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Review
A-kinase anchoring proteins (AKAPs) streamline signal
transduction by localizing signaling enzymes with their
substrates. Great strides have been made in elucidating
the role of these macromolecular signaling complexes as
new binding partners and novel AKAPs are continually
being uncovered. The mechanics and dynamics of these
multi-enzyme assemblies suggest that AKAP complexes
are viable targets for therapeutic intervention. This re-
view will highlight recent advances in AKAP research
focusing on local signaling events that are perturbed in
disease.

Introduction
A-kinase anchoring proteins (AKAPs) ensure enzymes are
appropriately targeted to optimally facilitate signal trans-
duction. A unifying feature of this group of proteins is their
ability to anchor the regulatory (R) subunits of protein
kinase A (PKA) in proximity to substrates. However, each
anchoring protein associates with a unique subset of sig-
naling effectors comprising protein kinases, phosphopro-
tein phosphatases, small GTPases, phosphodiesterases,
transmembrane receptors, and ion channels [1]. This list
is constantly growing as additional AKAP-binding part-
ners are continually being discovered. Consequently, local
signaling is a burgeoning line of investigation as many
research groups are grappling with the intricate spatial
relationships that exist within these AKAP complexes.
This review highlights examples of the four fundamental
tenets of AKAP signaling: specificity, sensitivity, localiza-
tion, and temporal control.

Recently, investigators are shifting their attention
from cells in culture towards in vivo models in order to
understand how anchored signaling pathways are per-
turbed during disease. This comes at a time when approx-
imately 50% of marketed pharmaceuticals target
G protein-coupled receptors (GPCRs) and increasing
numbers of kinase inhibitor drugs are entering the
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clinic [2]. Thus, our growing knowledge of these anchored
enzyme units earmark AKAP complexes as potential tar-
gets for therapeutic intervention, especially because the
manipulation of local signaling holds a promise of gener-
ating therapies with fewer off-target effects.

Signaling specificity through anchoring
Arguably the most extensively characterized anchoring pro-
tein, AKAP79/150, organizes a veritable mecca of signaling
proteins. These include the beta adrenergic receptor (bAR),
adenylyl cyclase (AC), L-type voltage-gated Ca2+ channels
(Cav1.2, Cav1.3), protein kinases A and C (PKA, PKC), and
protein phosphatases among others [3–5]. The exquisite
control AKAP79/150 exerts on its many partner molecules
in a variety of cellular contexts makes this anchoring protein
a prototypic example of local signaling specificity [6].

Modulation of signaling molecules through dephosphor-
ylation is a key mechanism of signal transduction [7–9]. A
recently defined example is anchoring of the calcium–
calmodulin-dependent serine–threonine protein phospha-
tase 2B/calcineurin (PP2B) to neuronal AKAP79/150
(Figure 1). This enzyme is the target of immunosuppres-
sant drugs cyclosporine A and FK506. A primary down-
stream effector of PP2B is the transcription factor, nuclear
factor activated in T cells (NFAT). Work with NFAT has
identified a PP2B recognition site intrinsic to many PP2B
effector proteins, commonly referred to as PIxIxIT se-
quence [9,10]. Although the region of AKAP79/150 re-
quired for binding to PP2B was originally mapped more
than 10 years ago, recent work has identified a specific
sequence within this region, which bears striking resem-
blance to the PIxIxIT motif in NFAT [11,12]. The authors
showed that this region was responsible for the AKAP79/
150-mediated activation of NFAT by PP2B [11,12]. In rat
hippocampal neurons NFAT signaling is initiated via
AKAP79/150-anchored Cav1.2-mediated increases in in-
tracellular Ca2+, PP2B activation, and NFAT dephosphor-
ylation, allowing NFAT translocation to the nucleus where
it regulates gene transcription. Additionally, AKAP150-
dependent nuclear translocation of NFAT regulates gene
expression of KCNQ2 and KCNQ3 potassium channels and
is abolished in AKAP150 null mice [13].

Activation of AKAP-anchored PP2B involves local Ca2+

influx through the L-type voltage-gated Ca2+ channel,
Cav1.2. However, negative feedback regulation of the chan-
nel also appears to be modulated by PP2B as deletion of the
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Figure 1. AKAP79/150 modulates diverse synaptic functions through anchored PP2B. Diagram depicting PKA-mediated phosphorylation of AMPAR GluA1 subunit primes

the receptor for insertion in the postsynaptic membrane during LTP, whereas dephosphorylation by PP2B removes the receptor from the synaptic space during LTD.

AKAP79/150-anchored Cav1.2 increases intracellular Ca2+, triggering PP2B activation and NFAT dephosphorylation, allowing NFAT translocation to the nucleus where it

regulates gene transcription. AKAP79/150-associated PP2B dephosphorylates the channel in a negative feedback loop. AKAP150-anchored PKA and PKC phosphorylate the

TRPV1 channel, increasing channel sensitivity. This process is facilitated by AC5 and blocked by Ca2+/CaM. PP2B dephosphorylates the receptor independently of AKAP

anchoring [6,9–12,14,16,17]. Abbreviations: AKAP, A-kinase anchoring protein; PKC, protein kinase C; PP2B, protein phosphatase 2B; AMPAR, A-amino-3-hydroxy-5-methyl-

4-isoxazolepropionic acid receptor; NFAT, nuclear factor activated in T cells; Cav1.2, L-type calcium channel; LTP, long-term potentiation; LTD, long-term depression.
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PP2B-binding motif on AKAP79/150 (DPIX), the use of
interfering peptides, or pharmacological PP2B inhibition
prevents feedback channel inhibition [14]. Long-term po-
tentiation (LTP) and long-term depression (LTD) are sys-
temic processes underlying learning and memory. LTP and
LTD are Ca2+-dependent processes mediated through
AMPA- and NMDA-type glutamate receptor ion channels
[6,15]. PKA-mediated phosphorylation of AMPA receptor
GluA1 subunit primes the receptor for insertion in the
postsynaptic membrane during LTP, whereas subunit de-
phosphorylation by PP2B removes the receptor from the
synaptic space during LTD. Genetic removal of AKAP79/
150 in rat CA1 pyramidal neurons increases AMPA recep-
tor-mediated excitatory postsynaptic currents (EPSCs) as
well as NMDA receptor LTD [6]. Interestingly, this is
reversed upon reintroduction of wild type AKAP79/150
as well as AKAP mutants lacking the PKA- or PKC-binding
sites, but not with a mutant lacking the PP2B-binding
domain [16]. DPIX transgenic mice exhibit greater AMPA
receptor phosphorylation than wild type animals and dis-
play simultaneous decreased LTP and enhanced LTD at
hippocampal CA1 synapses [17]. Finally, a novel mecha-
nism of GABAergic LTD through dopamine D2L receptor
depends on IP3 receptor activation and AKAP79/150-an-
chored PP2B activity [18]. These selected examples illus-
trate the diversity of synaptic functions modulated by
AKAP-anchored PP2B. However, this mechanism also
plays an important role in other tissues and cellular con-
texts.

Modulating glucose homeostasis is another example of
the multifaceted role that AKAP150-anchored PP2B can
play in pathology [19]. Loss of AKAP150 suppresses insulin
secretion in pancreatic b cells concurrent with decreased
Ca2+ currents, and lower cAMP mobilization. Surprisingly,
intraperitoneal insulin injection in AKAP150 null animals
resulted in significantly reduced blood glucose compared
with wild type animals, indicating enhanced insulin action in
the peripheral tissues of AKAP150 null animals. Further
analysis revealed that knock-in mice lacking the PKA-bind-
ing site of AKAP150 exhibited very little differences in glu-
cose handling compared with wild type. However, DPIX
animals, which can no longer anchor PP2B to AKAP150,
performed similarly to AKAP150 null animals, indicating
that PP2B anchoring is the core molecular basis in AKAP150-
mediated coordination of glucose homeostasis [19].

Enzyme anchoring augments signal sensitivity
Damage to nociceptors or peripheral nerves triggers hyper-
algesia, an increased sensitivity to pain [20]. At the molec-
ular level, these pathological events originate from
activation of the nonselective cation channel TRPV1
[20]. Phosphorylation of TRPV1 by anchored PKA or
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PKC sensitizes this receptor in response to inflammatory
stimuli [21,22]. The interaction domain between TRPV1
and AKAP79/150 is a viable target for the development of
novel analgesics that may lack the side effects observed
with direct TRPV1 inhibition. Twin studies published
earlier this year mapped the interaction sites on both
AKAP79/150 and TRPV1 and showed that peptide inhibi-
tion of either binding site resulted in abolished PKC-de-
pendent TRPV1 sensitization to capsaicin stimulation
(Figure 1). Furthermore, cell permeable peptide analogs
mimicking either side of the AKAP–TRPV1 interface sup-
pressed inflammatory thermal and mechanical pain-relat-
ed behaviors in mice [23,24]. Additionally, adenylyl cyclase
AC5 anchoring to the AKAP79/150–TRPV1 complex is
necessary for TRPV1 sensitization to inflammatory sti-
muli. AC5 anchoring to the complex inhibits TRPV1 de-
sensitization, whereas interrupting the AKAP–AC
association permits channel desensitization [25]. Mean-
while, Ca2+/calmodulin interferes with AKAP79/150 asso-
ciation with TRPV1 potentially decreasing channel
activity, whereas PIP2 at the membrane can interfere with
PKA phosphorylation of TRPV1 in an AKAP79/150-depen-
dent manner [26,27]. However, AKAP79/150 is not re-
quired for the PP2B-mediated desensitization of
activated TRPV1 channels, because PP2B can effectively
dephosphorylate the channel in AKAP150�/� mice [28].
Collectively, these three examples, as depicted in Figure 1,
highlight how the AKAP79/150 scaffold facilitates
Nucleus

Downregulated
gravin gene

transcrip�on

MMPPKC

MEK

ERK

RAF

TFII-I
HDAC

USF1

SP1

SP3P

P
TFII-I

AKAP-Lbc
KSR-1

P

Oncogenic Src:
Unregulated cell growth,

migra�on, invasion

Src
FAK

P

(A) (B

Figure 2. Gravin sequesters Src to reduce mitogenic signaling. (A) In the absence of G

cascade. Mobilization of this MAP kinase (MAPK) triad triggers MMP-2 expression and s

contribute to cell migration and invasion. Recruitment of the MAPK cascade to this locati

Lbc and RAF–MEK–ERK scaffolding protein, KSR. Activated Src suppresses transcriptio

Sp1, Sp3, HDAC1, as well as the Src-phosphorylated transcription factor TFII-I. Another m

Lbc [38] (B) Gravin protein association with Src not only inhibits kinase activity but also s

is to drive Src into lipid rafts, and thereby deplete this oncogenic tyrosine kinase from

clustering of integrin b1 [36,37,39]. Abbreviations: AKAP, A-kinase anchoring protein; 

MEK, mitogen activated protein kinase kinase; ERK, extracellular signal-regulated ki

stimulatory factor.

650
enhanced signal sensitivity to distinct physiological events
in different cellular contexts.

Kinase localization during cell division and cancer
progression
Because phosphorylation is implicated in cell cycle control,
it is perhaps not surprising that distinct AKAPs coordinate
aspects of mitosis and cancer progression. For example,
Gravin and the rodent ortholog Src-suppressed C kinase
substrate (SSeCKS)/AKAP12 have long been implicated in
oncogenesis [29]. The Gravin locus is thought to be associ-
ated with susceptibility to malignancies, whereas loss of
Gravin in multiple cancers is correlated with poor overall
survival and is often attributed in part to Gravin promoter
hypermethylation [30–35].

As suggested by the name of the rodent ortholog, Gravin
expression is both suppressed in Src-transformed cells and
phosphorylated by PKC [29]. Activated Src suppresses
Gravin promoter activity through a short proximal se-
quence that binds upstream transcription factor 1
(USF1), specificity proteins (Sp1 and Sp3), histone deace-
tylase 1 (HDAC1), as well as the Src-phosphorylated tran-
scription factor TFII-I (Figure 2A) [36]. However, Gravin
can in turn inhibit the mitogenic signal transduction
mechanisms triggered by these two kinases. Gravin
reduces prostate cancer cellular chemotaxis and invasive-
ness by preventing serum-activated Src from triggering a
PKC–Raf–MEK–ERK pathway thus precluding matrix
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metalloprotease-2 expression and secretion [37]. Activa-
tion of this particular MAP kinase cascade may involve
another anchored enzyme complex as AKAP–Lbc nucle-
ates a higher order macromolecular assembly that includes
a Raf–MEK–ERK module and their scaffolding protein
KSR [38]. Furthermore, it has recently been proposed that
Gravin does not directly inhibit Src activity, but rather
sequesters the active enzyme from its downstream effector
molecules. For example, Gravin anchoring to Src occurs via
a caveolin-1-like motif on the anchoring protein that drives
Src into lipid rafts (Figure 2B). The net effect is to deplete
this oncogenic tyrosine kinase from focal adhesions. These
events also drive FAK-mediated cell adhesion through
increased clustering of integrin b1 [39].

Gravin association with PKC occurs through direct
binding of two homologous motifs resulting in kinase
inhibition [40,41]. Cellular confluence increases Gravin–
PKC association, while simultaneously decreasing PKC
activity. Gravin null murine embryonic fibroblasts (MEFs)
exhibit increased PMA-induced PKC activity but not PKC-
dependent cytoskeletal rearrangement. PKC activity and
prostate cancer cell apoptosis can be restored to normal
levels by reintroducing full length Gravin, but not a mu-
tant lacking a PKC-binding site [40].

Owing to the antagonistic relationship between Gravin
and various mitogenic factors, it is logical to propose that
Gravin plays a key role in limiting cell cycle progression
and cell proliferation. A recent in-depth study found an
interesting, if unexpected, role for Gravin in cell cycle
progression [42]. As expected, nude mice developed signifi-
cantly larger tumors when injected with Gravin small
hairpin (sh)RNA-expressing U251 cells compared with
controls. Similarly, Gravin mRNA was significantly de-
creased in human glioblastoma multiform complexes com-
pared with neighboring normal tissue. Yet unexpectedly,
shRNA depletion of Gravin actually decreased prostate
cancer PC-3 cell proliferation while enhancing mitotic
defects. Investigators found that Gravin is phosphorylated
at T766 by the cell cycle regulatory kinase CDK1 in a
temporally synchronized manner, peaking at mitosis along
with other makers of cell cycle progression. Interestingly,
CDK1-phosphorylated Gravin is localized to the mitotic
spindle and is associated with the G2-M transition trigger
kinase, Plk1. This concept was validated using a Gravin
T766A phosphosite mutant that is unable to bind Plk1 and
significantly decreases cell proliferation. Finally, although
overall Gravin protein levels were decreased in human
glioblastoma multiforme, phosphorylated Gravin was
enriched in malignancy compared with control neighboring
tissue [42]. This indicates that although many aspects of
Gravin signaling are antiproliferative, there is a specific
pool of Gravin which is both spatially and temporally
regulated to facilitate cell cycle progression and cell pro-
liferation.

Temporal regulation and the management of cardiac
hypertrophy
Cardiovascular disease is the primary cause of morbidity
and mortality in the USA. This places severe financial
strain on the healthcare system each year. In response
to hypertension (increased blood pressure), atherosclerosis
(hardening of the blood vessels), or other forms of cardiac
stress, the heart enlarges and remodels (cardiac hypertro-
phy), ultimately leading to heart failure. Several studies
have implicated various AKAP-mediated signaling mech-
anisms in the onset and progression of cardiovascular
disease. These include the anchoring proteins muscle-spe-
cific AKAP (mAKAP), AKAP18, and AKAP–Lbc [1,43–45].

Gene silencing of AKAP–Lbc or disrupted anchoring in
isolated cardiomyocytes attenuates RhoA activation. The
net result is decreased hypertrophic responses induced by
GPCRs [43]. However, it is becoming apparent that AKAP–
Lbc is also essential for the normal growth and develop-
ment of the heart. AKAP–Lbc null mice die at E10.5–E11.0
and display deficient sarcomere formation and thin-walled
developing hearts [46]. It was speculated that this devel-
opmental deficiency may be due to altered anchoring of
RhoA or activation of the protein kinase D (PKD), leading
to differences in downstream events such as activation the
p38–MAP kinase cascade or HDAC5-mediated derepres-
sion of transcriptional remodeling [45]. However, trans-
genic mice lacking either of these domains in AKAP–Lbc
develop normally, implying that the cardiac malformation
of AKAP–Lbc null mice is not solely due to the mislocaliza-
tion of these signaling molecules [47]. Furthermore, a
cardioprotective effect of AKAP–Lbc was described which
identifies this anchoring protein as underlying the PKA-
mediated phosphorylation of Hsp20 on Ser16, thus facili-
tating the antiapoptotic actions of the Hsp [48].

A propensity for high blood pressure was recently linked
to individuals with a polymorphism in the noncoding
region of the AKAP–Lbc gene [49]. Clinical interest in this
finding is heightened by evidence that AKAP–Lbc coordi-
nates signaling events underlying pathological cardiac
hypertrophy through genetic reprogramming events
resulting in aberrant growth of cardiac myocytes. More
specifically, AKAP–Lbc synchronizes the actions of GPCR-
activated protein kinases and histone remodeling enzymes
that impact a variety of transcriptional factors and cofac-
tors. For example, alpha 1 adrenergic receptor (a1AR)
stimulation mobilizes a pool of AKAP–Lbc-anchored NFkB
inhibitor kinase (IKKb) to enhance transcription of the
NFkB-dependent gene, interleukin-6 [50]. This process
results in the recruitment of additional signaling elements
to the AKAP–Lbc scaffold as pressure overload via aortic
banding results in the addition of RhoA and its effector
PKNa along with a p38 mitogen-activated protein kinase
(MAPK) cascade. This ultimately triggers cardiomyocyte
growth through activation of the mTOR pathway [51,52].
Targeting this complex may be therapeutically advanta-
geous, particularly because interfering peptides disrupting
the AKAP–Lbc/p38 complex impair hypertrophic
responses. However, further investigation is necessary to
pinpoint which of the growing number of AKAP–Lbc-bind-
ing partners are the key effectors driving this pathophysi-
ological state.

As described above, pathological cardiac hypertrophy
interferes with heart function and ultimately leads to heart
failure. However, early compensatory cardiac hypertrophy
is initially beneficial in response to increased pressure
load or pathological injury, allowing the stressed heart
to maintain normal cardiac output and reduce shear stress.
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Although targeted disruption of the AKAP–Lbc/p38 signal-
ing complex impairs hypertrophic responses of transgenic
mice, these animals also develop dilated cardiomyopathy
and early cardiac dysfunction [51]. These data highlight a
pleiotropic role for AKAP–Lbc because anchored signaling
is essential for early cardiac development but becomes
detrimental during pathological hypertrophy.

The mAKAP–PLCe axis: synchronization of
pathophysiological processes during early stage heart
disease
Many contributing factors of cardiovascular disease stim-
ulate GPCRs coupled through Gaq/11 to the activation of
phospholipase C (PLC). This results in the formation of
diacylglycerol (DAG) and inositol 1,4,5 trisphosphate (IP3)
leading to the release of intracellular calcium stores and
the activation of PKC. Recently, a novel phospholipase
isoform PLCe has been implicated in endothelin-1 (ET-
1)-dependent cardiac hypertrophy in neonatal rat ventric-
ular myocytes (NRVMs) (Figure 3) [53–55]. PLCe gene
depletion reduces agonist-induced hypertrophy in NRVMs.
These events occur at the nuclear envelope where PLCe is
tethered to mAKAP and peptide-mediated mislocalization
of PLCe from the anchoring protein attenuates Gq-medi-
ated hypertrophy [55]. This latter report is in contrast to an
earlier study indicating that global PLCe gene disruption
exacerbates heart failure but is consistent with mouse
genetic analysis showing that cardiac-specific conditional
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knockout of PLCe protects these animals from pressure
overload-induced hypertrophy [53,54]. There are several
interesting implications arising from this study. First,
PLCe is a novel mAKAP-binding partner exclusively local-
ized at the nuclear membrane. Second, the anchored en-
zyme utilizes a previously unrecognized phosphoinositide
second messenger P1-4P, the products of which activate
PKD [53]. Because PKD is a known AKAP–Lbc-binding
partner that regulates hypertrophic transcriptional
reprogramming, it is possible that both anchored enzyme
complexes act synergistically to propagate these patho-
physiological events [56]. This multifaceted process high-
lights the utility of AKAPs in the tight temporal control
and spatial synchronization of enzymes that catalyze es-
sential cellular processes.

AKAPs: towards therapeutic intervention
The previous sections have delineated a role for AKAPs
and their associated proteins in disease progression. Thus,
selected AKAP complexes may prove to be useful thera-
peutic targets. Ultimately, this may lead to the design of
small molecules that target specific AKAP complexes to
correct pathological signaling defects underlying certain
diseases.

One translational application of this concept is the use of
selected AKAPs as biomarkers for disease. For example,
AKAP4 is a cancer testes antigen (CTA) that can also be
detected in cervical, ovarian, breast, and prostate cancers
m
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[57–59]. Because the majority of these patients produce
circulating anti-AKAP4 immunoglobulins that can be
detected during routine medical screening, it has been
proposed that these individuals could be susceptible to
AKAP4 immunotherapies [57–59]. Additionally, Gravin
promoter hypermethylation is elevated in numerous can-
cers and is correlated with increased malignancy and
metastasis. Therefore, Gravin promoter methylation is a
potential biomarker for cancer progression and metastasis
that can be detected using methods such as next genera-
tion sequencing or methylation-specific PCR [28–33]. This
also highlights the utility of personalized medicine as an
emerging diagnostic tool.

Chronic and acute pain is a distressing condition that
currently affects 50 million Americans. Commonly pre-
scribed analgesic drugs such as nonsteroidal anti-inflam-
matory drugs underperform, whereas opioids are
addictive and can cause unpleasant side effects [60]. Con-
sequently, there is a continual need for improved, well-
tolerated analgesic agents. As previously discussed, the
role TRPV1 plays in noiciception makes it an attractive
target for pain management. However, the development of
several TRPV1 drugs have stalled in Phase II, largely due
to side effects including hyperthermia and impaired nox-
ious heat sensation [60]. Thus, disrupting the AKAP–
TRPV1 interaction may offer an alternative target for
pain management. This notion is supported by recent
evidence that cell permeable peptide disruptors of
AKAP–TRPV1 interface suppressed inflammatory, ther-
mal, and mechanical pain-related behaviors using a
mouse foot pad model [23,24]. Although this approach
holds some promise, additional studies will be necessary
to delineate the role of AKAP79/150 complexes in animal
models of chronic pain and whether peptidomimetic or
small molecules can be designed to therapeutically man-
age the AKAP–TRPV1 interface.

Local signaling during cardiac remodeling and hyper-
trophy is another area of interest; in particular because
protein levels of several AKAPs and associated proteins
have been shown to be altered during human heart failure
[45,61]. To date, cultured cells have been used as model
systems for most of these studies. Yet it is reassuring that
some investigators are moving towards a more translation-
al approach by exploring the in vivo consequences of
AKAP-mediated signaling in mouse models of cardiac
hypertrophy [51]. For example, targeted disruption of
the AKAP–Lbc/p38 complex in vivo inhibits pressure-in-
duced cardiac hypertrophy [50]. However, mice expressing
the AKAP–Lbc competitor fragment also develop dilated
cardiomyopathy and cardiac dysfunction in response to
pressure overload [51]. The complexity of these findings
highlight a need for further investigations that delineate
how uncoupling of AKAP complexes can help treat cardio-
vascular disease while avoiding undesirable side effects.
Another element of this venture will be to establish the
precise therapeutic window for these treatments. For ex-
ample, class 2 HDAC inhibitors currently projected as
anticancer drugs could be repurposed to halt the advance
transcriptional reprogramming coordinated by the AKAP–
Lbc–PKD–HDAC5 axis that is a hallmark of pathological
hypertrophy [45], whereas p38 inhibitors could manage
some of the inflammatory responses associated with aber-
rant AKAP–Lbc signaling in the heart [51].

Concluding remarks: can AKAPs become viable
therapeutic targets?
Although the discovery of new AKAPs and their binding
partners heightens awareness of local signaling in disease,
agents that therapeutically target these macromolecular
assemblies remain elusive [62–66]. Currently, interfering
peptides that displace anchored enzymes dominate AKAP
research [4]. Perhaps the most established mode of this
targeted enzyme modulation is to exploit the RII–AKAP
interface [67,68]. The original PKA disruptor peptide Ht31
[69], derived from the anchoring helix of AKAP–Lbc, has
been widely used to establish a role for PKA anchoring in a
variety of biological systems (reviewed in [4]). Subsequent
derivatives have been developed that are more potent than
Ht31 [70], and distinguish between anchored type I [71]
and type II [67] PKA regulatory subunits. These peptides
are useful research tools that probe the cellular ramifica-
tions of various anchored signaling events and have been
successfully used to reverse pathological phenotypes asso-
ciated with kinase or phosphatase tethering to AKAPs in
animal models [38,72]. Nevertheless, there are difficulties
in targeting peptides to appropriate tissues because of
their restricted cellular permeability and the rapid degra-
dation of peptides in vivo. Yet, perhaps the overriding
limitation of these anchoring disruptors is their inability
to discriminate between the contributions of individual
AKAP–PKA complexes. For these reasons, investigators
are now pursuing alternate approaches to achieve these
goals.

A more promising target for peptidomimetic interfer-
ence of local second messenger signaling events is the
PIxIxIT motif that displaces phosphatase PP2B from
AKAPs and other binding partners. Success in developing
small molecule inhibitors targeting AKAPs is promising
but has thus far been limited [73]. Current drugs cyclo-
sporin and FK506 are a standard treatment following
organ transplant, although with significant side effects
including elevated blood glucose and hypertension. The
seven-amino acid sequence (PIAIIIT) on the anchoring
protein AKAP150 controls phosphatase activity and also
modulates glucose homeostasis [19]. Hence, small mole-
cules that perturb phosphatase tethering to this anchoring
protein could boost insulin sensitivity when used in com-
bination with immunosuppressive drugs. The aim of this
new therapeutic approach would be to protect organ trans-
plant patients against the onset of diabetes.

An alternative approach to target AKAP–PKA com-
plexes is structure-based phage screening. This has yielded
modified RII subunits of PKA with AKAP-selective binding
properties [74]. Still, the utility of these RII selective
reagents has yet to be established. Clearly, additional
insight into the structure and topology of anchored enzyme
interfaces will prove invaluable. However, even with high-
resolution structural information, AKAP–enzyme inter-
faces targeting these protein–protein interactions may
have its challenges. A glimpse into this complexity comes
from evidence that certain well-characterized and potent
small molecule ATP analog inhibitors of PKCs are
653
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rendered ineffective when the enzyme is associated with
AKAP79/150 [75]. This observation is reminiscent of recent
reports that Akt and B-Raf can become resistant to the
inhibitor drugs A-443654 and PLX4032, respectively [75–
78]. Thus, kinase association with endogenous binding
partners that confer resistance to ATP analog inhibitors
could have important ramifications for drug discovery and
research projects predicated on the selectivity of pharma-
cological protein kinase inhibitors [75]. Certainly, this
body of work emphasizes that the cellular context of the
anchored enzymes must be considered in any viable ther-
apeutic strategy.
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