On the shift in membrane miscibility transition temperature
upon addition of short-chain alcohols

M. Schick

Department of Physics, University of Washington, Seattle, WA 98195

(Dated: August 23, 2016)

Abstract

I consider the effect of a small concentration of a molecule, such as a short-chain alcohol, on
the miscibility transition temperature of a giant plasma membrane vesicle. For concentrations
sufficiently small such that the system can be treated as a weak solution, the change in transition
temperature is known to depend upon the extent of the molecule’s partition into the coexisting
liquid-disordered and liquid-ordered phases. Preferential partitioning into the former decreases
the miscibility temperature, while preferential partitioning into the latter causes an increase. The
analysis, combined with calculated values of the partition coefficient of saturated chains, illuminates
the results of recent experiments on the change in miscibility transition temperatures with changing
alcohol chain length, and makes several testable predictions.
I. INTRODUCTION

It has recently been shown that the introduction of short-chain alcohols into cell-derived giant plasma membrane vesicles affects the temperature of transition from a single, macroscopically uniform phase, to coexisting liquid-ordered (lo) and liquid-disordered (ld) phases. The miscibility transition temperature decreases on the introduction of ethanol. If the length of the chain in the n-alcohols is made larger, the magnitude of the change in temperature increases through propanol, octanol, and decanol. With further increase in n however, that trend reverses, and the magnitude decreases such that tetradecanol, (n=14), exhibits no effect on the transition temperature. This behavior is interesting, in light of the result that the introduction of cholesterol into a giant unilamellar vesicle consisting of a mixture of two miscible lipids causes them to undergo phase separation, that is, it increases the miscibility transition temperature. The results of Gray et al. are not without precedent, however, as it was observed long ago that alcohols with n less than 12 depress the gel-liquid transition temperature. The observed behavior was interpreted in terms of a thermodynamic result for a weak solution, a result that relates the temperature shift to the partitioning of the alcohol between the liquid and gel phase.

It is the purpose of this paper to show that, under certain specified conditions, the change in the temperature of a first-order miscibility transition exhibits the same behavior with alcohol chain length as that observed by Gray et al. provided that the alcohol forms a weak solution in the membrane. To show this, we utilize the results of a recent calculation of the partition coefficients of single chains in coexisting lo and ld phases. This combination makes several testable predictions about the temperature change that would be observed were longer-chain alcohols to be employed, or larger concentrations of shorter-chain alcohols to be introduced. I also emphasize that the change in the temperature of a miscibility transition upon the introduction of an alcohol into a membrane containing p components is not a well-defined quantity unless the behavior of the other $p+1$ independent thermodynamic variables is specified.
II. THERMODYNAMICS

I first review the argument of Landau and Lifshitz\cite{Landau} concerning the change in the temperature of a first-order transition upon the introduction of a solute into a one-component membrane acting as a solvent. In the absence of solute, the internal energy of a bilayer with entropy S, number of solvent particles N, and area A, is given by

$$ U = TS + \sigma A + \mu N $$

with differential

$$ dU = TdS + \sigma dA + \mu dN, $$

where T, σ, and μ are the temperature, surface tension, and chemical potential respectively. Differentiating the first equation above and comparing with the second, one obtains the Gibbs Duhem relation

$$ SdT + Ad\sigma + Nd\mu = 0. $$

A convenient thermodynamic potential for the system is the Gibbs free energy

$$ \Phi_0(T, \sigma, N) = U - TS - \sigma A = N\mu_0(T, \sigma). $$

The potential can be calculated from the partition function

$$ \exp[-\Phi(T, \sigma, N)/k_BT] = \frac{1}{N!} Tr \exp[-(H(N, A) - \sigma A)/k_BT], $$

where H is the Hamiltonian of the system. Now let n_s molecules of solute be added to the system and consider the effect on the thermodynamic potential, which becomes $\Phi(T, \sigma, N, n_s)$. Because the n solute particles are indistinguishable, the partition function becomes

$$ \exp[-\Phi(T, \sigma, N, n_s)/k_BT] = \frac{1}{N!n_s!} Tr \exp[-(H(N, n_s, A) - \sigma A)/k_BT] $$

Further the thermodynamic potential must be a homogeneous function of N and n_s of order one, i.e.

$$ \Phi(T, \sigma, \lambda N, \lambda n_s) = \lambda \Phi(T, \sigma, N, n_s). $$

From this it can be seen that for a weak solution, one for which $n_s << N$, the thermodynamic potential must have the form, to first order in n_s,

$$ \Phi(T, \sigma, N, n_s) = N\mu_0(T, \sigma) + n_sk_BT \ln(n_s/eN) + n_s\psi(\sigma, T). $$
where ψ is a function only of σ and T. From this it follows that the chemical potential of the solvent is, to first order in the solvent concentration $c \equiv n_s/N$ given by

$$\mu(T, \sigma, c) = \frac{\partial \Phi(T, \sigma, N, n_s)}{\partial N} = \mu_0(T, \sigma) - k_B T c. \tag{9}$$

Note that this change in the solvent chemical potential arises solely from the entropy of the solute. Contributions to the solvent chemical potential from interactions between solute molecules and other molecules, solvent or solute, are higher order in the solute concentration.

Given a first-order transition from one uniform phase to two coexisting phases, denoted I and II. In the case of a pure one-component solvent, the condition for coexistence is that, in addition to the temperature and surface tension of each phase being equal, the thermodynamic potentials, or equivalently the chemical potentials, of each phase must also be equal

$$\mu_0^I(T_{0,co}, \sigma_0) = \mu_0^{II}(T_{0,co}, \sigma_0). \tag{10}$$

This condition determines the coexistence curve $T_{0,co} = T_{0,co}(\sigma_0)$. The transition temperature is completely determined by the surface tension of the two coexisting phases.

With the addition of a solute forming a weak solution, the condition of the equality of solvent chemical potentials becomes, from Eq. (9)

$$\mu_0^I(T, \sigma) - c_I k_B T = \mu_0(T, \sigma) - c_{II} k_B T. \tag{11}$$

The change in transition temperature on the addition of solute is obtained by expanding $\mu_0(T, \sigma)$ about $\mu_0(T_{co,0}, \sigma_0)$. Denoting $T = T_{co,0} + \Delta T$ and $\sigma = \sigma_0 + \Delta \sigma$ and utilizing Eq. (3) from which $\partial \mu_0 / \partial T = S/N \equiv s$, $\partial \mu_0 / \partial \sigma = A/N \equiv a$, one obtains

$$\Delta T = -\frac{a_I - a_{II}}{s_I - s_{II}} \Delta \sigma - \frac{c_I - c_{II}}{s_I - s_{II}} k_B T \tag{12}$$

Note that the coexistence temperature in the weak solution is no longer determined by the surface tension alone, but by the amount of solute as well. That is, the coexistence line of the pure solvent in the T, σ plane is, for the solution, drawn out into a sheet in the space of T, σ and μ_s, the solute chemical potential. Thus the change in transition temperature ΔT upon the addition of solute is only a meaningful quantity when the change, if any, of the independent thermodynamic variable, the surface tension, is specified. In the case in which the surface tension is held fixed, Eq. (12) reduces to

$$\Delta T = -\frac{c_I - c_{II}}{s_I - s_{II}} k_B T \tag{13}$$
The equation explains, *inter alia*, that the addition of cholesterol to a one-component membrane at constant tension causes a decrease in the transition temperature from liquid to gel phase. It follows from the fact that cholesterol partitions preferentially into the liquid phase which has a larger entropy per particle than that of the gel phase.

The extension of the result of Eq. (12) to a membrane of \(p \) components that acts as a solvent for the solute is straightforward. Let the membrane without solute have \(N \) molecules of which \(N_i = Nx_i \) are of component \(i = 1 \ldots p \). Its total energy is

\[
U = TS + \sigma A + \sum_{i=1}^{p} \mu_i N_i,
\]

with differential

\[
dU = TdS + \sigma dA + \sum_{i=1}^{p-1} (\mu_i - \mu_p) dN_i + \mu_p dN, \tag{15}
\]

which leads to the Gibbs-Duhem equation

\[
SdT + Ad\sigma + N \sum_{i=1}^{p-1} x_i d(\mu_i - \mu_p) + N d\mu_p = 0. \tag{16}
\]

I again consider the thermodynamic potential

\[
\Phi(T, \sigma, \{N_i\}, N) = U - TS - \sigma A,
\]

where \(\{N_i\} \) denotes the set of \(N_i, i = 1, p - 1 \). In the absence of solute,

\[
\Phi_0(T, \sigma, \{N_i\}, N) = \sum_{i=1}^{p-1} N_i (\mu_{i,0} - \mu_{p,0}) + N \mu_{p,0}, \tag{17}
\]

\[
d\Phi_0 = -SdT - Ad\sigma + \sum_{i=1}^{p-1} (\mu_i - \mu_p) dN_i + \mu_p dN, \tag{18}
\]

and is obtained from the partition function

\[
\exp[-\Phi_0/k_B T] = \prod_{i=1}^{p} \frac{1}{N_i!} \exp -[(H - \sigma A)/k_B T]. \tag{19}
\]

Again, let \(n_s \) solute molecules be added to the system changing the thermodynamic potential to \(\Phi(T, \sigma, \{N_i\}, N, n_s) \). Employing the same arguments as before for a weak solution, one finds that the chemical potential

\[
\mu_p = \frac{\partial \Phi(T, \sigma, \{N_i\}, N, n_s)}{\partial N} = \mu_{p,0} - k_B T c \tag{20}
\]
As there is nothing distinguishing the component p, this is true for the chemical potentials of all components.

At coexistence of two phases, the chemical potentials of all components must be equal. It is convenient to consider μ_p a function of T, σ and the $p-1$ independent chemical potential differences $\delta \mu_i \equiv \mu_i - \mu_p$. Then the condition of coexistence can be written

\[
\mu_{p,0}^I(T, \sigma, \{\delta \mu_i\}) - k_B T c^I = \mu_{p,0}^{II}(T, \sigma, \{\delta \mu_i\}) - k_B T c^{II}
\]

(21)

Assume that in the absence of solute, the two phases are in coexistence so that

\[
\mu_{p,0}^I(T_{0,co}, \sigma_0, \{\delta \mu_{i,0}\}) = \mu_{p,0}^{II}(T_{0,co}, \sigma_0, \{\delta \mu_{i,0}\}).
\]

(22)

Now expand the temperature T about $T_{0,co}$, the surface tension σ about σ_0 and the chemical potential differences $\delta \mu_i$ about $\delta \mu_{i,0}$ to obtain the extension of Eq.(12)

\[
\Delta T = - \frac{1}{s^I - s^{II}} \left\{ (a^I - a^{II}) \Delta \sigma + \sum_{i=1}^{p-1} (x_i^I - x_i^{II}) \Delta (\mu_i - \mu_p) + k_B T (c^I - c^{II}) \right\}
\]

(23)

Note that the coexistence temperature is now a function of $p+1$ fields; σ, the $p-1$ chemical potential differences $\{\mu_i - \mu_p\}$, and μ_s the solute chemical potential. These fields, or an equivalent number of conditions, must all be specified if the change in transition temperature upon the addition of solute is to be a meaningful quantity.

FIG. 1: Partition coefficient, X^{lo}/X^{ld} for several kinds of single chains of length n. $C_n : 0$ denotes a chain of length n and no double bonds. From Ref. 4.
The contribution to $\Delta T/T$ from the last term can be written

$$- \frac{k_B}{s^I - s^{II}} (c^I - c^{II}) = - \frac{k_B}{s^I - s^{II}} c \frac{1 - c^{II}/c^I}{1 + c^{II}/c^I},$$

$$= - \frac{k_B}{s^I - s^{II}} c \frac{1 - X^{II}/X^I}{1 + X^{II}/X^I},$$

$$\approx - \frac{k_B}{s^I - s^{II}} \frac{c}{2} (1 - X^{II}/X^I), \tag{24}$$

where c is the average solute concentration, and X^I and X^{II} are the mol fractions of the solute in the two phases. The last line follows when these mol fractions are not too different from one another.

Let phase I be the liquid-disordered phase and II be the liquid-ordered phase, in which case the entropy difference $s^I - s^{II}$ is positive. Then this contribution to $\Delta T/T$ is negative when the ratio X^{II}/X^I is less than unity and is positive otherwise. Fig. 1 shows the result of a calculation of the partition coefficient X^{lo}/X^{ld} of several different kinds of chains in a bilayer consisting of dipalmitoyl phosphatidylcholine (DPPC), dioleoyl phosphatidylcholine (DOPC), and cholesterol. The partition coefficients are plotted as a function of chain length, n. Note that for saturated chains, the partition coefficient decreases with increasing n for small n, but for n beyond 12 it increases with increasing n and crosses unity for n of about 16. The behavior is not difficult to understand. A saturated chain shorter than those which make up the bilayer partitions preferentially to the liquid disordered phase because its entropy is greater there. This contribution dominates the energetic one which favors the liquid ordered phase. As n increases to that of the saturated chains in the bilayer, the partition coefficient must take a value essentially equal to that of those chains. As these chains are found predominantly in the liquid ordered phase, the partition coefficient must exceed unity. As a consequence of this behavior of the partition coefficient, the contribution of the last term in Eq. (23) would tend to cause the transition temperature to decrease upon the addition of octonal, and to decrease even more on the addition of decanol. But upon further increase of the chain length, the magnitude of the decrease in transition temperature would become smaller, and eventually vanish. This is just the behavior observed by Gray et al.11
III. DISCUSSION

I have shown that in small concentrations, the addition of a short-chain alcohol to a membrane undergoing a first-order transition to coexisting liquid-ordered, (lo), and liquid-disordered, (ld), phases causes a change in the transition temperature, as given by Eq. (23); that of the several contributions to the change in transition temperature, one is proportional to the partitioning of the alcohol in the two phases; and that a recent calculation of this partitioning shows that this contribution would cause just the interesting behavior in the temperature shift as a function of chain length as is observed in experiment. Further, I now show that this term, and the observed order of magnitude of shift in the transition temperature, yields a reasonable difference in partitioning of the alcohol. To do so, I need the difference in entropy between ld and lo phases. This can be estimated from a combination of the Clausius-Clapeyron equation,

$$\frac{dT}{d\sigma}\bigg|_{\text{coex}} = -\frac{s^I - s^{II}}{a^I - a^{II}},$$ \hspace{0.5cm} (25)

which gives the change in transition temperature with a change in surface tension, all other thermodynamic variables being fixed, the measured rate of change of transition temperature with surface tension, $dT/d\sigma \approx -1K/mN/m$, and a difference in area per particle of 0.2nm2. This yields a difference in entropy per particle of $(s^I - s^{II})/k_B \approx 14.5$. With this and a measured fractional decrease in transition temperature $\Delta T/T$ of about -0.013, one obtains from Eq. (23) a value $c^I - c^{II} \approx 0.2$ which is reasonable.

Note that the magnitude of the temperature shift given by Eq. (23) depends upon the non-zero difference in entropy per particle in the two coexisting phases. Hence a calculation which assumes that this difference in entropy is zero, as is in a simple Ising model in which the entropy difference vanishes by symmetry, cannot capture this temperature shift in a weak solution.

I now address the question as to whether the contribution to the shift in transition temperature due to the partitioning of the solute, the last term in Eq. (23), is the dominant one. The first term in Eq. (23) can certainly be ignored compared to the last for the case of a biological membrane. The change in area per lipid between liquid-ordered and liquid-disordered phases is about $\Delta a = 0.2nm^2$. Further, the surface tension decreases on the addition of solute, and this decrease cannot be larger than the surface tension itself. In cells, this is on the order of $5 \times 10^{-3}k_B T/nm^2$. Thus in order for the first term in Eq. (23)
to be greater than the last, the difference in concentration of the solute in the two phases would have to be less than \(1 \times 10^{-3}\).

There remains to discuss only the terms in Eq. (23) proportional to changes in chemical potential differences \(\Delta(\mu_i - \mu_p), \ i = 1, \ldots, p-1\). It would appear that these quantities are not controlled in the experiment, and to this extent, the change in transition temperature upon addition of alcohol is not a well-defined quantity; i.e. by varying these chemical potentials upon addition of the alcohol, one could vary the shift in transition temperature at will. Nevertheless it is reasonable to assume that, except for the addition of the short-chain alcohol, the giant plasma membrane vesicles utilized by Gray et al. are essentially the same as vesicles without alcohol. Therefore with the exception of the change in chemical potential of all solvent components brought about by the entropy of the solute, Eq. (20), a change which does not affect the chemical potential differences \(\mu_i - \mu_p\), the chemical potentials are otherwise unaffected. Thus the shifts, \(\Delta(\mu_i - \mu_p)\), vanish. If this be the case, then Eq (23) reduces to

\[
\Delta T = -\frac{k_B T (c^I - c^{II})}{s^I - s^{II}}.
\]

IV. CONCLUSIONS

I conclude with a few observations and predictions. First I noted in the Introduction that the results of Gray et al. were interesting, \textit{inter alia}, because the introduction of short-chain alcohols reduced the lo-ld miscibility transition whereas the addition of cholesterol caused it to increase. That is now readily understood from Eq. (26) and the fact that short-chain alcohols partition preferentially into the ld phase, that with the larger entropy per particle. In contrast, cholesterol is known12 to partition preferentially into the lo phase, the phase with the smaller entropy per particle.

Second, the analysis presented here and the calculation of the partition coefficients shown in Fig. 1 predicts that if the addition of an alcohol with \(n = 14\) has almost no effect on the transition temperature, than the addition of an alcohol with \(n = 16\) will increase the transition temperature. This prediction has recently been confirmed13.

Third, it can also be seen from Fig. 1 that the addition of alcohols with unsaturated bonds will lower the transition temperature more than those with saturated tails, and that for a given \(n\) the magnitude of the decrease in transition temperature will increase with the
degree of unsaturation.

I emphasize that the above analysis is relevant for first-order transitions of the solvent in which the solute concentrations, c, sufficiently small that contributions quadratic in c to the solvent chemical potential can be ignored. It is easy to show that the concentration c^* below which this assumption is valid is of the order $c^* \approx k_B T / J$ where J is the magnitude of the energy of interaction between solute and solvent. In particular the analysis is applicable to transitions which are close to a critical point, as in the experiments of Gray et al., as long as the solute concentration is sufficiently small.

For concentrations larger than c^* it is well-known that a solute which acts like an amphiphile, gaining energy by placing itself between the components of the solvent, decreases the miscibility transition temperature, while one that prefers either phase of the phase-separated system increases that temperature. These behaviors were manifest in a recent simulation. Combining these results with those for the small concentrations of the weak-solution regime, one sees that a solute which prefers the lo phase, the one with the smaller entropy per particle, will raise the transition temperature over a wide range of compositions. In contrast a solute which prefers the ld phase, that with the larger entropy per particle, will on first addition, decrease the transition temperature, but on further addition will eventually increase it. From this observation there results a fourth prediction: that a short-chain alcohol which, at small concentrations, had been observed to lower the miscibility transition temperature in a giant plasma membrane vesicle will actually raise that temperature if its concentration in the membrane can be increased sufficiently.

Finally I note that it has recently been observed that short-chain alcohols added in small concentrations to three-component giant unilamellar vesicles, (GUVs), raise the lo, ld miscibility transition temperature, in contrast to their behavior when added to the giant plasma membrane vesicles of Gray et al. I would predict that, all other thermodynamic variables being held constant, smaller concentrations of short-chain alcohol than those used would lower the transition temperature in GUVs. of course I am assuming that the reduction in transition temperature resulting from this small concentration would be observable reliably. The difference between the results for the temperature shift in the two types of membranes could, perhaps, be related to the difference in their compositions which affects not only the partitioning of the solute into the coexisting lo and ld phases, but also the entropy per particle of those phases. Both of these factors, the latter particularly, affect the
magnitude of the shift in transition temperature, as can be seen from Eq. (23). Thus the
temperature shift in giant unilamellar vesicles might be much smaller than in giant plasma
vesicles. The difference in entropy per particle is, of course, directly related to the latent heat
of the transition, so just how closely the behavior of the two different vesicles correspond to
one another could be interrogated by calorometric methods.

I am grateful for the many rewarding discussions with Caitlin Cornell and Sarah Keller,
and also thank Sarah Veatch and Mark Uline for useful correspondence.

13 B. Machta, E. Gray, M. Nouri, N.L.C. McCarthy, E. Gray, A. Miller, N. Brooks, and S. Veatch,
14 I. Prigogine and R. Defay, Chemical thermodynamics, Ch. 16 (Longmans Green and Co. London,
 1954).