
*For correspondence:

scottjdw@uw.edu

†These authors contributed

equally to this work
‡These authors also contributed

equally to this work

Competing interests: The

authors declare that no

competing interests exist.

Funding: See page 22

Received: 06 December 2018

Accepted: 05 May 2019

Published: 07 May 2019

Reviewing editor: Roger J

Davis, University of

Massachusetts Medical School,

United States

Copyright Turnham et al. This

article is distributed under the

terms of the Creative Commons

Attribution License, which

permits unrestricted use and

redistribution provided that the

original author and source are

credited.

An acquired scaffolding function of the
DNAJ-PKAc fusion contributes to
oncogenic signaling in fibrolamellar
carcinoma
Rigney E Turnham1†, F Donelson Smith1†, Heidi L Kenerson2‡, Mitchell H Omar1‡,
Martin Golkowski1, Irvin Garcia1, Renay Bauer2, Ho-Tak Lau1, Kevin M Sullivan2,
Lorene K Langeberg1, Shao-En Ong1, Kimberly J Riehle2, Raymond S Yeung2,
John D Scott1*

1Department of Pharmacology, University of Washington Medical Center, Seattle,
United States; 2Department of Surgery, University of Washington Medical Center,
Seattle, United States

Abstract Fibrolamellar carcinoma (FLC) is a rare liver cancer. FLCs uniquely produce DNAJ-

PKAc, a chimeric enzyme consisting of a chaperonin-binding domain fused to the Ca subunit of

protein kinase A. Biochemical analyses of clinical samples reveal that a unique property of this

fusion enzyme is the ability to recruit heat shock protein 70 (Hsp70). This cellular chaperonin is

frequently up-regulated in cancers. Gene-editing of mouse hepatocytes generated disease-relevant

AML12DNAJ-PKAc cell lines. Further analyses indicate that the proto-oncogene A-kinase anchoring

protein-Lbc is up-regulated in FLC and functions to cluster DNAJ-PKAc/Hsp70 sub-complexes with

a RAF-MEK-ERK kinase module. Drug screening reveals Hsp70 and MEK inhibitor combinations

that selectively block proliferation of AML12DNAJ-PKAc cells. Phosphoproteomic profiling

demonstrates that DNAJ-PKAc biases the signaling landscape toward ERK activation and engages

downstream kinase cascades. Thus, the oncogenic action of DNAJ-PKAc involves an acquired

scaffolding function that permits recruitment of Hsp70 and mobilization of local ERK signaling.

DOI: https://doi.org/10.7554/eLife.44187.001

Introduction
Fibrolamellar carcinoma (FLC) is a variant of liver cancer that has distinctive histologic features

(Craig et al., 1980). This rare cancer afflicts healthy adolescents and young adults between the ages

of 15–25 with no history of liver disease. This latter feature can compromise early diagnosis of FLC

as patients frequently present with vague symptoms that include abdominal pain, loss of appetite,

or a palpable mass. The diagnosis is often made after disease has spread outside the liver, leading

to an overall survival of 35% (Ang et al., 2013). Unfortunately, FLC frequently recurs, as it is intracta-

ble to standard chemotherapies and radiation. Surgical resection is currently the only opportunity

for a cure. The search for new therapies for these patients is hindered by the limited availability of

clinical samples and a lack of disease relevant cell lines or animal models that faithfully recapitulate

the pathogenesis of FLC (Dinh et al., 2017; Engelholm et al., 2017; Kastenhuber et al., 2017;

Oikawa et al., 2015).

Recent transformative advances in our understanding of the molecular basis of FLC offer renewed

hope for the development of drug therapies to treat this disease (Honeyman et al., 2014). Sequenc-

ing tumor genomes of FLCs identified the underlying genetic defect as a heterozygous in-frame

deletion of ~400 kb in chromosome 19 (Honeyman et al., 2014; Xu et al., 2015). This genetic lesion
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leads to translation of a de novo chimeric gene product where the chaperonin-binding domain of

heat shock protein 40 (DNAJ) is fused to the Ca subunit of PKA (Cheung et al., 2015;

Honeyman et al., 2014) (Figure 1A). We have recently shown that DNAJ-PKAc is solely expressed

in FLCs, is cAMP-responsive, and importantly is incorporated into A-Kinase Anchoring Protein

(AKAP) signaling complexes (Riggle et al., 2016a). This latter property provides a mechanism by

which this pathological kinase is sequestered within defined subcellular locations and in immediate

proximity to a subset of target substrates (Langeberg and Scott, 2015; Scott and Pawson, 2009;

Smith et al., 2017).

While protein kinase A is generally not considered an oncogene, PKAc has been detected in the

serum of patients with colon, renal, lungs, or adrenal carcinomas (Cho et al., 2000; Cvijic et al.,

2000; Porter et al., 2001). Whole exome sequencing from independent patient cohorts have identi-

fied pathological mutations in PKAc that are linked to Cushing’s syndrome (Sato et al., 2014). This

disease occurs either as consequence of pituitary tumors that overproduce adrenocorticotropic hor-

mone (ACTH) or as a consequence of aberrant signaling events that stimulate excess cortisol release

from the adrenal glands (Beuschlein et al., 2014; Lacroix et al., 2015). In the latter instance, amino

acid substitution of arginine 205 to lysine in PKAc prevents binding to the regulatory (R) subunits of

PKA to promote mislocalization of uncontrolled PKA activity (Cao et al., 2014). In this report, we

define a mechanism of action of DNAJ-PKAc, the fusion kinase exclusively expressed in fibrolamellar

carcinoma. We have discovered that this fusion kinase is recruited into AKAP signaling complexes

where, by virtue of its DNAJ domain, selectively interacts with the chaperonin heat shock protein 70

(Hsp70). This cellular chaperonin facilitates protein folding thereby providing an explanation as to

why levels of DNAJ-PKAc protein are elevated over wildtype PKA in FLCs. The association of Hsp70

with DNAJ-PKAc also creates a unique therapeutic target for combinations of Hsp70 and kinase

inhibitor drugs.

Results

DNAJ-PKAc in fibrolamellar carcinomas
Immunoblot screening of clinical samples with antibodies against PKAc revealed that human FLCs

are heterozygous in that they express both wildtype PKA and the DNAJ-PKAc fusion (Figure 1B,

top panel). This unique PKA fusion is solely expressed in FLCs, remains responsive to the second

messenger cAMP, and importantly is incorporated by A-Kinase Anchoring proteins (AKAPs) into sig-

naling complexes (Riggle et al., 2016a; Riggle et al., 2016b; Turnham and Scott, 2016). Immuno-

fluorescent analysis of normal liver and FLC sections illuminated the distinctive morphology of this

eLife digest Fibrolamellar carcinoma (or FLC for short) is a rare type of liver cancer that affects

teenagers and young adults. FLC tumors are often resistant to standard radiotherapy or

chemotherapy treatments. The only way to treat FLC is to remove tumors by surgery. However,

often the tumors come back after initial treatment and spread to other locations. Therefore, there is

a genuine need to improve the treatment options available to FLC patients.

The tumor cells of FLC patients contain a genetic defect that fuses together two genes, which

produce proteins called DNAJ and PKAc. Normally, DNAJ helps other proteins in the cell to fold

into their correct shapes, while PKAc is an enzyme that can control how cells communicate.

However, it is not clear what the abnormal DNAJ-PKAc fusion protein does, or how it causes FLC.

Turnham, Smith et al. have now used gene editing to make mouse liver cells that mimic the

human FLC mutation. Biochemical experiments on these cells showed that the DNAJ-PKAc protein

brings together unique combinations of enzymes that drive uncontrolled cell growth. Analyzing cells

taken from tumors in FLC patients confirmed that these enzymes are also activated in the human

disease. Turnham, Smith et al. also found that combinations of drugs that simultaneously target the

DNAJ-PKAc protein and the recruited enzymes slowed down the growth of FLC cells. More

experiments are now needed to test these drug combinations on human FLC cells or in mice.

DOI: https://doi.org/10.7554/eLife.44187.002

Turnham et al. eLife 2019;8:e44187. DOI: https://doi.org/10.7554/eLife.44187 2 of 27

Research article Biochemistry and Chemical Biology Cancer Biology

https://doi.org/10.7554/eLife.44187.002
https://doi.org/10.7554/eLife.44187


PKAc

DNAJ-PKAc

Hsp70
Lysate

Hsp70

N
orm

al

Tum
or

PKAc IP

1 2

DNAJ-PKAc

Stabilized
oncogenic

fusion

Hsp70

ATP

]

DNAJ-PKAc

PKAc

β-actin

50-

N
orm

al

Tum
or

N
orm

al

Tum
or

N
orm

al

Tum
or

37-
1 2 3 4 5 6

Patient 1 Patient 2 Patient 3

N
orm

al

Tum
or

Patient 4

7 8

PKA C
subunit

DNAJ
(Hsp40)

A B

E F

G H

I        normal liver J       FLC

DAPI  PLA puncta  DAPI  PLA puncta

#
 o

f 
p

u
n

c
ta

/µ
m

2

PLA puncta between

PKAc and HSP70 

0.01

0.02

0.03

0.04

****
Tumor

Normal

liver

Total µm2:  348,582   392,155

K

-l
o

g
1

0
  
P

V
a

lu
e

log2 Fold Change

15

10

5

-5
0

0 5

6281211

Phospho-sites

FLC vs Normal liver Putative kinase substrates

increased in FLC

PKA

1

2
345

6

7
8

ERK

1. DAPK3 4.6%

ERK 7.7%

PKA 6.5%

2. CDK 4.4%

3. GSK 2.9% 

4. AKT 1.7%

5. Other 22.3%

6. PKC 20%

7. CAMK2 15.6%

8. PAK 13.8%

normal liver FLC 

PKAc    RIIα     DAPI C PKAc    RIIα     DAPI D 

20 µm

50 µm

Figure 1. Properties of the DNAJ-PKAc fusion enzyme. (A) Structure of the DNAJ-PKAc fusion protein (PDB ID 4WB77). The DNAJ (orange) and PKAc

domains (blue) are indicated. (B) Immunoblots of paired tumor and normal adjacent liver from FLC patients probed with antibodies to PKAc (top

panels) and actin loading controls (bottom panels). DNAJ-PKAc (upper band) migrates with a slower mobility than the native C subunit in SDS-PAGE.

(C–D) Immunofluorescence images of normal liver (left, C) and FLC (right, D) stained with antibodies against PKAc (green), RIIa (red) and DAPI (blue).

Scale bar represents 50 mm. (E–F) Phosphoproteomic profiling of FLC. Statistical significance was calculated Significant differences in phosphopeptide

expression between experiments were quantified with a two-tailed two sample t-test with unequal variances and Benjamini-Hochberg correction for

multiple comparisons was applied (FDR � 0.05), log2 ratio >1. (E) Volcano plot showing phosphosites upregulated (orange) and downregulated (black)

in FLC as compared to normal adjacent liver. (F) Pie chart of putative kinase substrates (predicted by NetworKIN) increased in FLC. 82.8% of sites

identified were in the NetworKIN platform. Percentages of sites ascribed to particular kinase are listed. ‘Other’ kinases include: CK1, TTK, GRK, RSK,

MAK, JNK, ROCK, P70S6K, AMPK, CLK, HIPK2, PDHK, ACTR2, ATM, DMPK, IKK, MOK, NEK4, PKD1, PKG, TGFBR2, and p38-MAPK. (G) Schematic of

DNAJ-PKAc in complex with heat shock protein 70 (Hsp70, red). (H) Immunoblot detection of Hsp70 in PKAc immune complexes from FLC and normal

adjacent liver lysates (top). Loading controls indicate the levels of Hsp70 (middle) and both forms of PKA (bottom). (I–J) Proximity Ligation (PLA)

detection of DNAJ-PKAc/Hsp70 complexes in (I) normal liver and J) FLC sections. Yellow puncta identify Hsp70-kinase sub-complexes, DAPI (blue)

marks nuclei. Scale bar represents 20 mm. (K) Amalgamated data (PLA puncta/mm2) from eight normal (black) and 9 FLC (orange) sections. Data are

shown as mean ±s.d., p<0.0001 by Student’s t-test (t = 10.98, df = 15).

DOI: https://doi.org/10.7554/eLife.44187.003

The following figure supplements are available for figure 1:

Figure supplement 1. Altered PKA signaling in FLC.

DOI: https://doi.org/10.7554/eLife.44187.004

Figure supplement 2. Kinase network rewiring in FLC.

DOI: https://doi.org/10.7554/eLife.44187.005

Figure supplement 3. Additional Proximity Ligation (PLA) detection of Hsp70 and PKAc in patient tissue.

DOI: https://doi.org/10.7554/eLife.44187.006

Turnham et al. eLife 2019;8:e44187. DOI: https://doi.org/10.7554/eLife.44187 3 of 27

Research article Biochemistry and Chemical Biology Cancer Biology

https://doi.org/10.7554/eLife.44187.003
https://doi.org/10.7554/eLife.44187.004
https://doi.org/10.7554/eLife.44187.005
https://doi.org/10.7554/eLife.44187.006
https://doi.org/10.7554/eLife.44187


subtype of hepatocellular carcinoma where liver tumor is infiltrated with fibroid bands interspersed

between cancerous hepatocytes (Craig et al., 1980). This ‘intratumoral heterogeneity’ is distinct

from the undulating sinusoidal pattern of normal liver (Figure 1C & D). Co-localization of PKA cata-

lytic (green) and regulatory subunits (RIIa, red) was evident in both sections. Counterstaining with

DAPI (blue) is included to denote nuclei (Figure 1C & D). Additional biochemical characterization of

these clinical samples substantiated the elevated expression of the type Ia regulatory subunit of

PKA (RIa) in FLC tumors as compared normal adjacent tissue (Figure 1—figure supplement 1A, top

panel) (Riggle et al., 2016a). Related experiments demonstrate that type II regulatory subunit (RII)

levels do not fluctuate (Figure 1—figure supplement 1A, bottom panel).

The active site of DNAJ-PKAc is identical to that of the native kinase; both PKA forms are inhib-

ited by PKI and are sensitive to the same spectrum of ATP analog inhibitors (Cheung et al., 2015;

Riggle et al., 2016a). Immunoblot analyses using a phospho-PKA substrates antibody detects a dif-

ferent pattern of PKA phosphorylation in tumors as compared to adjacent liver extracts (Figure 1—

figure supplement 1B). In addition, an RII overlay survey of AKAPs reveals a distinct pattern of

anchoring proteins in FLC as compared to adjacent liver tissue (Figure 1—figure supplement 1C).

These findings infer that introduction of DNAJ-PKAc results in changes in the substrate preference

of this kinase or its access to subcellular targets. Yet, it remained important to ascertain whether the

substrate specificity of this pathological fusion enzyme is altered in FLC. Phosphoproteomic profiling

of human FLC and adjacent normal liver samples by label-free LC-MS/MS analysis identified 7697

phosphopeptides (Hogrebe et al., 2018) (Figure 1E; n = 6 technical replicates). Of these, 628 phos-

phopeptides were significantly enriched in FLCs as compared to adjacent normal liver (Figure 1E;

orange). Substrate profiling with the NetworKIN platform predicted consensus kinase phosphoryla-

tion motifs (Horn et al., 2014). Of the phosphosites increased in FLC, 20% were putative PKC tar-

gets and 8% were ERK-MAPK sites (Figure 1F). This analysis revealed a systemwide rewiring of

several protein kinase networks leading to increases and decreases in phosphorylation of specific

substrates (Figure 1—figure supplement 2). Interestingly, PKA phosphosites were only enriched by

6.5%. However, phosphorylation of several key signaling effectors, scaffolding and anchoring pro-

teins were enhanced (Figure 1F and Figure 1—figure supplement 1D). One plausible explanation

for this surprisingly modest effect on PKA signaling is that oncogenesis driven by the fusion kinase

may not only solely proceed through the kinase domain but also involves the chaperonin-binding

site. Thus, DNAJ-PKAc may function to recruit additional elements that underlie the pathology of

FLC (Figure 1G). Further immunoprecipitation experiments from clinical samples revealed that

DNAJ-PKAc interacts with heat shock protein 70 (Hsp70; Figure 1H), a cellular chaperonin that facili-

tates protein folding and is frequently up-regulated in cancers (Calderwood et al., 2006;

Mayer and Bukau, 2005). Proximity ligation (PLA) is an in situ technique that amplifies detection of

native protein-protein interactions that occur within in a range of 40–60 nm (Whiting et al., 2015).

This approach was used to identify interaction between endogenous Hsp70 and PKAc in liver sec-

tions from FLC patients (Figure 1I,J & K). PLA puncta indicative of native DNAJ-PKAc/Hsp70 sub-

complexes were readily detected in regions of tumor (Figure 1J and Figure 1—figure supplement

3). In contrast, the number of PLA puncta was reduced in adjacent sections of healthy liver

(Figure 1I). Quantification is presented in Figure 1K and additional PLA images of tissue sections

are included in Figure 1—figure supplement 3. Recruitment of Hsp70 to DNAJ-PKAc may explain

why protein levels of this fusion are frequently elevated compared to native PKA in FLCs (Figure 1B,

top panel).

Engineered disease-relevant AML12DNAJ-PKAc hepatocyte cell lines
FLC research to date has been hampered by the limited availability of patient samples, a paucity of

disease-relevant cell-lines, and mouse models exhibiting a 24 month latency to develop hepatic

tumors (Engelholm et al., 2017; Kastenhuber et al., 2017; Oikawa et al., 2015). Additionally, the

most rigorously characterized PDX model is missing several key phenotypic traits of FLCs

(Oikawa et al., 2015). Therefore, we employed CRISPR/Cas9 gene editing of chromosome eight in

AML12 non-transformed murine hepatocytes to generate sustainable and homogenous cell lines. A

400 kb region was excised between intron 1 of the gene for Hsp40 (Dnajb1) and intron 1 of the

gene for PKAc (Prkaca; Figure 2A). Initial characterization by PCR detected transcripts of intervening

genes (Gipc1, Ddx39 and Lphn1) located at the 5’ end, middle and 3’ end of the non-engineered

strand of chromosome 8 (Figure 2A & B). Quantitative PCR measurement of mRNA transcripts for
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Dnajb1 and Prkaca in wildtype and four gene-edited AML12DNAJ-PKAc cell lines revealed differential

expression of both transcripts in each clonal AML12DNAJ-PKAc cell line (Figure 2C & D, orange). Like-

wise, the Dnajb1-Prkaca fusion transcript was present at different levels in each cell line (Figure 2E).

Characterization by nucleotide sequencing and immunoblot analyses confirmed that these AML12D-

NAJ-PKAc cell lines encode and express a single copy of DNAJ-PKAc (Figure 2F & G). As observed in

FLCs, introduction of the DNAJ-PKAc allele promote the up-regulation of RIa expression (Figure 2—

figure supplement 1A). Clone 14 was selected for further analyses as these cells express similar lev-

els of DNAJ-PKAc and native PKA as compared to human FLC patients (Figure 2G). Interestingly,

these clonal AML12DNAJ-PKAc cells have similar levels of PKA activity and comparable migratory prop-

erties to the wildtype cell line (Figure 2—figure supplement 1B–F).
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Figure 2. Generation and characterization of AML12DNAJ-PKAc cell lines. (A) CRISPR-Cas9 gene editing of mouse chromosome eight in AML12 cells

deleted a 400 kb region between intron 1 of the gene for Hsp40 (Dnajb1) and intron 1 of the gene for PKAc (Prkaca). (B) PCR detection of transcripts for

the Gipc1, Ddx39 and Lphn1 genes encoded on the non-engineered strand of mouse chromosome 8. (C–E) Quantitative PCR detection of native

mRNA transcripts in AML12 (black) and gene-edited (orange) cell lines. (C) Detection of native Dnajb1 mRNA transcripts, (D) Prkaca transcripts and (E)

Dnajb1-Prkaca mRNA transcripts. Data (n = 3) is normalized to Gapdh (C–E) and relative to (C,D) wildtype AML12 or (E) clone 2. Error bars indicate

mean ±s.d. (F) Amino acid sequence of the fusion protein DNAJ-PKAc is shown in orange and blue. Nucleotide sequence of the fusion gene from clone

14 AML12DNAJ-PKAc cells is shown below. (G) Immunoblot detection of both native and mutant PKAc in four clonal AML12DNAJ-PKAc cell lines. Top)

DNAJ-PKAc fusion proteins (upper bands) and wildtype PKAc (lower bands) are indicated. The distribution of PKAc in wildtype AML12 cells, normal

liver and FLC are included. Bottom) Actin loading control. (H) Immunoblot detection of PKA in Hsp70 immune complexes isolated from wildtype

(AML12) and clone 14 AML12DNAJ-PKAc cells. Lysate loading controls indicate both forms of PKA (middle) and levels of Hsp70 (bottom). (I and J)

Proximity Ligation (PLA) detection of proteins within 40–60 nm of each other in (I) AML12 and (J) AML12DNAJ-PKAc cells. Yellow puncta identify Hsp70-

kinase sub-complexes. Actin stain (green) marks cytoskeleton and DAPI staining (blue) marks nuclei. (K) Box-whisker plots of Hsp70-kinase sub-

complexes. Amalgamated data (PLA puncta/cell) from AML12 (black) and AML12DNAJ-PKAc (orange) cells. Number of cells analyzed over three

independent experiments is indicated below each plot; data are shown as mean ±s.d., p<0.0001 by Student’s t-test (t = 14.16, df = 105).

DOI: https://doi.org/10.7554/eLife.44187.007

The following figure supplements are available for figure 2:

Figure supplement 1. Additional characterization of AML12DNAJ-PKAc cells.

DOI: https://doi.org/10.7554/eLife.44187.008

Figure supplement 2. Additional Proximity Ligation (PLA) detection of Hsp70 and PKAc in (A) AML12 and (B) AML12DNAJ-PKAc cells.

DOI: https://doi.org/10.7554/eLife.44187.009
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Hsp70 is recruited to DNAJ-PKAc complexes
We next evaluated the formation of DNAJ-PKAc/Hsp70 complexes in our cell lines. Immunoblot

analysis detected DNAJ-PKAc within Hsp70 immune complexes isolated from our AML12DNAJ-PKAc

cell line, while PKAc was not present in Hsp70 immune complexes isolated from control AML12 cells

(Figure 2H, top panel). Proximity ligation was used to evaluate DNAJ-PKAc/Hsp70 sub-complex for-

mation (Figure 2I & J). In control cells, few puncta were evident when PLA was performed with anti-

bodies against PKAc and Hsp70 (Figure 2I). In contrast, quantitation of PLA puncta (yellow)

from >200 AML12DNAJ-PKAc cells revealed increased amounts of the DNAJ-PKAc/Hsp70 sub-com-

plexes in our gene-edited cell lines (Figure 2J & K). Counterstaining with antibodies against actin

(green) and DAPI (blue) defined whole-cell and nuclear boundaries, respectively. Additional PLA

images from both cell types are included as Figure 2—figure supplement 2. Thus, our AML12DNAJ-

PKAc cell line affords a disease relevant model with sufficient material to explore the mechanism of

action of DNAJ-PKAc/Hsp70 assemblies.

Accelerated cell proliferation is a hallmark of carcinogenesis (Hanahan and Weinberg, 2011).

Thus, three independent measurements assessed growth of AML12DNAJ-PKAc cells. First, cell prolifer-

ation was measured over 72 hr in culture using the MTS assay. Amalgamated data show that
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Figure 3. Cell proliferation analyses and combination drug sensitivity screening of AML12DNAJ-PKAc cells. (A) Cell growth of wildtype AML12 (black) and

AML12DNAJ-PKAc (orange) cells measured by MTS colorimetric assay. Absorbance (AU) was measured over a time course of 72 hr. Data are expressed as

mean ±s.d. (n = 3); p=0.01 (t = 4.49, df = 6). (B) In situ incorporation of BrdU as an independent means of assessing DNA synthesis. Representative

panels of wildtype (left) AML12 and (right) AML12DNAJ-PKAc cells. Scale bar represents 50 mm. (C) Percentage of BrdU positive cells presented as

mean ±s.d. (n = 3); p=0.0001 (t = 14.51, df = 4). (D) Clonogenic growth of (top) AML12 and (bottom) AML12DNAJ-PKAc cells. Cells were seeded at 200

cells/well in a 12 well plate and grown for two weeks in normal growth media followed by crystal violet staining. (E) Amalgamated data charting area of

growth in each well is presented as box and whiskers plot (min-max; n = 3); p<0.0001 by Student’s t-test (t = 6.14, df = 17). (F) Dose-response curves

monitor the cytotoxic effects of the Hsp70 inhibitor Ver-155008 alone in AML12 (black) and AML12DNAJ-PKAc (orange) cells. Cell viability was assessed by

MTS. Concentrations of drug used in each condition are indicated below each column. (G and H) Scatterplots show relative resistance or sensitivity of

(G) AML12 and (H) AML12DNAJ-PKAc cells to the combination of 125 different chemotherapeutic drugs with Ver-155008. Drug combinations in the lower

right quadrant are more sensitive to drug treatment than those in the upper right quadrant. Three drug combinations (pink circles) were identified for

further validation, as they were more toxic to cells expressing DNAJ-PKAc than cells only expressing wildtype kinase. (I) Heat map of a subset of these

data compares AML12DNAJ-PKAc cell survival with and without Ver-155008. AML12DNAJ-PKAc cells show drug resistance when treated with binimetinib,

cobimetinib, or trametinib alone (left, blue) but they are more sensitive when these drugs are combined with Ver-155008 (right, green). (J and K)

Analysis of (J) wildtype AML12 and (K) AML12DNAJ-PKAc cell survival. Dose-response of cobimetinib alone, (gray) or in combination with Ver-155008

(pink). Drug concentrations (mM) are indicated.

DOI: https://doi.org/10.7554/eLife.44187.010

The following figure supplement is available for figure 3:

Figure supplement 1. Repeat combination drug screens at lower concentrations (3 mM) of Ver-155008.

DOI: https://doi.org/10.7554/eLife.44187.011
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AML12DNAJ-PKAc cells proliferate more rapidly than wildtype AML12 cells (Figure 3A; n = 3). Second,

immunostaining for BrdU incorporation showed that DNA synthesis is increased AML12DNAJ-PKAc

cells as compared to wildtype AML12 cells (82 ± 2% vs 36 ± 5%, Figure 3B & C; n = 3). Third, colony

formation assays were performed to reinforce our data that AML12DNAJ-PKAc cells have increased

proliferative capacity as compared to their wildtype counterparts (Figure 3D; n = 3). Quantitation of

amalgamated data confirms that AML12DNAJ-PKAc cells proliferate more rapidly than their wildtype

counterparts (Figure 3E). These findings lead us to surmise that the oncogenic nature of DNAJ-

PKAc may not be simply due to changes in intrinsic kinase activity, but rather from the recruitment

of Hsp70.

Drug sensitivity screening in FLC model cells
A logical extension of this premise is to determine whether pharmacologically blocking Hsp70 influ-

ences proliferation of AML12DNAJ-PKAc cells. Ver-155008 is an ATP-analog inhibitor of Hsp70

(IC50 = 0.5 mM) that halts cell proliferation in several cancer models (Eugênio et al., 2017;

Wen et al., 2014). However, sole application of this drug over a range of concentrations did not

have a differential effect on the viability of AML12DNAJ-PKAc cells compared to wildtype AML12 cells

as assessed by MTS assay at 72 hr (Figure 3F; n = 3). Consequently, we screened drug combinations

that target additional elements within DNAJ-PKAc/Hsp70 signaling complexes. Cells were seeded

and screened against a panel of 125 FDA-approved anti-cancer compounds in the presence or

absence of Ver-155008 (Pauli et al., 2017) (Figure 3G–K). Cell viability was assessed by CellTiter-

Glo assay and plotted against a standard deviation (Z-score) derived from collated mean responses

(Figure 3G & H; Pauli et al., 2017; Toyoshima et al., 2012). Drug combinations in the lower right

quadrant (Sensitivity) are more effective at reducing proliferation than drug combinations plotted in

the upper right quadrant (Resistance). In wildtype AML12 cells, which lack the fusion enzyme, there

was little change in the response to any of the FDA-approved drugs irrespective of whether the

Hsp70 inhibitor was present (Figure 3G). Similarly, AML12DNAJ-PKAc cells were refractory to most

FDA-approved anti-cancer drugs in the absence of Ver-155008, but, when screening was repeated

in the presence of Ver-155008 (over a range of concentrations up to 10 mM), certain drug combina-

tions preferentially blunted AML12DNAJ-PKAc cell proliferation (Figure 3H & I). Three Hsp70 inhibitor/

drug combinations were appreciably more toxic to cells harboring DNAJ-PKAc than to cells only

expressing wildtype kinase (Figure 3G–I, pink dots).

Deconvolution of our screening data revealed that these compounds were the MEK kinase inhibi-

tors cobimetinib, binimetinib and trametinib. Further validation that these Hsp70/MEK inhibitor

cocktails selectively target AML12DNAJ-PKAc cells was obtained when the combination drug screen

was repeated using lower doses of Ver-155008 (3 mM; Figure 3—figure supplement 1). Dose

response curves revealed that wildtype AML12 cells are sensitive to cobimetinib alone (Figure 3J)

whereas AML12DNAJ-PKAc cells were more resistant to this drug over the same concentration range

(Figure 3K). Importantly, in the presence of Ver-155008 the cytotoxic effect of cobimetinib in

AML12DNAJ-PKAc cells was enhanced (Figure 3K). Taken together, this screening venture provides

two exciting new pieces of information: inhibition of Hsp70 in conjunction with blocking the RAF-

MEK-ERK kinase cascade selectively affects the growth of cells expressing a single allele of DNAJ-

PKAc, and drug combinations that target DNAJ-PKAc/Hsp70 assemblies offer a therapeutic strategy

for FLC that warrants further investigation.

Heterogeneous activation of the ERK signaling cascade in FLCs
A hallmark of FLC is the presence of fibroid bands that are interspersed between cancerous hepato-

cytes (Craig et al., 1980). This morphological feature is indicative of ‘intratumoral heterogeneity’

which promotes microenvironmental diversity in the primary liver cancer ecosystem (Liu et al., 2018;

Pribluda et al., 2015). Through a combination of biochemical, imaging and proteomic approaches

we show that intratumoral heterogeneity influences ERK signaling within FLCs. Immunoblot analyses

of tumor lysates detect a slight reduction in global phospho-ERK signal in patient samples

(Figure 4A, top panel). Yet immunofluorescent staining of tumor sections reveals clusters of promi-

nent phospho-ERK signal in the cancerous hepatocytes (Figure 4B & C, yellow; from patient 3). Such

regional detection of phospho-ERK is consistent with heterogeneous activation of the ERK cascade

within the tumor. Likewise, the phosphoproteomic screen presented in Figure 1E & F identifies
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numerous ERK substrates that are elevated in FLC tumor as compared to normal liver (Figure 4D).

This includes the protein kinase P90RSK, a well-characterized downstream target of ERK

(Dalby et al., 1998). Validation of this ERK phosphorylation event is provided in two ways. First,

immunoblot detection of pSer 221-P90RSK indicates variable activation of this kinase in the same

cohort of FLC samples (Figure 4E, top panel). Second, immunofluorescent detection of phospho-

P90RSK in tissue sections of FLC uncovered clusters of cells containing activated kinase (Figure 4F &

G, magenta; from patient 3). Collectively these findings infer that the RAF-MEK-ERK kinase cascade

is active in a subset of cells within the heterogeneous intratumoral environment of FLCs.

ERK substrates in FLC vs normal tissue phosphoproteomics

Gene Name
log

2
 difference

tumor/normal Position Sequence

RPS6KA3 (RSK2) 0.488 221 ESIDHEKKAYpSFCGTVEYMAP

RPS3 3.088 237 VEPKDEILPTpTPISEQKGGKP

PML

0.827 118 NKLVGTPNPSpTPLPNTVPQFI

PML 0.957 527 VSPPHLDGPPpSPRSPVIGSEV

RBPMS

0.618 530 PHLDGPPSPRpSPVIGSEVFLP

PHLDB1 1.486 443 LATRTLQPPEpSPRLGRRGLDS

PKM 0.492 37 LEHMCRLDIDpSPPITARNTGI

PGK1 0.764 203 ELNYFAKALEpSPERPFLAILG

PTPN12 0.477 441 QTRKTVSLTPpSPTTQVETPDL

MAPT 0.903 202 GDRSGYSSPGpSPGTPGSRSRT

LMNA 0.613 22 SGAQASSTPLpSPTRITRLQEK

MAPT 0.715 404 YKSPVVSGDTpSPRHLSNVSST

DYNC1LI1 1.009 PVTVSPTTPTpSPTEGEAS*

AHNAK 0.772 YFPDVEFDIKpSPKFKAEAPLP

ABI1 1.013 183 RTNPPTQKPPpSPPMSGRGTLG
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Figure 4. Heterogeneous activation of ERK signaling in FLCs. (A) Immunoblots of paired tumor and normal

adjacent liver from FLC patients probed with antibodies to phospho-ERK1/2 (top panel) and total ERK1/2 (bottom

panel). (B) Immunofluorescence images of FLC section from patient #3 were stained with antibodies against

phospho-ERK (yellow), total ERK (magenta) and DAPI (nuclei, blue). Scale bar represents 20 mm. (C) Enlarged

region from (B) showing prominent phospho-ERK staining in a subset of tumor hepatocytes. (D) Salient ERK

substrates identified in phosphoproteomic analysis of FLC. Gene names, degree of enrichment (log2difference

tumor/normal) and primary phosphosite sequences (one letter code) are indicated. The protein kinase P90-RSK2 is

highlighted. (E) Immunoblots of paired tumor and normal adjacent liver from FLC patients probed with antibodies

to phospho-P90RSK (top panel). Actin loading control (bottom panel). (F) Immunofluorescence image of FLC

section stained with antibodies against phospho-P90RSK (magenta), PKA RII (green) and the nuclear marker DAPI

(blue). (G) Enlarged region from (F). Dashed lines) highlight increased nuclear accumulation of phospho-P90RSK

signal. Scale bars indicate 20 mm.

DOI: https://doi.org/10.7554/eLife.44187.012
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AKAP-Lbc scaffolds promote ERK activation in FLC
On the basis of our understanding of how local signaling events are organized, we reasoned that

AKAPs may be integral components of DNAJ-PKAc complexes (Smith et al., 2017). A logical candi-

date was AKAP-Lbc, a multifunctional anchoring protein and enhancer of ERK signaling

(Smith et al., 2010) that interacts with another scaffolding protein, kinase suppressor of Ras (KSR),

to form the core of a signaling network that integrates cAMP regulation of RAF-MEK-ERK signaling

(Figure 5A). We found that AKAP-Lbc protein is up-regulated in human FLCs as compared to normal

adjacent liver (Figure 5B, top panel, lane 2) and immunoblot analysis detected DNAJ-PKAc in

AKAP-Lbc immune complexes isolated from FLCs (Figure 5C, top panel, lane 2). Parallel experi-

ments show that DNAJ-PKAc/Hsp70 sub-complexes co-fractionate with this anchoring protein in

AML12DNAJ-PKAc cells (Figure 5D, top panel, lane 2). Thus, AKAP-Lbc can sequester Hsp70 and

DNAJ-PKAc with an ERK signaling module in AML12DNAJ-PKAc cells and human FLCs.

Detection of phospho-ERK1/2 is frequently used as a biochemical readout for activation of the

RAF-MEK-ERK kinase cascade (Rossomando et al., 1992). Notably, basal levels of phospho-ERK 1/2

were elevated 2.8 ± 1.5 fold (n = 4) in AML12DNAJ-PKAc cells as compared to wildtype controls

(Figure 5E). This finding was confirmed in situ by immunofluorescent detection. Phospho-ERK signal

was barely detectable in control AML12 cells (Figure 5F & G), but clearly evident in the cytoplasm

of AML12DNAJ-PKAc cells (Figure 5H & I). Actin (red) and DAPI (blue) were used as cytoskeletal and

nuclear markers respectively (Figure 5G & I). We next monitored the efficacy of Hsp70/MEK inhibi-

tors on basal ERK activity in AML12DNAJ-PKAc cells. In wildtype cells, treatment with Ver-155008 (3

mM) alone had no effect on ERK activation (Figure 5J, top panel, lanes 1 and 2). However, adminis-

tration of cobimetinib (100 nM) or a combination of both drugs abolished detection of the phospho-

ERK signal (Figure 5J, top panel, lanes 3 and 4). In contrast, basal phospho-ERK levels were high in

AML12DNAJ-PKAc cells, treatment with Ver-155008 (3 mM) alone had a modest effect on phospho-ERK

signal (Figure 5J, top panel, lanes 5 and 6). Application of cobimetinib (100 nM) or in combination

with Ver-155008 abolished detection of phospho-ERK signals (Figure 5J, top panel, lanes 7 and 8).

Thus, dual inhibition of Hsp70 and elements of the RAF-MEK-ERK cascade impedes mitogenic sig-

nals to preferentially block proliferation of AML12DNAJ-PKAc cells. This postulate was confirmed by

clonogenic growth assays that monitor colony formation. Crystal violet staining showed that the syn-

ergistic effect of cobimetinib (100 nM) and Ver-155008 (3 mM) blocked AML12DNAJ-PKAc cell prolifer-

ation more potently than either drug alone (Figure 5K). Qualitatively similar results were obtained

when parallel experiments were conducted with the more potent MEK inhibitor trametinib (30 nM)

(Figure 5—figure supplement 1).

One intriguing outcome of our study is the question of whether or not interrupting the associa-

tion between DNAJ-PKAc and Hsp70 impacts activation of the RAF-MEK-ERK cascade. Mutation of

a conserved HPD motif that demarks a critical loop in the DNAJ domain abolishes interaction with

Hsp70 (Hennessy et al., 2005) (Figure 6A). Thus, substitution of H33 to Q in the context of DNAJ-

PKAc would be expected to prevent association with endogenous Hsp70 in AML12 cells

(Figure 6B). Wildtype AML12 cells were transfected with vectors encoding DNAJ-PKAc or DNAJ-

PKAc H33Q. Additional co-immunoprecipitation experiments used transiently transfected AKAP-Lbc

as the scaffold to isolate DNAJ-PKAc-Hsp70 sub-complexes. Introduction of the H33Q mutation

greatly reduces the level of Hsp70 in AKAP-Lbc complexes (Figure 6C, top panel, lane 3). The sim-

plest explanation of this result is that addition of the J-domain onto the N-terminus of PKAc induces

a novel interaction with Hsp70, thereby permitting the recruitment of this chaperonin to AKAP sig-

naling islands. Immunoblot detection confirmed that basal levels of phospho-ERK were elevated

upon introduction of DNAJ-PKAc in wildtype AML12 cells while transfection with the DNAJ-PKAc

H33Q mutant diminished ERK activation (Figure 6D, top panel). Densitometry analysis of four inde-

pendent experiments confirmed this result (Figure 6D, graph). Control immunoblotting monitored

total ERK levels as a loading control and confirmed equivalent expression of each DNAJ-PKAc form

in transfected cells (Figure 6D, lower panel).

Independent support for our hypothesis was provided through a phosphoproteomic screen that

identified 2912 unique phosphopeptides in wildtype and AML12DNAJ-PKAc cells (Figure 6E). Of

these, 96 phosphopeptides were increased (orange) and 76 were reduced in AML12DNAJ-PKAc cells

(black). Substrate profiling using the NetworKIN platform revealed that 23% of ERK phosphosites

were up-regulated in AML12DNAJ-PKAc cells whereas only 3% of PKA consensus sites were enriched
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Figure 5. Pharmacologically targeting DNAJ-PKAc assemblies. (A) Schematic of an AKAP-Lbc-KSR-1

macromolecular assembly that sequesters Hsp70 and DNAJ-PKAc with elements of the ERK kinase cascade. (B)

Immunoblots of paired FLC and normal adjacent liver probed with antibodies to AKAP-Lbc (top panels) and PKAc

(bottom panels). (C) Immunoblot detection of PKAc (top) in AKAP-Lbc immune complexes (upper-mid) from

normal adjacent tissue and FLC. PKAc (lower-mid) and AKAP-Lbc (bottom) in tissue lysates are indicated. DNAJ-

PKAc (red) is indicated. (D) Co-immunoprecipitation of signaling elements with AKAP-Lbc from AML12DNAJ-PKAc

cells. Immunoblot detection of PKAc (top) and Hsp70 (upper-mid) in immune complexes isolated from

AML12DNAJ-PKAc cells. PKAc (middle), Hsp70 (mid-lower) in lysates from wildtype and AML12DNAJ-PKAc cells. Actin

(bottom) served as loading control. (E) Immunoblot detection of phospho-ERK1/2 (top) as an index of ERK kinase

activity in cell lysates from AML12 and AML12DNAJ-PKAc cells. Bottom) Immunoblot detection of total ERK served as

a loading control. Quantification of immunoblots (n = 4); mean ±s.d. and p=0.04 (t = 2.6, df = 6). (f–I) In situ

immunofluorescence of basal ERK activity. Grayscale images depicting immunofluorescent detection of phospho-

ERK1/2 in (F) wildtype and (H) AML12DNAJ-PKAc cells. Composite images of phospho-ERK1/2 (green), actin (red)

and nuclei (blue) in (G) wildtype and (I) AML12DNAJ-PKAc cells. Scale bar represents 10 mm. (J) Immunoblot

detection of phospho-ERK 1/2 in wildtype AML12 (lanes 1–4) and AML12DNAJ-PKAc cells (lanes 5–8). Cells were

treated with 100 nM of the MEK inhibitor cobimetinib, 3 mM Ver-155008 or combination of both drugs. Bottom)

Figure 5 continued on next page
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Figure 5 continued

Detection of total ERK served as loading control. (K) Clonogenic growth assay portraying crystal violet (blue)

staining of AML12DNAJ-PKAc cell proliferation in the presence of cobimetinib (100 nM), Ver-155008 (3 mM) and both

drugs in combination.

DOI: https://doi.org/10.7554/eLife.44187.013

The following figure supplement is available for figure 5:

Figure supplement 1. Effect of combination treatment with trametinib and Ver-155008 on cell growth.

DOI: https://doi.org/10.7554/eLife.44187.014
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Figure 6. Interruption of the DNAJ-PKAc/Hsp70 interface reduces ERK activation: substrate bias towards ERK signaling in AML12DNAJ-PKAc cells. (A)

Schematics of native DNAJ-PKAc (left) and DNAJ-PKAc H33Q mutant that cannot bind Hsp70 (right, gray). (B) Mutation of the chaperonin-binding site

(H33Q) on DNAJ-PKAc abrogates interaction with Hsp70. Endogenous HSP70 co-precipitates with DNAJ-PKAc in AML12 cells expressing FLAG-DNAJ-

PKAc (lane 1), but not with FLAG-Hsp40 H33Q control (lane 2) or the FLAG-DNAJ-PKAc H33Q mutant (lane 3). (C) GFP-tagged AKAP-Lbc co-

precipitates endogenous Hsp70 in AML12 cells expressing FLAG-DNAJ-PKAc (lane 2) but not in cells expressing the wildtype FLAG-PKAc (lane 1) or

the FLAG-DNAJ-PKAc H33Q mutant (lane 3). (D) Immunoblot detection of phospho-ERK1/2 in AML12 cells transiently transfected with DNAJ-PKAc

(lane 2) or DNAJ-PKAc H33Q (lane 3). Total ERK (middle) served as a loading control. Detection of PKAc (bottom) monitored transfection efficiency.

Quantitation of blots from four experiments, p=0.01 (t = 3.406, df = 6) and p=0.03 (t = 2.758, df = 6). (E and F) Differential phosphoproteomic profiling

of AML12DNAJ-PKAc cells. (E) Volcano plot showing abundance (orange) and reduction (black) of phosphopeptides in AML12DNAJ-PKAc cells. Statistical

significance of biological replicates was calculated by Student’s t test with Log10-transformed p-values of individual phosphopeptides plotted against

log2-transformed fold change; n = 6. (F) Pie chart of putative kinase substrates increased in AML12DNAJ-PKAc cells. Sites identified by NetworKIN

platform. Individual kinases are listed. ‘Other’ kinases include: CK, ABL2, GRK, GSK3, JAK2, NLK, and SRC.

DOI: https://doi.org/10.7554/eLife.44187.015
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(Figure 6F). Enrichment of PKC (7%), DAP kinase (5%) and CDK (3%) phosphosites were also evi-

dent. This systemwide analysis suggests that DNAJ-PKAc/Hsp70 macromolecular assemblies bias

the signaling landscape toward ERK activation and mobilize other downstream kinase networks.

Discussion
We have discovered that DNAJ-PKAc, a unique fusion protein that is emblematic of fibrolamellar

carcinoma (FLC), functions as a scaffolding protein to assemble additional signaling elements that

contribute to the pathogenesis of this cancer. More specifically, we show that the chaperonin-bind-

ing domain of this fusion enzyme supports recruitment of the co-chaperonin Hsp70. This creates a

unique molecular context in which the DNAJ-PKAc chimera acts in FLCs. Chaperonopathies are a

group of diseases caused by genetic lesions or aberrant post-translational modifications of molecular

chaperones (Macario and Conway de Macario, 2007). ‘Chaperonopathies by mistake’ are a sub-

group of related disorders, including certain cancers, in which chaperonin activity is normal, but

becomes inappropriately assimilated into molecular pathways that enhance disease progression

(Macario and Conway de Macario, 2007). We believe that formation of DNAJ-PKAc/Hsp70 sub-

complexes in FLC is an example of this latter category (Calderwood et al., 2006; Mayer and Bukau,

2005; Whitesell and Lindquist, 2005). Chaperonins can repair misfolded proteins to reduce cellular

stress or, as we believe is the case in FLC, recruitment of Hsp70 through the DNAJ domain preferen-

tially stabilizes the chimeric PKAc fusion protein. This hypothesis is borne out by data in Figures 1B

and 2G wherein we demonstrate that protein levels of the DNAJ-PKAc variant are elevated in tumor

samples and disease-relevant cell lines as compared to native PKA. In addition, the abnormal pairing

of Hsp70 with DNAJ-PKAc creates new and unique drug targets. This rationale provided the impetus

to screen a panel of recognized chemotherapeutics in combination with an Hsp70 inhibitor. This new

precision pharmacology approach ascertained if certain drug pairings act synergistically to inhibit

proliferation of cells harboring macromolecular complexes of this chaperonin and the fusion kinase.

Since aberrant kinase activity is known to drive many cancers, we further reasoned that aug-

mented PKA activity could also contribute to the pathobiology of FLC (Druker et al., 2001;

Turnham and Scott, 2016). However, one confounding factor is that the pathological DNAJ-PKAc

fusion and its native kinase counterpart share similar sensitivities to the inhibitor PKI and efficiently

bind R subunits to form type I and type II PKA holoenzymes (Cao et al., 2019; Cheung et al., 2015;

Riggle et al., 2016a; Scott et al., 1985). Although physiochemically similar, notable differences

between the PKA holoenzyme subtypes include lack of an autoregulatory phosphorylation site in RI

isoforms, different in vitro binding affinities for cAMP and dispersal to distinct subcellular sites via

interaction with distinct AKAPs (Aggarwal et al., 2019; Burgers et al., 2012; Feramisco et al.,

1980; Means et al., 2011; Smith et al., 2018; Taylor et al., 2012). Another noteworthy feature is

that expression of the DNAJ-PKAc enhances production or stabilization of the RIa subunit. Interest-

ingly this phenomenon occurs in both FLCs and AML12DNAJ-PKAc cells (Langeberg and Scott, 2015;

Riggle et al., 2016a) and Figure 1—figure supplement 1A). Such increased availability of RIa subu-

nits may be indicative of tumor-specific variation in the ratio of type I to type II PKA activity. Switch-

ing of PKA isotypes may be clinically relevant as lesions in RI subunit genes are linked to disease

(Cho-Chung and Nesterova, 2005; Stratakis, 2013). For example, nonsense and insertion muta-

tions reduce levels of RIa in the endocrine neoplasia Carney complex (Stratakis, 2013). Similarly,

mutations in the cAMP binding sites that render RIa less sensitive to cAMP have been linked to the

rare skeletal dysplasia syndrome acrodysostosis type I (Rhayem et al., 2015). Yet, perhaps the most

intriguing example is a single case report of inactivating mutations in RIa that induce sporadic fibro-

lamellar carcinomas in the absence of classic DNAJ-PKAc (Graham et al., 2018). Although the

molecular mechanism surrounding this unusual case is not clear, one can postulate that reduced

type I PKA activity, loss of anchoring to RI selective AKAPs, or overcompensation by type II PKA hol-

oenzymes contributes to pathogenesis. Thus, marked changes in the quantity, isotype ratio and sub-

cellular distribution of PKA holoenzymes, combined with the availability of DNAJ-PKAc may be

factors that contribute to the etiology of FLC. A second postulate is that re-localization of Hsp70 to

AKAP complexes by DNAJ-PKAc may be a critical event in transformation in FLC patients. Thus, the

chaperonin binding properties of DNAJ-PKAc may as pertinent to oncogenesis as the intrinsic kinase

activity of the fusion enzyme. Hence, we propose that the genetic lesion in chromosome 19 that is a
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hallmark of FLC incorporates a new binding interface that transforms PKA from an essential ‘homeo-

static enzyme’ into a dual-function kinase/scaffolding protein with pathological implications.

Our combination drug screen implicates mobilization of the ERK signaling cascade as a likely fac-

tor in the progression of FLC. Although mitogen-activated protein kinase (MAPK) pathways feature

prominently in many cancers (Kolch et al., 2015), we propose that the impact of RAF-MEK-ERK sig-

naling on FLC is complex and atypical. Three factors contribute to this view. First, whole exome

sequencing confirms that FLCs lack activating mutations in Ras or B-RAF, but rather arise from a

monogenic lesion in chromosome 19 that produces the DNAJ-PKAc fusion (Cornella et al., 2015;

Lalazar and Simon, 2018; Simon et al., 2015; Xu et al., 2015). Second, our screen of FDA

approved anti-cancer compounds in Figure 3H and I reveals that drugs targeting upstream ele-

ments of the ERK cascade, including EGF receptor antagonists erlotinib, lapatinib and afatinib and

the B-RAF inhibitors dabrafenib and vemurafenib were ineffective, or at best exhibited modest anti-

proliferative effects when used in combination with Ver-155008. Interestingly, the ERK inhibitor

GDC-0994 had little effect on proliferation in these combination screens. Therefore, we interpret the

exquisite sensitivity of AML12DNAJ-PKAc cells to MEK inhibition to suggest that DNAJ-PKAc may be

acting downstream of Ras-Raf activation. A third contributing factor seems to be the atypical pattern

of ERK activation in FLCs, which impacts downstream phosphorylation events. We base this conclu-

sion on the regional immunofluorescent detection of phospho-ERK and its substrate P90RSK in FLC

sections (Figure 4C & G). If these findings are reconciled with immunoblot data indicating that

global levels of phospho-ERK and phospho-P90RSK minimally change tumor lysates, it argues for

heterogeneous activation of both kinases occurs only in pockets of tumor. Collectively, these obser-

vations argue that the distinctive morphological features of FLC where cancerous cells are inter-

mingled with fibrous tissue creates a heterogeneous tumor microenvironment that is prone to

irregular activation of the ERK signaling cascade.

Although molecular links between ERK and DNAJ-PKAc were not immediately evident, we rea-

soned that one commonality was the proto-oncogene AKAP-Lbc. Anchored PKA activity has been

implicated in the phosphorylation of RAF kinase and KSR-1 in the context of AKAP-Lbc signaling

complexes (Smith et al., 2017; Smith et al., 2010; Takahashi et al., 2017). In addition, AKAP-Lbc is

upregulated in human FLCs, and interacts directly with RAF-MEK-ERK kinase signaling scaffolds. In

keeping with this molecular mechanism, our phosphoproteomic analysis identifies elevated PKA

phosphorylation of serine 838 on KSR in FLCs (Figure 1—figure supplement 1D). This is especially

interesting in light of early findings that Hsp90 and certain Hsp70 isoforms are elements of KSR scaf-

folds (Stewart et al., 1999) and data in Figure 5B–D showing that the chaperonins including the

Hsp70-DNAJ-PKAc subcomplex are selectively recruited to AKAP-Lbc-KSR signaling units in FLC.

The relationship between cAMP and ERK signaling in cancer is complex and context dependent

(Dumaz and Marais, 2005). For example, PKA has pleotropic effects on tumor-initiation. Paradoxi-

cally, a recent report postulates that PKA activity leads to mesenchymal-to-epithelial transitions that

impede oncogenesis; yet DNAJ-PKAc kinase activity is thought to be necessary for tumor initiation

(Kastenhuber et al., 2017; Pattabiraman et al., 2016). Therefore, one pertinent and unanswered

question is whether or not the kinase activity residing within DNAJ-PKAc is an absolute requirement

for FLC progression. This view is further substantiated by the phosphoproteomics data presented in

Figure 6E and F showing that DNAJ-PKAc/Hsp70 macromolecular assemblies skew the signaling

landscape toward enhanced ERK signaling rather than simply potentiating the action of PKA.

Together, these results imply that recruitment of Hsp70 enhances basal ERK signaling in AML12D-

NAJ-PKAc cells by preferentially stabilizing this oncogenic signaling unit. Indirect support for this

notion is presented in Figure 6D showing that abolishing the binding of Hsp70 to DNAJ-PKAc com-

plex decreases ERK signaling. Thus, we postulate that the preferential stabilization of DNAJ-PKAc

proceeds through the local action of Hsp70. Such a mechanism could explain why greater amounts

of the DNAJ-PKAc fusion kinase are detected in FLCs and our AML12DNAJ-PKAc cells as compared to

wildtype PKA. That said, we do not discount the kinase activity of DNAJ-PKAc as a pathological fac-

tor in FLC. Rather, we propose that recruitment of Hsp70 via the DNAJ domain in the chimeric

DNAJ-PKAc kinase is an important new element that contributes to the dysregulation of this unique

fusion enzyme.

One shared objective of the FLC research community and those investigating rare adolescent

cancers is to identify and test therapeutic targets in the most efficient possible manner

(Kastenhuber et al., 2019). One advantage of screening FDA-approved compounds is that the
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pharmacotoxicity, therapeutic indices, and off-target effects of most components are well docu-

mented. Accordingly, each MEK inhibitor identified in our screen has been approved for the treat-

ment of melanoma and other cancers (Caunt et al., 2015). Another benefit of the combination

screening approach is the potential to identify drug pairings that can be used at lower effective

doses; though there is also the possibility that new drug combinations may prove more toxic. This

could be an important consideration for Ver-155008 as clinical trials with other Hsp70 inhibitors hold

promise for the treatment of cancers (Goloudina et al., 2012). Although the utility of Hsp70 and

MEK inhibition as combination therapy for FLC is far from clear, our discovery of drug pairs that

selectively halt the growth of cells expressing DNAJ-PKAc but not wildtype hepatocytes provides a

valuable tool to further the investigation for new treatments of this debilitating disease of

adolescents.

Materials and methods

Key resources table

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Antibody ActinGreen-488 Molecular probes R37110 Manufacturer
instructions

Antibody ActinRed-555 Molecular probes R37112 Manufacturer
instructions

Antibody AKAP-Lbc (VO96) Diviani et al., 2001 rabbit polyclonal (1:1000)

Antibody Amersham ECL
Mouse IgG,
HRP-linked
F(ab’)2 fragment
(from sheep)

GE Life Sciences NA9310 (1:10000)

Antibody Amersham ECL
Rabbit IgG,
HRP-linked
F(ab’)2 fragment
(from donkey)

GE Life Sciences NA9340 (1:10000)

Antibody Actin beta Sigma-Aldrich A1978
mouse monoclonal
RRID:AB_476692

(1:2500)

Antibody BrdU Dako M0744
mouse monoclonal
RRID:AB_10013660

(1:1000)

Antibody Donkey anti-Mouse
IgG, Alexa Fluor 555

Invitrogen A-31570 (1:500)

Antibody Donkey anti-Mouse
IgG, Alexa Fluor 488

Invitrogen A-21202 (1:800)

Antibody Donkey anti-Rabbit
IgG, Alexa Fluor 488

Invitrogen R37118 (1:500)

Antibody Donkey anti-Rabbit
IgG, Alexa Fluor 555

Invitrogen A-31572 (1:800)

Antibody GAPDH-HRP Novus NB110-40405
mouse monoclonal
RRID:AB_669249

(1:1000)

Antibody Hsp70 Proteintech 10995–1
rabbit polyclonal
RRID:AB_2264230

WB (1:500), PLA
in tissue (1:200),
PLA in cells (1:500)

Antibody p-44/42 ERK CST 9102
rabbit polyclonal
RRID:AB_330744

(1:1000)

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Antibody p-44/42 ERK BD Transduction 610123
mouse monoclonal
RRID:AB_397529

WB (1:1000), IHC (1:100)

Antibody phospho-p44/
42 MAPK

CST 9101
rabbit polyclonal
RRID:AB_331646

WB (1:500), IHC (1:100)

Antibody PKAc BD Transduction 610981
mouse monoclonal
RRID:AB_398294

WB (1:500), PLA in
tissue (1:200), PLA
in cells (1:500)

Antibody PKAc CST 5842
rabbit monoclonal
RRID:AB_10706172

IHC (1:500)

Antibody RIa BD Transduction 610610
mouse monoclonal
RRID:AB_397944

(1:1000)

Antibody RIIa BD Transduction 612243
mouse monoclonal
RRID:AB_399566

(1:1000)

Antibody RIIb BD Transduction 610626
mouse monoclonal
RRID:AB_397958

(1:1000)

Antibody phospho-RSK Thermo-Fisher PA5-37829
rabbit polyclonal
RRID:AB_2554437

WB (1:500), IHC (1:100)

Antibody FLAG M2 Magnetic
Beads

Sigma-Aldrich M8823
mouse monoclonal
RRID:AB_2637089

IP (1:40)

Antibody GFP Rockland 600-101-215
goat polyclonal
RRID:AB_218182

WB (1:1000), IP (1:700)

Antibody RI BD Transduction 610165
mouse monoclonal
RRID:AB_397566

(1:500)

Antibody phospho-PKA
substrates (RRXS*/T*)

CST 9624
rabbit monoclonal
RRID:AB_331817

(1:1000)

Antibody NeutrAvidin-HRP Thermo-Fisher 31030 (1:5000)

Antibody RIIa and b McCartney et al., 1995 goat polyclonal (1:200)

Cell line
(M. musculus)

AML12 ATCC ATCC: CRL-2254
RRID:CVCL_0140

Obtained from KJR
by way of Nelson
Fausto lab (original
ATCC depositor)

Chemical
compound, drug

DAPI Thermo-Fisher 62248 Manufacturer
instructions

Chemical
compound, drug

ATP, [g�32P]-
3000 Ci/mmol
10mCi/ml EasyTide,
100 mCi

Perkin-Elmer BLU502A100UC

Chemical
compound, drug

BrdU Invitrogen B23151

Chemical
compound, drug

Cobimetinib Sigma-Aldrich ADV465749767

Chemical
compound, drug

Trametinib Sigma-Aldrich ADV465749287

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Chemical
compound, drug

Dexamethasone Sigma-Aldrich D4902

Chemical
compound, drug

DMEM/F-12 Gibco 11320033

Chemical
compound, drug

Fetal Bovine Serum Thermo-Fisher A3382001

Chemical
compound, drug

Gentamicin
sulfate salt

Sigma-Aldrich G1264

Chemical
compound, drug

ITS Liquid Media
Supplement

Sigma-Aldrich I3146

Chemical
compound, drug

Lipofectamine
LTX with
Plus Reagent

Thermo-Fisher 15338100

Chemical
compound, drug

Puromycin Sigma-Aldrich P8833

Chemical
compound, drug

TransIT-LT1
Transfection
Reagent

Mirus MIR2300

Chemical
compound, drug

Trypsin-EDTA
(0.25%), phenol red

Gibco 25200056

Chemical
compound, drug

Crystal Violet Sigma C3886

Chemical
compound, drug

Ver-155008 Sigma-Aldrich 1134156-31-2

Commercial
assay or kit

CellTiter 96 AQueous
One Solution Cell
Proliferation Assay

Promega G3582

Commercial
assay or kit

CryoGrinder Kir OPS Diagnostics CG0801

Commercial
assay or kit

Duolink In Situ
Orange Starter
Kit Mouse/Rabbit

Sigma-Aldrich DUO92102

Commercial
assay or kit

GeneJET Genomic
DNA purification kit

Thermo K0721

Commercial
assay or kit

Pierce BCA
Protein Assay Kit

Thermo 23225

Commercial
assay or kit

PowerUp SYBR
Green Master Mix

Thermo-Fisher A25741

Commercial
assay or kit

Reverse
Transcription
Supermix

Bio-Rad 1708840

Commercial
assay or kit

RNeasy Mini Kit Qiagen 74106

Commercial
assay or kit

SignaTECT
cAMP-Dependent
Protein Kinase
(PKA) Assay System

Promega V7480

Commercial
assay or kit

Zero Blunt
TOPO PCR
Cloning Kit

Thermo-Fisher 450245

Peptide,
recombinant
protein

RII-biotin Carr et al., 1992

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Peptide,
recombinant
protein

PKI Sigma-Aldrich P7739

Recombinant
DNA reagent

DNAJ-PKAc FLAG This paper In-house modified
pDEST12.2
(N-terminal FLAG)

Recombinant
DNA reagent

DNAJ-PKAc
H33Q FLAG

This paper In-house modified
pDEST12.2
(N-terminal FLAG)

Recombinant
DNA reagent

DNAJB1 FLAG This paper This paper In-house modified
pDEST12.2 with
N-terminal FLAG;
backbone from
Invitrogen
(discontinued)

Recombinant
DNA reagent

AKAP-Lbc GFP Clonetech;
Diviani et al., 2001

pEGFP-N1 (Clontech)
backbone

Recombinant
DNA reagent

hSpCas9-gDnajb1
-Prkaca-2A-Puro

This paper RRID:
Addgene_48138

PX458 backbone;
Dual U6-sgRNA
cassettes

Sequenced-based
reagent

Gipc1_F This paper PCR primers GGGAAAGGACA
AAAGGAACCC

Sequenced-based
reagent

Gipc1_R This paper PCR primers CAGGGCATTTG
CACCCCATGCC

Sequenced-based
reagent

Ddx39_F This paper PCR primers CCGGGACTTTC
TACTGAAGCC

Sequenced-based
reagent

Ddx39_R This paper PCR primers GAATGGCCTG
GGGAATACAC

Sequenced-based
reagent

Lphn1_F This paper PCR primers ACCCCTTCCAGA
TGGAGAATGT

Sequenced-based
reagent

Lphn1_R This paper PCR primers TGGGCAAGCAT
CTATGGCAC

Sequenced-based
reagent

Dnajb1_ex2_F This paper qPCR primers GGGACCAGA
CCTCGAACAAC

Sequenced-based
reagent

Dnajb1_ex2_R This paper qPCR primers GGCTAATCCTG
GCTGGATAGAT

Sequenced-based
reagent

Prkaca_ex1_F This paper qPCR primers AAGAAGGGCA
GCGAGCAGGA

Sequenced-based
reagent

Prkaca_ex1_R This paper qPCR primers GCCGGTGCCA
AGGGTCTTGAT

Sequenced-based
reagent

Gapdh_F This paper qPCR primers ATTTGGCCGT
ATTGGGCGCCT

Sequenced-based
reagent

Gapdh_R This paper qPCR primers CCCGGCCTTC
TCCATGGTGG

Sequenced-based
reagent

Dnaj-PKAc_F This paper qPCR primers ACGAGATCAAG
CGAGCCTAC

Sequenced-based
reagent

Dnaj-PKAc_R This paper qPCR primers TTCCCACTCTC
CTTGTGCTT

Software,
algorithm

GraphPad Prism GraphPad Prism
(https://
graphpad.com)

Software,
algorithm

ImageJ ImageJ
(http://imagej.
nih.gov/ij/)

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Software,
algorithm

MaxQuant/
Andromeda

https://www.
maxquant.org/

PMID: 19029910

Software,
algorithm

NetworKIN http://networkin.info/ PMID: 24874572

Software,
algorithm

Perseus https://maxquant.
net/perseus/

PMID: 27348712

Software,
algorithm

PhosphoSitePlus https://www.
phosphosite.org

Human liver samples
Human FLCs with paired normal liver were consented for tissue donation under IRB-approved proto-

cols (#31281 and #51710).

Phosphoproteomics
Human FLC and normal adjacent liver was harvested according to above IRB and flash frozen.

AML12 and AML12DNAJ-PKAc cells were grown on a 15 cm dish and after rinsing twice with ice cold

PBS, cells were harvested in 750 mL of 6M aq. Guanidine hydrochloride (Gdn*HCl) containing 100

mM Tris, 5 mM TCEP*HCl, and 10 mM chloroacetamide (CAM), pH 8.5, using a cell scraper. Frozen

human FLC specimens of ca. 100 mg wet weight were ground into a fine powder using the Cryo-

Grinder Kit from OPS Diagnostics (Lebanon, NJ) and added to the Gdn*HCl buffer described above.

Cell lysates were pipetted into 1.5 mL microtubes, voretexed briefly and heated to 95C for 5 min.

Samples were then sonicated in a Qsonica cup sonicator (Newton, CT) at 100 W for 10 min (30 s on,

30 s off) on ice. Protein content was measured using the Pierce 660 nm assay reagent (Thermo Fisher

Scientific, Waltham, MA). Aliquots of 300 mg of protein were pipetted into a new tube and diluted 2-

fold with 100 mM triethylammonium bicarbonate (TEAB) pH = 8.5. 3 mg of sequencing-grade endo-

proteinase Lys-C (Wako, Richmond, VA) were added (1:100 ratio) and the mixture agitated on a ther-

momixer at 1400 rpm at 37˚C for 2 hr. The mixture was diluted another 2-fold with 100 mM TEAB

pH = 8.5 and 3 mg of trypsin were added. The mixture was agitated on a thermomixer at 1400 rpm

at 37˚C for overnight, acidified with formic acid (1% final), and cleared by centrifugation for 10 min

at RT and 14,000 rcf. Peptides were extracted from the supernatant using Oasis HLB 1cc (10 mg)

extraction cartridges (Waters, Milford, MA). Cartridges were activated by passing through 200 mL of

methanol followed by 200 mL 80% aq. ACN containing 0.1% TFA, equilibrated with 400 mL 1% aq.

formic acid. Peptides were loaded and then washed with 400 mL 1% aq. formic acid. Peptides were

eluted with 300 mL 80% aq. ACN containing 0.1% TFA and directly subjected to the published batch

IMAC phosphopeptide enrichment protocol with the following minor modifications

(Golkowski et al., 2016; Villén and Gygi, 2008). 20 mL of a 50% IMAC bead slurry composed of 1/3

commercial PHOS-select iron affinity gel (Sigma Aldrich), 1/3 in-house made Fe3+-NTA superflow

agarose and 1/3 in-house made Ga3+-NTA superflow agarose were used for phosphopeptide

enrichment (Ficarro et al., 2009). The IMAC slurry was washed three times with 10 bed volumes of

80% aq. ACN containing 0.1% TFA and phosphopeptide enrichment was performed in the same

buffer. Phosphopeptides were desalted using C18 StageTips according to the published protocol

with the following minor modifications; after activation with 50 mL methanol and 50 mL 80% aq. ACN

containing 0.1% TFA the StageTips were equilibrated with 50 mL 1% aq. formic acid. Then the pepti-

des that were reconstituted in 50 mL 1% aq. formic acid were loaded and washed with 50 mL 1% aq.

formic acid. The use of 1% formic acid instead of 5% aq. ACN containing 0.1% TFA prevents the loss

of highly hydrophilic phosphopeptides.

nanoLC-MS/MS phosphoproteomics analysis
The LC-MS/MS analyses were performed on a Thermo Fisher Scientific Orbitrap Elite instrument

(AML12 cell lines) or a Thermo Fisher Scientific Orbitrap Fusion (human FLC specimens) as described

previously with the following minor modifications (Golkowski et al., 2017). Peptide samples were
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separated on a Thermo-Dionex RSLCNano UHPLC instrument (Sunnyvale, CA) using 20 cm long

fused silica capillary columns (100 mm ID) packed with 3 mm 120 Å reversed phase C18 beads (Dr.

Maisch, Ammerbuch, DE). For phosphopeptide samples the LC gradient was 120 min long with 3–

30% B at 300 nL/min. LC solvent A was 0.1% aq.acetic acid and LC solvent B was 0.1% acetic acid,

99.9% acetonitrile. Data-dependent analysis was applied using Top15 selection with CID

fragmentation.

Computation of MS raw files
Raw files were analyzed by MaxQuant/Andromeda (Olsen et al., 2010) version 1.5.2.8 using protein,

peptide and site FDRs of 0.01 and a score minimum of 40 for modified peptides, 0 for unmodified

peptides; delta score minimum of 17 for modified peptides, 0 for unmodified peptides. MS/MS

spectra were searched against the UniProt human database (updated July 22nd, 2015). MaxQuant

search parameters: Variable modifications included Oxidation (M) and Phospho (S/T/Y). Carbamido-

methyl (C) was a fixed modification. Max. missed cleavages was 2, enzyme was Trypsin/P and max.

charge was 7. The MaxQuant ‘match between runs’ feature was enabled. The initial search tolerance

for FTMS scans was 20 ppm and 0.5 Da for ITMS MS/MS scans.

Data processing and statistical analysis
MaxQuant raw data were processed, statistically analyzed and clustered using the Perseus software

package v1.5.6.095 (Tyanova et al., 2016). Human gene ontology (GO) terms (GOBP, GOCC and

GOMF) were loaded from the Perseus Annotations file downloaded on the 01.08.2017. Expression

columns (phosphopeptide MS intensities) were log2 transformed and normalized by subtracting the

median log2 expression value of each column from each expression value of the corresponding col-

umn. Potential contaminant, reverse hits and proteins only identified by site were removed. Repro-

ducibility was analyzed by column correlation (Pearson’s r) and replicates that showed a variation

of >0.25 in the r value compared to the mean r-values of all replicates of the same experiment were

removed as outliers. Significant differences in phosphopeptide expression between experiments

were quantified with a two-tailed two sample t-test with unequal variances and Benjamini-Hochberg

correction for multiple comparisons was applied (FDR = 0.05).

NetworKIN analyses
For human FLC and normal adjacent liver, significantly enriched phosphosites in FLC were input into

the NetworKIN platform. For sites significantly enriched in AML12DNAJ-PKAc cells, the conserved

phosphosite in human was identified in PhosphoSitePlus and then input into NetworKIN. Minimum

score cutoff was 1.

Cell lines and culture
AML12 mouse hepatocytes were used in this study. These cells were developed by the Nelson

Fausto lab (Wu et al., 1994). The cells from this study came from Dr. KJR and are also available at

ATCC (https://www.atcc.org/Products/All/CRL-2254.aspx). The cells were verified and mycoplasma

free before beginning these studies and are currently being re-tested by STR and mycoplasma

detection at IDEXX (Westbrook, ME). AML12 cells were cultured in DMEM/F12 supplemented with

10% FBS, 0.04 mg/mL dexamethasone, 0.1% gentamicin, 1 mg/mL recombinant human insulin, 0.55

mg/mL human transferrin, and 0.5 ng/mL sodium selenite. All cell lines were maintained in a 5% CO2

incubator at 37˚C. For lysates probed with phospho-ERK, cells were serum-starved for 16–24 hr and

lysed. Serum-starved medium was prepared as above with the exception of addition of FBS. Cells

for cobimetinib and Ver-155008 treatment were serum-starved for 16–24 hr and then incubated with

3 mM Ver-155008 for 30 min, and either DMSO or 100 nM Cobmetinib was incubated for 10 min.

AML12 cells for Figure 6B–D were transfected with constructs as indicated with TransIT-LT1 (Mirus

Bio). Cells for Figure 6B & C were collected for immunoprecipitation after 24 hr, while cells for

Figure 6D cells were switched to serum-free media for 16–24 hr.

Generation of CRISPR-edited AML12DNAJ-PKAc cells
Guide (g) RNAs were designed to target intron 1 of either mouse Dnajb1 (GCATTCCGGGGATC

TAGCGG) or Prkaca (GTAGTGCTGAGGAGAGTGGGG) in order to introduce DNA double-stranded
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breaks in the regions similar to the deletion seen in FL-HCC. We engineered constructs expressing

Cas9 and both guide (g)RNAs into SpCas9-2A-Puro V2.0 (Addgene plasmid number

62988) (Ran et al., 2013) and transfected the vector into AML12 cells using lipofectamine LTX with

plus (Thermo Fisher) according to manufacturer’s instructions. Cells were subjected to 2 mg/mL puro-

mycin (Sigma) selection 48 hr post-transfection. After 3 days in puromycin-containing media, cells

were clonally isolated. After selection, cells were dissociated using 0.25% trypsin-EDTA (Gibco) and

200 cells were plated into 15 cm2 dish and incubated for 48–96 hr or until single-cell derived colo-

nies were visible. Single-cell derived colonies were hand picked with cloning disks (3.2 mm diameter,

Sigma-Aldrich) soaked with 0.25% trypsin-EDTA and plated into single wells of a 96-well plate.

Genomic DNA was extracted (GeneJET Genomic DNA purification kit, Thermo Fisher) to screen

clonally-isolated cells. Polymerase chain reaction (PCR) was performed to determine a heterozygous

deletion. Primer sequences are found in the Key Resources Table.

RNA and qPCR
Total RNA was extracted from wildtype AML12 and Dnajb1-Prkaca clones using trizol and RNeasy

Mini Kits (Qiagen) and reverse transcribed using iScript Reverse Transcription Supermix for RT-qPCR

(Bio-Rad) according to manufacturer’s instructions. The cDNA was subjected to PCR with primers

against Dnajb1-Prkaca fusion, and the resulting amplification was subjected to Sanger sequencing.

Quantitative PCR was performed on ABI Fast 7500 using PowerUp SYBR Green Master Mix (Thermo

Fisher) according to manufacturer’s instructions with primers (see Key Resources Table) against

Dnajb1-Prkaca fusion, wildtype Dnajb1, wildtype Prkaca. Data are reported as delta delta Ct after

normalizing to Gapdh. Dnaj-PKAc cDNA was isolated from clone 14 and cloned into Zero Blunt

TOPO PCR Kit (Thermo Fisher) and sequenced to verify the in-frame fusion.

Immunoblotting
Cells and human FLCs were lysed in ice-cold RIPA buffer (10 mM Tris-HCl, 150 mM NaCl, 1% sodium

deoxycholate, 1% Nonidet P-40, 0.1% SDS, 2 mM EDTA, 50 mM sodium fluoride) with protease

inhibitors. Cleared lysate was measured using BCA Protein Assay (Pierce). Lysate was boiled in 1X

LDS buffer (Thermo Fisher), separated on 4–12% NuPAGE gradient gels (Thermo Fisher) and trans-

ferred onto nitrocellulose using standard techniques. Membranes were incubated overnight at 4˚C in

5% w/v milk with TBST and the following antibodies: PKAc (BD Transduction, 610981), Hsp70 (Pro-

teintech, 10995–1), b-actin (Sigma-Aldrich, A1978), AKAP-Lbc (V096, 1 mg ml�1), phospho p44/42

MAPK (CST, 9101), p44/42 (CST, 9102). Membranes were washed in TBST, incubated with HRP-

labeled secondary antibodies (GE Life Sciences), washed as before and developed using ECL

(Thermo Fisher) on an iBright FL1000. For re-probing, membranes were striped with 1X Re-Blot Plus

Strong (Millipore) for 15 min and then re-blocked in Blotto before incubation with primary antibodies

again. Densitometry for blot quantification was done using ImageJ software (NIH; http://rsb.info.nih.

gov/ij).

Immunoprecipitation
Human tissue and cell lysates were lysed in 0.5% or 1% Triton-X buffer (50 mM Tris-HCl, 130 mM

NaCl, 20 mM NaF, 2 mM EDTA, 0.5% or 1% Triton-X with protease inhibitors). Lysates were pre-

cleared with IgG and protein A/G agarose beads (Millipore) then incubated with anti-PKAc, anti-

HSP70, anti-GFP, or anti-AKAP-Lbc antibodies overnight at 4˚C. Immunocomplexes were separated

by incubation with protein A/G agarose beads for 2 hr at 4C and washed 4 � 1 mL in lysis buffer.

For FLAG immunoprecipitation, lysates were incubated with anti-FLAG M2 magnetic beads (Sigma

M8823) overnight. Immunocomplexes were washed 4 � 1 mL in lysis buffer.

Migration and invasion
AML12 and AML12DNAJ-PKAc cells were plated on a 96-well plate and subjected to IncuCyte ZOOM

96-Well Scratch Wound Cell Migration and Invasion assay (Essen Bioscience). Matrigel (Corning) was

used in invasion assays. Data are representative images of n = 3. Images collected every 45 min for

24 hr (migration assay) or 48 hr (invasion assay).
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Protein kinase A activity assay
SignaTECT cAMP-dependent Protein Kinase (PKA) Assay System (Promega, V7480) was used to

measure kinase activity. Cells were lysed and PKA activity was measured according to protocol (ATP,

[g�32P]- 3000 Ci/mmol 10mCi/ml EasyTide; Perkin Elmer, BLU502A001MC). Experiments were car-

ried out ±25 mM cAMP to stimulate PKA,±Kemptide substrate for normalization, and ±50 mM PKI to

inhibit PKA.

Immunofluorescence and proximity ligation assay (PLA)
AML12 cells were grown on coverslips and fixed with 4% paraformaldehyde/PBS for 20 min. After

several washes in PBS, samples were permeabilized in 0.5% Triton X-100/PBS for 10 min and washed

extensively in PBS. Cells were then subjected to PLA or immunofluorescence. Human liver tissue for

PLA was fresh frozen, cut on a cryostat at 8 mm, and fixed in 4% paraformaldehyde/PBS at RT for 4

min. For PLA, samples were processed according to manufacturer’s instructions with anti-mouse and

anti-rabbit reagents (Sigma) using PKAc (BD Transduction, 610981) and Hsp70 (Proteintech, 10995–

1). Z-stacks of fluorescent images were collected using a Keyence BZ-X710 using relevant filter

cubes. Maximum intensity projections were quantified for puncta number using Fiji/ImageJ. For

AML12 cell PLA, images were smoothened and a duplicate image was created for use as a mask.

The duplicate file was thresholded to capture as many puncta as possible without significant blend-

ing of densely packed signal. The binary mask was then used to measure selected regions from the

original image. Total cell number per field of view was counted as DAPI-stained nuclei. For quantifi-

cation of human liver tissue PLA, unfocused light was removed using the Keyence haze reduction

function. Puncta number and fluorescence intensity were measured by automation using Keyence

hybrid cell counter set to detect thresholded puncta between 0 and 1.0 mm in diameter. Puncta

counts were normalized to the total image area.

Human liver tissue for immunostaining was formalin fixed and paraffin embedded. Samples were

permeabilized in 0.5% Triton X-100/PBS for 10 min. Images for immunofluorescence were immunos-

tained with primary antibodies [PKAc (CST, 5842), PKA RIIa (BD Transduction, 610626), Erk (BD

610123), (phospho p44/42 MAPK (CST, 9101), or phospho P90RSK (Thermo Fisher PA5-37829)] over-

night at 4C. Cells were washed three times in PBS and incubated with Alexa Fluor conjugated sec-

ondary antibodies (Thermo Fisher) for 2 hr at room temperature. Nuclei were stained with DAPI and

samples were mounted on glass slides using ProLong anti-fade media (Invitrogen) or Aqua-Mount

(Thermo Scientific). Images were taken on a Leica DMI6000B inverted microscope with a spinning

disk confocal head (Yokagawa) and a CoolSnap HQ camera (Photometrics) controlled by MetaMorph

7.6.4 (Molecular Devices), or a BZ-X710 microscope (Keyence).

MTS assay
Cells were seeded at 3,000 cells/well into 96-well plates, allowed to recover for 16–24 hr and either

treated with Ver-155008, DMSO, or left untreated. MTS reagent (CellTiter 96 Aqueous One Solution,

Promega) was added per the manufacturer’s instructions, and absorbance was read at 490 nm 3 hr

later.

BrdU labeling
Wildtype AML12 and AML12DNAJ-PKAc cells were seeded at 20,000 cells/well on a 2-well chamber

slide (Lab-Tek). Fourty-eight hours after plating, cells were treated with 25 mg/mL BrdU (Roche Diag-

nostics) for 4 hr. Cells were washed twice in ice-cold PBS and fixed with 100% ice-cold methanol.

BrdU labeling was then determined by immunohistochemistry by using anti-BrdU antibody (DAKO).

Colony growth
For clonogenic growth assays, cells were seeded at 200 cells/well in 12-well dishes. For inhibitor

tests, drug was added following day to appropriate concentrations (100 nM cobimetinib or 30 nM

trametinib; 3 mM Ver-155008) in normal growth media. Media/drug was refreshed every 5 days.

After two weeks, cells were washed in PBS and fixed for 20 min in 4% paraformaldehyde/PBS. Cells

were then stained with 0.1% crystal violet in 10% methanol, washed 3x with water and air dried for

image capture. Images were quantified in ImageJ using masking and particle analysis to determine

well surface area covered by stained cells. Data were further analyzed and plotted in Prism 7.
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Drug screen
Drug screening of AML12 and AML12DNAJ-PKAc cells was performed using a drug library assembled

by SEngine Precision Medicine (Seattle, Washington) that includes FDA-approved chemotherapies

as well as drugs in clinical development. The drug screens used a dilution series of the inhibitors that

started at 10 mM and decreased in half-log units to a final concentration of ~41 nM. Initial combina-

tion screens were performed with 10 mM Ver-155008, a concentration well above the IC50 (in vitro

IC50 0.5 mM-2.6 mM) to assure strong Hsp70 inhibition. Cells were tested in 2D and data evaluated

as described (Pauli et al., 2017).

Statistical analyses
Statistically significant differences between samples were calculated as indicated in figure legends,

using Student’s two-tailed t-test or ANOVA with post-hoc multiple comparisons for groups of 3 or

more. All results are presented as the mean ±s.d unless otherwise indicated. Sample size (n) indi-

cated the number of independent experiments represented in amalgamated data; total cell numbers

used in experiments are indicated. P values of < 0.05 were considered statistically significant.

Data availability statement
Raw mass spectrometry data has been uploaded to MassIVE, an NIH supported MS data repository

(MSV000083167).
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