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Highly organized molecular complexes
determine the precise location and
timing of the signal transduction events
that occur downstream of cell surface
receptor activation (Pawson and Nash,
2003). One set of scaffolding molecules
that organize such complexes is a family
of proteins known as A-kinase-

anchoring proteins (AKAPs). AKAPs
provide a framework for the
coordination of phosphorylation and
dephosphorylation events by
sequestering enzymes such as protein
kinases and phosphatases with
appropriate substrates. AKAPs also
bring together signal transduction and
signal termination molecules in a
convergence of signaling pathways.
Indeed, the dynamic assembly of these
AKAP complexes represents a paradigm
of higher-order signal organization
(Wong and Scott, 2004).

AKAPs were first identified as a family
of structurally diverse but functionally
related proteins that share the capacity to
bind protein kinase A (PKA) (Lohmann
et al., 1984; Theurkauf and Vallee,
1982). The hydrophobic face of a
conserved amphipathic helix within

AKAPs anchors PKA through interaction
with an N-terminal four-helix bundle in
the regulatory subunit (R) dimer (Carr et
al., 1991; Newlon et al., 1999). In
addition, a distinct region of the AKAP
contains a targeting sequence that serves
to tether the complex to a specific
subcellular compartment (Colledge and
Scott, 1999). Anchoring of the kinase
facilitates localized activation of the
PKA catalytic subunit (C) following
elevation of the second messenger cyclic
AMP (cAMP). Importantly, it has been
shown by many labs that, in addition to
directing the action of PKA, AKAPs
engage other signaling molecules
(Colledge and Scott, 1999; Tasken and
Aandahl, 2004). This enables the
construction of enzyme complexes for
the integration and dissemination of
information at specific sites within the
cell. These complexes are assembled in
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dynamic response to upstream signals
and are often tethered close to specific
substrate proteins. Combined, these
factors provide an element of spatial and
temporal regulation to AKAP-mediated
signaling events. 

AKAP79 and its ortholog AKAP150
maintain substrate-specific complexes in
association with a variety of ion channels.
Surface expression and modulation of
AMPA-type glutamate receptor (GLuR)
function in the hippocampus are regulated
by AKAP-directed phosphorylation and
dephosphorylation. In complex with
SAP-97, AKAP79 facilitates PKA-
mediated phosphorylation of Ser845 on
GluR1 to potentiate AMPA receptor
function (Colledge et al., 2000).
Likewise, AKAP79-targeted protein
phosphatase 2B (PP2B) may serve to
dephosphorylate GluR1 and permit
channel rundown (Dell’Acqua et al.,
2002). Other AMPA-type channels bind
to the related MAGUK protein PSD-95,
which forms a bridge between AKAP79
and GluR1 via the protein Stargazin. This
brings the AKAP-associated phosphatase
PP2B into close proximity to
dephosphorylate the PSD-95-associated
ubiquitin E3 ligase Mdm2.
Dephosphorylation of Mdm2 leads to
ubiquitylation and degradation of PSD-95
and the concomitant internalization of
AMPA receptors (Colledge et al., 2003).
A PSD-95 bridge also links the AKAP79
complex to NMDA receptors, although
less is know about the regulation of this
interaction (Schnell et al., 2002). In
sympathetic neurons of the brain, the
association of AKAP79 with the KCNQ2
channel and AKAP79-directed
phosphorylation of KCNQ2 by PKC
primes the channel to allow a lower
threshold for agonist-dependent
inhibition (Hoshi et al., 2003). In the
context of each of these ion channel
complexes, the same anchoring protein
serves as an adapter that brings together a
specific subset of binding partners to
regulate channel function. AKAP79-
mediated phosphorylation and
dephosphorylation events thus modulate
ion channel function in a substrate-
specific manner.

Intracellular targeting of AKAPs serves
to position distinct signaling complexes
at or on a given organelle. For example,
AKAP220 targets PKA, protein

phosphatase 1 (PP1), and glycogen
synthase 3β (GSK3β) to vesicles
(Schillace et al., 2001; Tanji et al., 2002).
Similarly, Rab32, a member of the Ras
superfamily of small GTPases, anchors
PKA at mitochondria (Alto et al., 2002).
Pericentrin and another anchoring
protein, AKAP350/450, both target PKA
and protein kinase C (PKC) to sites
within the centrosome. However, the
latter can also anchor the additional
binding partners PP1, PP2B,
phosphodiesterase (PDE), protein kinase
N (PKN), TACC3 and CLIC4 (Diviani et
al., 2000; Chen et al., 2004; Steadman et
al., 2002). The repertoire of AKAP
targeting may also be increased through
transcriptional regulation. Alternative
splicing gives rise to a family of AKAPs:
AKAP350, AKAP450, CG-Nap and
Yotiao (Witczak et al., 1999; Schmidt
et al., 1999; Takahashi et al., 1999;
Westphal et al., 1999). These AKAPs
bring together kinases, phosphatases,
phosphodiesterases, receptors and
channels in important signaling pathways
at three distinct sites within the cell: the
centrosome, the Golgi, and the plasma
membrane (Wong et al., 2001). By
assembling various signaling partners,
these AKAPs are able to modulate cell
cycle progression, membrane trafficking
and channel function.

AKAPs expressed in different parts of
the body can assemble tissue-specific
signaling networks. A signaling complex
in the brain organized by WAVE-1
directs a Rac-mediated actin
reorganization that is involved in neurite
outgrowth (Machesky, 2000; Westphal et
al., 2000). In addition to PKA and actin,
this neuronal WAVE-1 complex includes
Abl, Arp2/3 and the Rac-terminating
GTPase-activating protein (GAP) WRP
(Soderling et al., 2002). Interestingly, in
liver and sperm, the same AKAP,
WAVE-1, nucleates a very different
mitochondrial-sheath-targeted complex
that includes the BCL2-antagonist of cell
death BAD, glucokinase, protein
phosphatase PP1, and PKA (Danial et al.,
2003; Rawe et al., 2004).

The complement of AKAP-binding
partners is dynamically responsive to
and regulated by intracellular signals.
For example, AKAP-Lbc synchronizes
PKA and PKC phosphorylation events
that lead to the activation of protein

kinase D (PKD). Diacylglycerol-
mediated activation of PKCη in the
AKAP-Lbc complex leads to
phosphorylation and activation of the
co-anchored PKD (Carnegie et al.,
2004). In parallel, cAMP-dependent
phosphorylation of AKAP-Lbc Ser2737
by PKA reduces the affinity of the
interaction between the AKAP and
PKD, releasing the activated PKD from
the complex. AKAP-Lbc brings
together the essential modulators of this
PKD activation cascade downstream of
the extracellular signaling events.

Dynamic regulation of enzymatic
activity is coordinated through AKAP
complexes. The muscle-specific AKAP
(mAKAP) tethers both PKA and
the cAMP-specfic phosphodiesterase
PDE4D3 to the nuclear membrane of
cardiac myocytes (Dodge et al., 2001).
As local cAMP levels rise, the activated
C subunit of PKA is released.
Phosphorylation of PDE4D3 by the
kinase enhances the binding affinity
between PDE and mAKAP and
increases the metabolism of cAMP by
the phosphodiesterase twofold. As
PDE4D3 activity lowers cAMP levels,
this feedback loop generates localized
pulses of PKA activity. Similarly,
another AKAP maintains a
phosphorylation-dependent pathway to
regulate Rho activity. AKAP-Lbc
possesses Rho-specific guanine
nucleotide exchange factor (GEF)
activity. Phosphorylation of AKAP-Lbc
at Ser1565 by its associated PKA creates
a phospho-specific 14-3-3-binding site.
The subsequent interaction of 14-3-3
with this site inhibits the Rho-GEF
activity and thus the activation of Rho
(Diviani et al., 2004; Jin et al., 2004).

Proteins that have been identified as
AKAPs can have scaffolding functions
that, at times, are temporally distinct
from their PKA-targeting function. In
interphase cells, the nuclear AKAP95
primarily associates with the nuclear
matrix whereas a small fraction
complexes with chromatin (Coghlan et al.,
1994; Eide et al., 2002). During mitosis,
as the nuclear structures breakdown,
AKAP95 interacts with the RII subunit of
PKA. As the daughter cell nuclei reform,
AKAP95 appears once again to segregate
from the kinase. Cyclin D, p68 RNA
helicase, and the minichromosome
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maintenance 2 protein (MCM2) have all
been shown to interact with the interphase
AKAP95, and nuclear signaling
complexes may contain subsets of these
binding partners (Akileswaran et al.,
2001; Arsenijevic et al., 2004; Eide et al.,
2003). Consequently, AKAP95 serves as
a scaffold for coordinating assembly of
nuclear complexes for replication and
transcription and has a role in PKA
targeting at distinct stages of the cell cycle.

AKAPS thus provide more than just an
address for PKA, and our understanding
of their roles has moved from
identification of them as mere kinase-
targeting molecules to platforms for the
convergence and integration of highly
organized signaling pathways. 
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Commentaries
JCS Commentaries highlight and critically discuss recent exciting work that will interest
those working in cell biology, molecular biology, genetics and related disciplines.These short
reviews are commissioned from leading figures in the field and are subject to rigorous peer-
review and in-house editorial appraisal. Each issue of the journal usually contains at least
two Commentaries. JCS thus provides readers with more than 50 Commentaries over the
year, which cover the complete spectrum of cell science. The following are just some of the
Commentaries appearing in JCS over the coming months.

Roles of the centrosome Michel Bornens

Stem cell therapy Helen Blau

Mechanotransduction Chris Chen

Dorsal closure Daniel Kiehart

Nuclear systems biology Tom Misteli

Electron tomography Wolfgang Baumeister

Filopodia Richard Cheney 

Necrotic-like cell death Monica Driscoll

Mitochondrial fission and fusion Richard Youle

Spir proteins R. Dyche Mullins

Golgi fragmentation Jennifer Lippincott-Schwartz

Nuclear actin Pavel Hozak

Septins W. James Nelson

Caveolar biogenesis Robert Parton

Yeast apoptosis Marie Hardwick

Dynamin Mark McNiven

p120 catenin Albert Reynolds

Cancer stem cells Max Wicha

p53 outputs Karen Vousden

Endomembrane evolution Joel Dacks

Although we discourage submission of unsolicited Commentaries to the journal, ideas for
future articles – in the form of a short proposal and some key references – are welcome and
should be sent to the Executive Editor at the address below.
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