoring protein interactions in the context of SLiMs
and intrinsic disorder (Matsoukas et al., 2015).
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