
A-kinase anchoring proteins take shape
Darren L Beene and John D Scott
A-kinase anchoring proteins (AKAPs) are signaling scaffolds

that contribute to various aspects of cAMP signaling. They do

this by tethering protein kinase-A to specific subcellular sites,

thereby focusing its activity toward relevant substrates.

Recently the structural basis for these protein–protein

interactions has been elucidated by x-ray crystallography.

Recent reports have identified AKAPs that bind to adenylyl

cyclases to regulate cAMP synthesis and that sequester

phosphodiesterases to break down this second messenger

locally. Another emerging aspect of AKAP function is their role

in integrating cAMP signaling with other signaling pathways.

For example, molecular and genetic approaches have been

used to show that the neuronal anchoring protein WAVE1

integrates signaling from PKA and Cdk5 to regulate actin

polymerization and cytoskeletal events.
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Signaling scaffolds
Over the past twenty years, a hallmark achievement in

cell biology has been the elucidation of the fundamental

role that protein–protein interactions play in cellular

signaling. Indeed, the recent large-scale genomics and

proteomics projects have shown that after a certain point

the evolution of complex metazoans is driven not by the

creation of entirely new genes but rather by the combi-

natorial shuffling of modular protein–protein interaction

domains [1,2]. Among different signaling pathways, this

shuffling of modular domains drives the creation of

new connectivities and regulatory networks [2]. Prime

examples of this strategy are the numerous scaffolding

and adaptor proteins that function in the assembly of

multi-protein signaling complexes [3,4]. These signaling

scaffolds serve as platforms for the integration and sim-

ultaneous dissemination of multiple signals. By seques-

tering a signaling enzyme to a specific subcellular
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environment, these proteins ensure that upon activation

the enzyme is near its relevant targets. Thus scaffolds

contribute to the spatiotemporal resolution of cellular

signaling and are a key means by which a common

signaling pathway can serve many different functions.

One family of scaffolding proteins are the A-kinase

anchoring proteins (AKAPs), which anchor protein kinase

A (PKA) to specific subcellular locations [5,6]. AKAPs

are a well-studied family of signaling scaffolds and

because of the range of their interactions serve as a

good model for these systems. As PKA is the primary

effector of the second messenger 3050-cyclic-adenosine-

monophosphate (cAMP), AKAPs play an important role

in the targeting and regulation of PKA-mediated phos-

phorylation events. An equally important role of AKAPs is

their capacity to form multi-protein complexes that inte-

grate cAMP signaling with other pathways and signaling

events. In this review we focus on recent advances in the

study of AKAPs. In terms of AKAP function, our discus-

sion of these advances is divided into three main areas:

structural analysis of the AKAP/PKA interaction, the role

of AKAPs in the spatiotemporal dynamics of cAMP

signaling, and the ability of AKAPs to integrate signals

from multiple pathways.

The AKAP/PKA complex
AKAPs make up a structurally diverse protein family with

>50 members. Functionally, these proteins share three

common features: first, they contain a PKA-anchoring

domain; second, they bind other signaling enzymes to

form multi-protein complexes; and third, they target

these signaling complexes to specific subcellular sites

through various targeting motifs, like lipid modifications

and protein–protein interaction domains [5]. PKA is a

broad spectrum Ser/Thr kinase that can phosphorylate a

range of proteins. Anchoring of PKA by AKAPs confines

PKA activity to a relevant subset of potential substrates.

The activity of PKA is also regulated by its two regulatory

subunits, which form a dimer that binds to the two

catalytic subunits. Activation of PKA occurs through

the binding of cAMP to the regulatory dimer, causing

dissociation of the catalytic subunits. The two main PKA

subtypes are defined by the identity of their regulatory

subunits, RI and RII. The majority of known AKAPs bind

specifically to the RII holoenzyme. However, several dual

specificity AKAPs, which bind to both PKA subtypes,

have been identified. These include the dual-function

anchoring proteins D-AKAP1 and D-AKAP2.

Early biochemical studies mapped the PKA-anchoring

domain of AKAPs to a 14–18-residue amphipathic helix
www.sciencedirect.com
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[7]. Subsequent structural work using NMR showed that

this helix bound to a hydrophobic groove in the docking

and dimerization (D/D) domain of the RII dimer [8,9].

Recently, two x-ray crystal structures of complexes

between an AKAP amphipathic helix and the RII D/D

domain were published. Gold et al. used an engineered

helix termed AKAPis [10��] that optimally binds to RII

[11], while Kinderman et al. used a peptide corresponding

to the amphipathic helix of D-AKAP2 [12��]. Both struc-

tures confirm much of the previous structural work using

NMR, showing that the hydrophobic face of the AKAP

helix docks to a hydrophobic groove formed by a four-

helix crossing bundle in the RII D/D domain (Figure 1a).

However, the crystal structures show that upon binding

the AKAP helix creates an asymmetric complex, in which

the N-terminal loop of only one of the RII protomers

wraps around to make van der Waals contact with side-

chains of the AKAP helix. This adds an element of

flexibility to the otherwise rigid docking platform of

the RII D/D domain and may explain how RII is able

to recognize a diverse array of AKAP amphipathic helices.

Although the RII/AKAP structures are quite similar to

each other, they do have some interesting differences
Figure 1

Structure of the PKA/AKAP binding interface. (a) Schematic of an AKAP PK

(residues 1–44) of RII. In the structures shown below, the helical backbones

form the binding interface between RII and the AKAP (red) are shown in spa

with interfacial residues highlighted in red. (b) Close-up of the AKAPis helix

polar interactions with RII are shown in ball and stick (yellow). (c) Close-up

groove of RII. The potential steric discriminator that contributes to the PKA-

structures shows that, although they are quite similar, the RII/AKAPis bindin

differences in the registry of the helical side-chains involved at each interfac

www.sciencedirect.com
(Figure 1b,c). For example, the complex with AKAPis
reveals several hydrogen bonding and electrostatic inter-

actions between sidechains of the helix and RII [10��]. In

addition, the registry of helical sidechains buried at the

hydrophobic binding interface differs slightly between the

two complexes. This is likely to be due to the differences in

the helical peptides used for each structure. Although the

presence of hydrophobic residues on the binding face of

the helix is conserved among different AKAPs, the identity

of those residues is not strongly conserved. This, coupled

with the differences in sidechain registry seen between the

two structures and the flexibility of the N-terminal inter-

face, indicates that each AKAP may bind to RII in a slightly

different manner. This in turn may explain the differences

seen among AKAPs in their affinity for RII [13]. It is

possible that the cell utilizes these differing affinities to

control the timing and activity of signaling complexes

formed by different AKAPs.

One key detail the structures begin to address is the

identity of the molecular determinants that discriminate

between RI and RII anchoring. Previous work using site-

directed mutagenesis demonstrated that a Val-to-Trp

mutation at the 13th residue of the D-AKAP2 helix
A-anchoring domain (yellow) bound to the D/D domain

of AKAPis and DAKAP2 are depicted in yellow and residues that

ce-filling. The primary sequences of the AKAP peptides are included

bound to the hydrophobic groove of RII. AKAPis residues that form

of the DAKAP2 PKA-anchoring domain bound to the hydrophobic

subtype specificity of AKAPs is indicated. Comparison of the two

g interface comprises a greater number of residues and there are

e.
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abolished RII binding but not RI binding [14]. Kinder-

man et al. modeled this data onto the DAKAP2 crystal

structure to illustrate that a bulky residue at this position

would present a steric barrier to the binding of RII

(Figure 1c) [12��]. The crystal structure of the uncom-

plexed RI D/D domain shows that there is a cavity at the

corresponding position that can accommodate a larger

sidechain. When combined, the information from both

structures provides an ideal starting point for detailed

investigation of the molecular recognition properties

that drive the R-subunit-binding preferences of different

AKAPs. This, as demonstrated by Gold et al., will assist in

the design of PKA-anchoring inhibitors with greater affi-

nity and PKA-subtype specificity [10��,15].

Compartmentalized cAMP signaling
A variety of imaging studies have demonstrated that

cAMP levels are unevenly distributed, with dynamic

pools throughout the cell [16–19,20�]. The flux of cAMP

is governed by two sets of enzymes: adenyl cyclases,

which are activated by Gs-proteins, synthesize cAMP

from ATP; and phosphodiesterases terminate cAMP sig-

naling by hydrolyzing it to AMP. Local cAMP gradients

are at least partially generated by the tethering of PDEs to

specific subcellular sites through various PDE binding

proteins [17,21,22]. It is now becoming clear that in

addition to anchoring PKA many AKAPs contribute to

the local degradation of cAMP by colocalizing PDEs.
Figure 2

Compartmentalized cAMP signaling. Schematic depicting the role of various

AKAP-mediated processes contribute to the generation of local cAMP grad

cAMP effectors PKA and EPACs.
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In Sertoli cells, PDE4D3 is targeted to the centrosome by

interacting with AKAP450 [23], and in T cells PDE4A

associates with several AKAPs, including AKAP95,

AKAP149 and MTG16b [24]. More recently, the AKAP

Gravin has been shown to target PDE4D to the plasma

membrane in HEK 293 cells (Figure 2) [25]. Using

a combination of RNAi and a cAMP probe based on a

modified cyclic-nucleotide-gated (CNG) ion channel,

these studies demonstrated that targeting of PDE4 to

the plasma membrane leads to brief bursts of cAMP

following stimulation by prostaglandin, whereas knock-

down of Gravin by RNAi leads to sustained subplasma-

lemmal cAMP levels. These findings are consistent with a

separate study that monitored the effects on PKA activity

of a colocalized PDE [26��]. Using a fluorescent PKA

activity reporter (AKAR2) that had been modified to co-

anchor both PKA and a PDE [19], this study demonstrated

that co-anchoring of the PDE led to brief pulses of PKA

activity. In contrast, experiments using a reporter that

lacked PDE anchoring showed sustained PKA activity

under the same conditions. This supports the idea that,

in addition to spatially restricting PKA activity, AKAP–

PDE complexes also function to ensure that PKA activity is

rapidly quenched by the local degradation of cAMP.

In terms of compartmentalized cAMP signaling and the

integration of distinct regulatory inputs that scaffold

proteins provide, the muscle-specific AKAP (mAKAP)
AKAPs in regulating the synthesis and degradation of cAMP. These

ients in the cell and ultimately the spatiotemporal dynamics of the

www.sciencedirect.com



AKAPs take shape Beene and Scott 195
deserves special note (Figure 2). In cardiomyocytes,

mAKAPb is targeted to the perinuclear membrane and

assembles a negative feedback loop between PKA and

PDE4D3 [27,28]. PKA phosphorylation of Ser13 and 54 in

PDE4D3 strengthens the mAKAP/PDE interaction and

enhances the PDE’s catalytic efficiency [29,30]. These

effects are countered by extracellular-signal-regulated

kinases (ERKs). Phosphorylation of PDE4D3 on Ser579

by ERKs suppresses PDE activity [31,32]. This is poten-

tially catalyzed by ERK5, which is also a component of the

mAKAP complex [26��]. Furthermore, the mAKAP com-

plex includes the cAMP-dependent guanine-nucleotide

exchange factor Epac1 [26��]. Thus it appears that

mAKAPb functions as a cAMP signaling module that

incorporates two cAMP effectors, PKA and Epac1, and

integrates signals from both cAMP and ERK pathways to

bi-directionally regulate cAMP signaling.

AKAPs can also shape upstream events in cAMP signal-

ing. Both AKAP79 and Gravin are known to associate with

the b2-adrenergic receptor and to contribute to its regu-

lation by b-arrestins [33,34]. Recent studies on AKAP79,

which is targeted to the plasma membrane, have shown

that it interacts with both ACV and ACVI in HEK293

cells (Figure 2) [35�]. In an analogous scenario to that seen

with AKAP–PDE complexes, the interaction between

AKAP79 and the two ACs generates a negative feedback

loop. PKA phosphorylation of ACV/VI suppresses cAMP

production. Live-cell imaging experiments combining

RNAi and the modified CNG-channel probe demon-

strated that knockdown of AKAP79 led to sustained

subplasmalemmal cAMP levels following b2-adrenergic

stimulation. Control experiments in which AKAP79

levels were unaltered showed transient bursts of cAMP

production at the plasma membrane. Further imaging

studies using RNAi and AKAR2 showed a similar profile

for PKA activity. When AKAP79 expression was knocked
Table 1

Selected AKAP signaling complexes.

AKAP (alternative name) Signaling constituents

mAKAP (AKAP6) PKA, EPAC1, protein phosp

Gravin

(AKAP 250, AKAP12)

PKA, PKC, PDE4D, b2-adre

AKAP79 (AKAP150, AKAP5) PKA, PKC, PP2B, ACV/VI, b

receptors, NMDA receptors

voltage-gated Ca2+ channe

AKAP–Lbc (AKAP13) PKA, PKC, PKD, 14-3-3, Rh

WAVE1 PKA, Abl, Rac, Arp2/3, WR

PKA, protein phosphatase 1

DAKAP1

(AKAP1)

PKA, protein phosphatase 1

AKAP220

(AKAP11)

PKA, GSK3b, protein phosp

Abbreviations not defined in the text: AMPA, a-amino-5-hydroxy-3-methyl-4

glycogen-synthase kinase3b; KCNQ2, Q2 voltage-gated potassium chan

protein.
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down, b2-adrenergic stimulation lead to prolonged PKA

activity compared to control or rescue experiments.

This work considered in combination with the AKAP–

PDE studies illustrates the central role AKAPs play in the

spatiotemporal resolution of cAMP signaling. They shape

both downstream and upstream events in the cAMP

pathway and provide a mechanism by which this ubiqui-

tous second messenger can have localized effects.

Integration of signaling through multiprotein
AKAP complexes
In addition to compartmentalizing cAMP signaling,

AKAPs also assemble multi-protein complexes with other

signaling enzymes. Inspection of the complexes listed in

Table 1 illustrates two common trends. First, AKAPs

often incorporate both kinases and phosphatases into a

single complex, indicating that some AKAPs anchor both

the positive and negative regulators of a common phos-

phorylation site [36]. For example, AKAP79 targets PKA

and protein-phosphatase2B (PP2B) activity towards

Ser845 in the AMPA-type glutamate receptor1 (GluR1)

subunit to bi-directionally regulate AMPA receptor cur-

rents [37,38]. Second, multiple signaling pathways can be

integrated via a single AKAP complex.

A prime example of the role AKAPs play in signal

integration comes from AKAP–Lbc, which, in addition

to being a guanine-exchange factor (GEF) for the small

GTPase Rho, targets a multi-protein complex including

PKA, protein kinase C (PKC) and protein kinase D

(PKD) to the actin cytoskeleton (Figure 3a) [39,40].

AKAP–Lbc serves as an activation platform for PKD

by colocalizing it near its upstream activating kinase,

PKC [39]. This positions PKC so it can effectively phos-

phorylate PKD. PKA then promotes the release of active

PKD by phosphorylating AKAP–Lbc at Ser2737 in the

PKD binding domain. Anchored PKA also plays a
Subcellular site

hatase2A, ERK5, PDE4D3 Perinuclear membrane

nergic receptor Actin cytoskeleton

-adrenergic receptor, AMPA

, KCNQ2 channels, L-type

ls

Plasma membrane

o Actin cytoskeleton

P Actin cytoskeleton

, BAD Mitochondria

, PDE4A Mitochondria

hatase 1 Vesicles

-isoxazole propionic acid; BAD, BCL2-antagonist of cell death; GSK3b,

nel; NMDA, N-methyl-D-aspartate; WRP, WAVE-associated Rac-GAP
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Figure 3

AKAP-mediated signal integration. (a) Schematic of the role

AKAP–Lbc plays in integrating cAMP signaling with both PKD and

Rho pathways. Activation of PKD (blue numbers): (1) AKAP-Lbc

colocalizes PKD near PKC, its upstream activator; (2) PKC

phosphorylates PKD; (3) Dissociation of active PKD from the AKAP

platform is promoted by PKA phosphorylation of AKAP-Lbc. Rho

inhibition (purple numbers): (1) PKA phosphorylation of AKAP-Lbc

generates a 14-3-3 binding site; (2) binding of 14-3-3 downregulates

the Rho-GEF activity of AKAP-Lbc and (3) inhibits Rho. (b)

Schematic of the role WAVE1 plays in coordinating the bi-directional

regulation of the Arp2/3 complex by Cdk5 and PKA. Cdk5

phosphorylation of WAVE1 leads to inhibition of Arp2/3. This is

opposed by the activity of PKA.
regulatory role in Rho signaling. Phosphorylation of

AKAP–Lbc at Ser1565 generates a 14-3-3 binding site

[41,42�]. Binding of 14-3-3 suppresses the Rho-GEF

activity of AKAP–Lbc and downregulates Rho activity.

Inhibition of Rho potentially functions to suppress PKD

activity, since one downstream effect of Rho activity is

the stimulation of phospholipase C, an upstream activator

of PKC. As a result, AKAP-Lbc not only serves as a

platform for PKD activation but also mediates the integ-

ration of cAMP signaling with both the Rho and PKD

pathways and potentially regulates the ability of Rho

signaling to impinge on PKC activation.

More recently, the AKAP WAVE1 [43] (WASP-family

verprolin homologous protein1) has been shown to
Current Opinion in Cell Biology 2007, 19:192–198
integrate cAMP and cyclin-dependent kinase 5 (Cdk5)

signaling to control actin dynamics and dendritic spine

morphology (Figure 3b) [44��]. A key function of WAVE1

is to regulate actin-dependent morphological processes.

[45] It does this by activating the actin-related protein

(Arp2/3) complex. Using a combination of in vitro bio-

chemistry and fluorescence microscopy, Kim et al. show

that phosphorylation of WAVE1 by Cdk5 inhibits Arp2/3

activation and actin polymerization [44��]. Neurons cul-

tured from WAVE1 knockout mice or in which WAVE1

had been knocked down with RNAi showed a significant

decrease in mature dendritic spines. This phenotype was

reversed by rescue with a dephosphorylation-mimic of

WAVE1. In addition, the authors demonstrate that cAMP

signaling reduces Cdk5 phosphorylation of WAVE1 and

leads to an increase in dendritic spine density in a

WAVE1-dependent manner. These findings indicate that

WAVE1 integrates signals from cAMP and Cdk5 to bi-

directionally regulate the Arp2/3 complex and actin

polymerization. They also provide a molecular mechan-

ism for the learning and memory deficiencies seen in

WAVE1 knockout mice [46].

The way forward
At present, proteomic and biochemical techniques have

been exhaustively used to identify the majority of AKAPs

and to characterize the components of their signaling

complexes. What is needed now is a better understanding

of the role AKAPs play in cellular physiology. This in part

entails the application of molecular and live-cell imaging

techniques to the study of AKAP function. Recent efforts

employing these techniques are beginning to glean details

of the dynamic nature of AKAP complexes and how these

state-dependent features contribute to cellular processes.

Continued investigation of the role of AKAPs in PKA-

mediated processes is also important. One potentially help-

ful advancement would be the development of methods for

the identification of AKAP-dependent PKA substrates.

This would provide a starting point for elucidating the

downstream output of AKAP complexes. Furthermore,

PKA is involved in a wide array of cellular processes,

including metabolism, learning and memory, and exocy-

tosis [47,48]. Several of these processes contribute to var-

ious disease states. PKA is implicated in pancreatic b-cell

function and may provide a novel means for combating

diabetes [49]. PKA is also important in the molecular

mechanisms of learning and memory, making it an attrac-

tive target for therapies seeking to inhibit cognitive decline

resulting from neurodegenerative diseases [50,51]. Identi-

fying the role that AKAPs play in these processes could

provide new therapeutic targets to treat diseases.
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