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Abstract

I review two theoretical explanations for the existence of inhomogeneities in
a fluid bilayer, such as the mammalian plasma membrane, which one might
well expect to be homogeneous. The first is the existence of a phase separa-
tion. If biologically relevant temperatures are below the critical temperature
of the separation, then these inhomogenieties are simply inclusions of one
phase within the other. One has to understand, however, why macroscopic
separation is not seen in the plasma membrane. If biologically relevant tem-
peratures are above the critical temperature, then the inhomogenieties could
be ascribed to critical fluctuations. There are difficulties with this interpre-
tation which I note. The second possible interpretation is that the dynamic
heterogeneities are evidence of a two-dimensionl microemulsion. Several
mechanisms which could give rise to it are discussed. Particular attention
is paid to the coupling of membrane height fluctuations to composition dif-
ferences. Such a mechanism naturally gives rise to a length scale which is
of the correct order of magnitude for the domains postulated to exist in the
plasma membrane.



1 Introduction

With such great interest in the hypothesis that the mammalian plasma
membrane is characterized by inhomogenieities, or “rafts”, of a character-
istic size on the order of 100 nm, (1, 2), it is incumbent upon us to un-
derstand how such distinct regions could come about. Why should a fluid
be heterogeneous; more specifically, why should a biological membrane be
heterogeneous? What mechanism overcomes the entropic tendency for all
components to mix uniformly? There are not many candidates for such a
mechanism that one can invoke, and even fewer if one concentrates on a
pure lipid bilayer, as I shall, and ignores the possible effects that proteins
could have on bringing about non-uniformity in a lipid system. I shall focus
on the two most often discussed. The first is simple phase separation, which
has been observed recently in different membranes, those of yeast vacuoles
(3).

2 Phase Separation and Associated Critical Fluc-
tuations

Consider first a system containing only one species of lipid, say the satu-
rated dipalmitoylphosphatidylcholine, (DPPC). At high temperatures, its
acyl chains explore many configurations in which the chains are not at all
straight but are rather disordered, a disorder characterized by the appear-
ance of thermally-excited kinks, i.e. gauche bonds. As a consequence, the
chains do not pack well together. The system is in a liquid phase. As the
temperature is lowered, the number of these thermally excited gauche bonds
decreases. At the main chain transition temperature, the number of these
bonds decreases discontinuously; the chains become more ordered and pack
together better. The system is in the gel phase.

The chains of a mono-unsaturated lipid, such as dioleoylphosphatidyl-
choline, (DOPC), are characterized by a permanent kink at the site of the
cis double bond. As a consequence, it is more difficult for these chains to
pack together and they are always more disordered than saturated chains of
the same length at the same temperature. Hence the temperature of their
main chain transition is lower than that of the system of saturated chains.

Now consider a two-component mixture of DPPC and DOPC. Due to
the presence of DOPC with its disordered chains, it is more difficult for the
DPPC to order. When the temperature is lowered sufficiently for ordering
to occur, the saturated lipids expel many of the unsaturated ones resulting
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in the coexistence of two phases: a DPPC-rich gel phase and a DOPC-
rich liquid phase. The transition is a first-order one; that is, there is a
difference in the densities of DPPC and DOPC in the two phases. That
chain-packing is indeed the mechanism which drives the transition is borne
out by calculations on microscopic models of the lipids that describe very well
the configurations of the lipid chains (4). The results are in good agreement
with experiments which observe the phase transition in such systems (5).

The addition of cholesterol to this mix changes things in an interesting
way. The rather rigid cholesterol molecule does not insert itself well in be-
tween the tightly packed tails of the gel phase. Hence its presence tends
to disorder it. With the addition of enough cholesterol, the DPPC-rich gel
phase melts to a DPPC-rich liquid, one quite distinct from the DOPC-rich
liquid which coexisted with the gel phase. So now the ternary system can
exhibit two different liquid phases. Not only do they differ in composition,
but they also differ in the degree of order of the acyl chains. As noted
above, the chains of the DOPC-rich liquid are rather disordered. Those of
the saturated DPPC-rich liquid are more ordered. Furthermore now that
the cholesterol can insert itself between the less-tightly packed chains of
the DPPC-rich fluid, its rigidity tends to further order those chains. Be-
cause of the difference in the average configuration of chains in the two
fluids, they are denoted liquid-ordered, and liquid disordered, respectively
(6). A typical ternary phase diagram, this one for the system of the satu-
rated lipid, palmitoylsphingomyelin (PSM), the unsaturated lipid, palmitoyl-
oleloylphosphatidylcholine (POPC), and cholesterol (7) is shown in Fig. 1.
It exhibits all three phases; gel, denoted So in the figure, liquid-ordered, (Lo),
and liquid-disordered, (Ld). There is a region in which all three phases coex-
ist. The two liquid phases become one at a critical point. Again, the above
explanation for the phase behavior is supported by a theoretical calculation
(8) which embodies these ideas, treats the chains accurately, and produces a
ternary phase diagram with the same general features as that in Fig.1. Once
the origin of the phase behavior is understood, it can be reproduced by sim-
pler models which replace the many coordinates needed to specify a chain
configuration by a single order parameter (9). Even more simply, one can re-
strict that order parameter to only two values thereby dividing the saturated
chains into just two classes, ordered and disordered. Because one does not
control the number in each class, the configurations freely interchange with
one another (10). Molecular Dynamics simulations of coarse-grained models
of ternary mixtures of cholesterol, a saturated, and an unsaturated lipid,
while not attempting to obtain the whole phase diagram, do find the new
and interesting feature of these ternary systems, namely, the coexistence of
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two liquid phases (11, 12).
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in layer 4). Layers 2 and 3 are hexagonal
lattice including 2N sides each (both blue
and red).

Figure 1

Note 1

• We use a four layer model because the two layer one doesn’t allow cholesterol to flip-flop.

• We use the interaction between layers 2 and 3 because the two equations

µro = µrd
and ro + rd = r (1)

can be analytically solved for ro and rd in terms of r. The limitation of using JCc is that there will
be no interaction between layers when there is no cholesterol. However, if we use the interaction
between layers 1 and 4 instead, the two equations above can’t be solved analytically. These extra
equations might or might not cause problems to the numerical method. We’re going to use JCc for
now.

Interaction energy The Hamiltonian of the system is

H =jdΣ<ij>r̂d,iûj + joΣ<ij>r̂o,iûj − jsocΣ<ij>r̂o,ib̂j − jsdcΣ<ij>r̂d,ib̂j

+ JdΣ<ij>R̂d,iÛj + JoΣ<ij>R̂o,iÛj − JsocΣ<ij>R̂o,iB̂j − JsdcΣ<ij>R̂d,iB̂j

+ JccΣ<ij>(b̂ib̂j + B̂iB̂j)− JCcΣ<ij>b̂,B̂j .

(2)
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At the middle of the Gibbs triangle, φ = ψ = 0, (9) vanishes while (10) reaches its maximum. First, if
we expect the effect of the spontaneous curvature is maxed at

First, if we look because the bilayer becomes symmetric and the spontaneous curvature of each leaflet
cancels each other. This makes sense when we consider the magnitude of the spontaneous curvature for
such membranes; that is, the total spontaneous curvature of a perfect symmetric bilayer is zero.

However, the later term reaches maximum at φ = ψ = 0 (largest effect at the center of the Gibbss
triangle) while (9) vanishes.

LD
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Figure 1: Phase diagram of a ternary mixture of POPC, sphingomyelin,
here labeled PSM, and cholesterol. There are two liquid phases, labeled Lo
and Ld, and a gel phase, So. The three regions of coexistence between two
phases are shown in light gray, and the triangular region of coexistence of
all three phases is shown in dark gray. After reference (7)

As noted, for the particular temperature, 23◦C, for which the phase di-
agram in Fig. 1 was determined, there is a critical point at a particular
concentration of the components. As such a point exists at nearby tempera-
tures as well, there is a critical line in the phase diagram when temperature
is included as a variable. The behavior of a system near a critical point has
been studied intensely and is well understood. In particular, the one-phase
fluid near the critical point is characterized by droplets with compositions
corresponding to either the Lo or Ld phase and of a size characterized by a
correlation length ξ which diverges as the critical point is approached. In
particular, if the composition of the system corresponded to one on the crit-
ical line at a temperature Tc (in degrees Kelvin) then, as the temperature
approached Tc, the correlation length would diverge as

ξ(T ) = ξ0

(
T − Tc
Tc

)−ν
, (1)

where for a lipid bilayer ξ0 is of the order of a few nm and the critical
exponent ν = 1. That this should be the case for the critical point of a
miscibility transition of a lipid bilayer follows from the modern theory of
critical phenomena; in particular that the miscibility transition in the two-
dimensional bilayer is characterized by a one-component order parameter
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and is therefore in the universality class of the two-dimensional Ising model
of which the exact critical behavior was famously solved by Lars Onsager
(13). Nevertheless it was nice to have this strong expectation confirmed by
experiment (14).

The phenomenon of macroscopic liquid-liquid phase separation provides
a plausible explanation for the origin of inhomogeneities, or “rafts,” in the
plasma membrane: they are droplets of one phase immersed in a background
of the other. Presumably if one waited long enough, these droplets would
coalesce into a macroscopic phase so that one would observe the coexistence
of two phases as one does in the case of yeast vacuoles (3).

But nothing like liquid-liquid phase separation is seen in the plasma
membrane. Why is this? Several answers have been proposed. One is that
while the transition does occur, the macroscopic separation of phases which
should accompany it is prevented by the underlying cytoskeleton which forms
a network of corrals (15). The size of these corrals was found to be of the
order of 300 nm, large enough to hold a raft so this idea explains the absence
of macroscopic phase separation, but preserves the idea of a phase transition
being the cause of the inhomogeneities.

A second line of argument (16) is that integral membrane proteins or
attachments of the membrane to the cytoskeleton favor one of the phases
over the other and, occurring randomly across the membrane, destroy the
transition just as a random field is known to do in the two-dimensional Ising
model (17). This argument would seem to doom an explanation of rafts in
terms of phase separation.

A third possible reason for the lack of macroscopic phase separation is
that, while the biological system can undergo a miscibility phase transition,
the critical temperature is below that of relevant body temperature. How-
ever if the latter is sufficiently close to a critical transition, there are large
fluctuations as noted above, and these could be identified as rafts (18, 19).
The effect of a cytoskeleton-like network is to cut off fluctuations larger than
the mesh size of the network, but smaller fluctuations remain and, again,
could be identified as the much-sought after inhomogeneities (20). This ex-
planation does require that the system, at a biological temperature T , be
close to the line of critical transitions. If the transition were at a temper-
ature Tc = T −∆T , then the correlation length ξ(T ) at T would be larger
than the typical size of a lipid, ξ0, by a factor

ξ(T )
ξ0

=
T −∆T

∆T
. (2)

Note that there is no “characteristic size” of the fluctuations. Rather their

4



size depends upon how close the system is to its critical point. If ξ(T ) were
to be 30 nm, an order of magnitude larger than ξ0 ≈ 3nm, then the system
would need be about 30 ◦C above a critical transition. But it is more than
that; the system at biological temperature would have to have almost the
same composition as the system which is critical at the lower temperature.
This is a priori unlikely and one must argue that the cell regulates its com-
position in order to be near the critical transition. There is no evidence that
this is, or is not, the case for the plasma membrane. The evidence from giant
plasma membrane vesicles (18). isolated from living cells and carrying no
cytoskeleton, is reviewed elsewhere in this volume by Cicutta and Veatch.
Another problem which must be addressed if one favors criticality as the
origin of rafts is that a miscibility transition seems to be characteristic only
of the exoplasmic leaf of the plasma membrane. Lipid bilayers in which
both leaves have a composition characteristic of the cytoplasmic leaf of the
plasma membrane do not exhibit phase separation (21). That is because the
lipids in the cytoplasmic leaf are almost all unsaturated. There are too few
saturated lipids to bring about a phase of their own. Therefore if phase sep-
aration were to occur in the plasma membrane, composition differences in
the cytoplasmic leaf would be small. As a consequence of that, there would
be little distinction between “raft” and “sea”, hence no useful mechanism for
conveying information from one leaf to the other. The same argument would
apply to fluctuations near a critical point.

In addition to the three possible reasons given above for the lack of
a macroscopic phase separation in the plasma membrane, there is also a
fourth: macroscopic phase separation is not seen because the plasma mem-
brane is not near a miscibility phase transition. As noted above, whereas
the exoplasmic leaf is expected to display a tendency to undergo phase sep-
aration, the cytoplasmic leaf is not. Any coupling between the exoplasmic
and cytoplasmic leaves will tend to drive the system away from phase sep-
aration temperatures characteristic of the exoplasmic leaf, an effect seen
experimentally (22, 23) and understood theoretically (24, 25).

In closing this section, I can summarize by saying that nothing like the
phase separation observed in yeast vacuoles is seen in the plasma membrane
of mammalian cells. Large Molecular Dynamics simulations of the plasma
membrane do not see such separation (26). Whether associated critical
fluctuations will prove to be the origins of rafts remains to be seen, and the
case is open. Personally I remain a skeptic on this, both because the cell
would have to regulate its composition to bring it near a critical transition,
and because it is not clear that there would be much of an effect in the
cytoplasmic leaf. That lack would defeat the purpose for which rafts were
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proposed.

3 Modulated Phases and Associated Microemul-
sions

For those of us who had worked on the theory of inhomogeneous fluids in
three-dimensional systems (27), the idea that rafts could be associated with
two-dimensional microemulsions was an appealing one. After all, microemul-
sions are characterized by regions, or droplets, which have a characteristic
size and which are dynamic, fluctuating objects. In the best-known bulk
system of oil, water, and amphiphile, the latter, as its name implies, loves
both of the former, gaining energy by sitting between them. Because it likes
the oil and water to mix, it increases the region of phase space in which they
do so, driving down the miscibility transition temperature (28). Further it
reduces the surface tension between coexisting phases. If enough amphiphile
is added, the energy of such interfaces is driven to zero and a modulated
phase, one of lamellae or cylinders or droplets, appears in which there is
an extensive amount of oil-water interface. The observation of modulated
phases, or perhaps melted versions of them in lipid bilayers (29–31), and
in giant plasma membrane vesicles strengthens the idea that rafts could be
identified with a microemulsion.

The problem with identifying rafts with the droplets of a microemul-
sion is that there is no obvious amphiphile that loves both saturated and
unsaturated lipids. In particular, cholesterol is certainly not. One knows
this because the addition of cholesterol to a one-phase region of a mix-
ture of saturated and unsaturated lipids brings about phase separation, i.e.
raises the miscibility transition (32), a clear indicator that the cholesterol
prefers one component to the other, and hence benefits if the two compo-
nents separate. Safran and co-workers (33, 34) proposed that the common
unsaturated lipids, those with one saturated tail and one unsaturated tail,
which they called “hybrid” lipids, could be both a major component of the
liquid-disordered phase as well as an amphiphile which would like to sit be-
tween that phase and the saturated-rich liquid-ordered phase. The idea is
that at an Lo−Ld interface, the hybrid lipid will reduce its energy if its sat-
urated leg is oriented toward the Lo phase and its unsaturated leg toward
the Ld phase. This leads naturally to a model in which the hybrid lipids are
modeled by two-dimensional vectors (35). Such models have been explored
extensively (33–37) and have been reviewed recently (38, 39).

There is no doubt in my mind that the mechanism works in principle,
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but one must believe that the energy gain in orienting a hybrid lipid at a
Lo −Ld interface is substantial, comparable to the repulsive interaction be-
tween saturated and unsaturated lipids itself. Further, recent experimental
evidence appeared that indicates that hybrid lipids do not play a unique role
as an amphiphile in lipid bilayers (40).

But if there is no amphiphile in the lipid bilayer, is it possible to bring
about modulated phases and microemulsions in them by some other means?
The answer to this question is, yes, there is. It is well known that there
are many mechanisms, several not employing an amphiphile, that can bring
about modulated phases in many different kinds of systems (41). One that
is of particular interest for lipid bilayers is the coupling of lipid curvature
to height fluctuations of the membrane (42–44). The basic idea is that in
a height fluctuation, the membrane will bend outward in some places, and
bend inward in others. Lipids with a large head group and small tail will
move toward the former regions whereas lipids with a small head group and
large tails will move to the latter. If the coupling between the fluctuations
and composition is sufficiently strong, the system will form modulated phases
(45). It follows that the system can also support a microemulsion because
a microemulsion can be viewed simply as a melted modulated phase (46).

In order for the coupling to be strong, it is clear that there must be
a significant difference between the spontaneous curvatures of the lipids.
Unfortunately this is not the case in the exoplasmic leaf. The major lipid
components of this leaf are phosphatidylcholine, (PC), and sphingomyelin
(SM), both of which have similar, small spontaneous curvatures (47). But
in this regard the cytoplasmic leaf is quite another story. Its major com-
ponents are phosphatidylserine, (PS), and phosphatidylethanolamine, (PE).
The first, again, has a small spontaneous curvature, but that of PE is large in
magnitude because of the small PE head group. Thus the difference in spon-
taneous curvatures of the two components is large. If there is any hope that
this mechanism brings about a microemulsion in the plasma membrane, it
seems that it will be due to a coupling of height fluctuations to composition
differences in the cytoplasmic leaf. That there are composition differences
in this leaf will be conveyed to the exoplasmic leaf by coupling between the
leaves. The exoplasmic leaf will respond presumably because, as we have
seen, its composition is such that it is near a phase separation which implies
that the response of its lipids to perturbations in composition is large. In
this way the system brings about a raft in both of its leaves (48). This is in
contrast to the problem I noted above, that a raft initiated by phase separa-
tion in the outer leaf is not expected to have much effect on the composition
of the inner leaf.
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A theoretical description of the system is readily formulated. We denote
by φ(r) the local difference in mol fraction of PS and PE in the inner leaf,
and by ψ(r) that of SM and PC in the outer leaf. We assume equal numbers,
N , of lipids in the two leaves which have equal areas A. The local, planar,
free energy functional per unit area of the bilayer can be written in the usual
form (45)

fplane[φ(r), ψ(r)] = −Jφnφ2 +
kBT

2
n[(1 + φ) ln(1 + φ) + (1− φ) ln(1− φ)],

− Jψnψ
2 +

kBT

2
n[(1 + ψ) ln(1 + ψ) + (1− ψ) ln(1− ψ)]

− Λφψ, (3)

where kB is Boltzmann’s constant and T the temperature, n ≡ N/A is the
areal density of lipids, and Λ is a energy of coupling between the leaves, The
quantities Jψ > Jφ > 0 are interaction energies, and the inequality ensures
that the outer leaf is closer, in temperature, to a phase separation than is
the inner. The total free energy of the planar bilayer is then

Fplane[φ, ψ] =
∫

d2r

[
bφ
2

(∇φ)2 +
bψ
2

(∇ψ)2 + fplane

]
, (4)

where bφ is related to the energy per unit length between regions rich in
PS and those rich in PE, and bψ is similarly related to the energy per unit
length between regions rich in SM and those rich in PC.

The elastic free energy of the bilayer is taken to be (49)

Fcurv[h] =
∫

d2r
[κ

2
(∇2h)2 +

γ

2
(∇h)2

]
(5)

where h(r) is the height of the bilayer from some reference plane and κ
and γ are the bilayer bending modulus and surface tension respectively.
The latter is the tension related to the membrane’s response to normal, i.e.
perpendicular to the membrane, strain (50, 51). It is often referred to as the
“frame tension”. It is the quantity that can be obtained from tether-pulling
experiments.

Now one couples the curvature of the bilayer to the difference in mol
fractions of PS and PE in the inner leaflet:

Fcoupl[φ, h] = −Γ
∫

d2r φ(r)∇2h(r). (6)

The total free energy, F̃tot[φ, ψ, h] is then F̃tot = Fplane + Fcurv + Fcoupl.
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It is appropriate at this point to mention related work of Friederike
Schmid and collaborators (52, 53). Suppose that one wanted to study bilay-
ers containing PE in the laboratory. Most likely they would be symmetric
bilayers. In such a case, the curvature of the bilayer would couple to com-
position differences in both leaves. One can picture PE-rich regions opposite
one another bending inward on both leaves. It is essentially this situation
described by Schmid. But again, this differs from the asymmetric plasma
membrane in which the PE is almost completely in the inner leaf.

Returning to the total free energy above, we can eliminate the degrees of
freedom, h(r), describing the height fluctuations of the membrane because
they appear only up to second order. After doing so and expressing the free
energy in terms of the Fourier transforms of φ(r) and ψ(r), we obtain

Ftot[φ, ψ] =
∫
d2r fplane +

A2

(2π)2

∫
d2k

[
bψ
2
k2ψ(k)ψ(−k)+

bφ
2

{
1− (Γ2/bφγ)

1 + κk2/γ)

}
k2φ(k)φ(−k)

]
. (7)

Note that the free energy to bring about spatial variations in the order pa-
rameter φ(r), which had been [bφ/2][∇φ]2 ∝ [bφ/2]k2φ(k)φ(−k), is reduced
by its coupling to the height fluctuations. Of most interest to us is a dis-
ordered, fluid phase, for which the ensemble average values of all quantities
are constant, independent of position. To examine the fluctuations in that
phase, we expand φ(r) and ψ(r) about their average values φ̄ and ψ̄, and
then expand the free energy, Ftot[φ, ψ], about that of the uniform fluid phase
to second order in these deviations. The result is (54)

Ftot[φ, ψ] = Ftot(φ̄, ψ̄)

+
A2

(2π)2

∫
d2k

[{
aφ +

bφ
2

[
1− (Γ2/bφγ)

(1 + κk2/γ)

]
k2

}
φ(k)φ(−k)

+
(
aψ +

bψ
2
k2

)
ψ(k)ψ(−k)− Λφ(k)ψ(−k)

]
, (8)

where

aφ =
n

2

[
kBT

1− φ̄2
− 2Jφ

]
aψ =

n

2

[
kBT

1− ψ̄2
− 2Jψ

]
.

The quantity aψ, with the dimension of energy per unit area, measures
how far the temperature T is from the critical temperature, 2Jψ/kB, of a
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symmetric, uncoupled (i.e. Λ = 0), bilayer with equal average compositions
of SM and PC (ψ̄ = 0). A similar statement applies to aφ.

One can see what the fluid phase is like by examining the structure
functions

Sφφ ≡ 〈φ(k)φ(−k)〉,
Sψψ ≡ 〈ψ(k)ψ(−k)〉,
Sφψ ≡ 〈φ(k)ψ(−k) + ψ(k)φ(−k)〉

2
,

which are all measurable, in principle, by means of scattering. The brackets
denote an ensemble average. The results are (37, 55)

Sφφ =
2gψ

4gφgψ − Λ2
(9)

Sψψ =
2gφ

4gφgψ − Λ2
(10)

Sφψ =
Λ

4gφgψ − Λ2
(11)

where

gφ(k) = Λ
{

(bφ/2Λ)(κ/γ)k4 − (bφ/2Λ)[(Γ2/bφγ)− 1]k2

1 + κk2/γ
+
aφ
Λ

}
(12)

gψ(k) = Λ
{
bψ
2Λ

k2 +
aψ
Λ

}
. (13)

From this, one sees that there is a characteristic length in the system,
(κ/γ)1/2 which originates from the properties of the membrane. Let us pause
and evaluate this length for the plasma membrane. The bending modulus
of the plasma membrane has been measured to be 4.1 × 10−19 Nm and
its surface tension to be 0.8 × 10−5N/m (56). This yields a characteristic
length of 226 nm which is certainly of the correct order of magnitude of
the phenomena one is trying to explain. This does not mean that it is the
correct explanation, but at least it indicates that it is not obviously wrong.

The structure functions tell us the response of the system to fluctuations
in the order parameters; i.e. they are essentially susceptibilities to pertur-
bations in the order parameter at a certain wavelength. The essence of the
phase diagram can be obtained from them. There are four phases. At high
temperatures and for concentration-curvature couplings Γ which are not too
large, the system is in a disordered fluid phase. As the temperatures is
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lowered, the system undergoes a transition to two coexisting fluid phases.
In one, assuming that the inter leaf coupling Λ > 0, the inner leaf is rich
in PS, and the outer in SM, while in the other phase, the inner leaf is rich
in PE, and the outer in PC. In the disordered phase in the vicinity of the
transition, all structure functions are peaked at k = 0, and as the transi-
tion is approached, all structure functions diverge. If the temperature is
lowered for large couplings Γ, then the system makes a transition to a mod-
ulated, striped, phase. Just above the transition, the structure functions
take their maximum values at some k∗ > 0 and diverge as the transition
is approached. These two lines of continuous transitions meet at a Lifshitz
point which occurs at some coupling ΓLif . At lower temperatures, the mod-
ulated phase coexists with the two fluid phases along a triple line. A phase
diagram is shown in Fig. 2 as a function of the temperature-like variable a
and τ = [ΓLif − Γ]/(bφγ)1/2.

-2 -1 0 1

0

1

-1

a

Ordinary
�uid

Microemulsion

Two-phase coexistence

Modulated 
phase

Triple line
τ

Figure 2:

The disordered fluid is of particular interest, and its nature can again
be determined by examining the structure functions, in particular, Sφφ(k).
When the coupling, Γ, between curvature and composition is small, the peak
in Sφφ(k) occurs at k = 0, and the fluid is an ordinary one. The density-
density correlation function, which is the Fourier transform of the structure
function, is characterized by a single length, the correlation length, over
which correlations decay. But for larger values of Γ, the peak in Sφφ(k)
occurs at some non-zero value of k indicating that the fluid is most suscep-
tible to fluctuations which vary in space. The density-density correlation
function is characterized by two lengths, and behaves like an exponentially-
damped oscillatory function. The scale of the damping is the correlation
length and the additional length is the wavelength of the oscillation in space
of the fluctuations. It is the same length which characterizes the nearby
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modulated phase. When the modulated phase melts, the fluid to which it
melts “remembers” the characteristic length scale. This is analogous to the
melting of a solid to a liquid; the liquid’s density-density correlation function
clearly shows that the first few neighbors are at about the same distance that
they were in the solid. It is this disordered fluid which clearly has structure
which is denoted a microemulsion. There is no phase transition between the
ordinary disordered fluid and the microemulsion, no singularity in the free
energy. Thus the boundary in the phase diagram between these two fluids is
an arbitrary one. A common, and experimentally accessible, definition is the
locus of points at which the peak in a structure factor moves off of zero wave
vector. That locus is called the Lifshitz line. It is denoted in Fig. 2 by the
dashed line. Note that within this phase diagram, obtained via a mean-field
theory, the microemulsion and the regions of two-phase coexistence are not
contiguous; that is, there is no phase transition from the one to the other.
It is always the ordinary fluid that undergoes phase separation.

Some of the effects of thermal fluctuations on this phase diagram have
been investigated by simulations (57, 58). The effects are seen in Fig. 3. Of
interest is that the microemulsion and two-phase coexistence are now close
to one another in the sense that one can go from one to the other via a first-
order transition (59). This phase diagram presents a simple explanation for
the observation of the sequence of phase separation, followed by a modulated
phase, followed by a disordered fluid in a four-component lipid mixture (29).

Representative configurations within the modulated phase, the microemul-
sion, and the ordinary fluid are shown in Fig. 4. That the microemulsion
(b) is a melted version of the modulated phase (a) is clear. Similarly one
see that as the parameters change to bring the system from (b) to the or-
dinary fluid (c), the amount of contrast, that is the difference in the order
parameter, between neighboring droplets decreases.

4 Conclusion

Because the proposition (1, 2) that the plasma membrane is inhomogeneous,
characterized by “rafts” rich in sphingomyelin and cholesterol, has attracted
so much attention, one would certainly like to understand the physical basis
for them. Assuming that the phenomenon is an equilibrium one, I have re-
viewed the two most likely explanations; 1) that they arise from a phase tran-
sition, or at least the proximity to one, or 2), that they are the manifestation
of a microemulsion brought about by one of several possible mechanisms,
also reviewed. So does either apply to the mammalian plasma membrane?

12
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Figure 3: Phase diagram of the model including fluctuations as a function
of the two parameters a and τ . Dashed lines denote first-order transitions,
solid lines continuous ones. Phase boundaries within the boxed region are
extrapolations from the regions outside. The parameter b has been set to
4.0. The dash-dot line is the Lifshitz line. The dots a, b, and c indicate the
systems whose representative configurations are shown in Fig. 4
.

Many questions must be resolved and these pose experimental challenges.
Are there critical fluctuations in the plasma membrane itself as opposed
to those fluctuations observed in giant plasma membrane vesicles? If the
plasma membrane were characterized by a microemulsion, how would one
know it? One might think that a microemulsion, which has been predicted
(57) to be one of the phases which has been observed in vitro (29) in micron-
sized GUVs could be detected by neutron scattering experiments which are
capable of determing the structure function. That of a microemulsion is
characterized by a peak at a non-zero wave vector. But thus far, scattering
experiments have only been carried out on small vesicles of a radius of tens
of nanometers. A peak at non-zero wavevector was indeed observed in that
system, but was interpreted by the authors as arising from the presence of
circular domains of a system at coexistence (60). The interpretation is not
unique however.

As I have noted, a system which exhibits phase separation could be
very close, in its parameters, to another which exhibits a microemulsion.
This is interesting as it prods one to compare the lipid composition of a
system which clearly shows phase separation, like a yeast vacuole (3), to
one in which the mechanism causing inhomogeneities is not clear, like the
plasma membrane. One might well hope that comparative studies of the lipid
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φ

Figure 4: Representative configurations from different phases of the system.
The parameter b is set to 4. a) The location of the system is a = 0.5 and
τ = −2.6. and the system is in the stripe phase. b) The location of this
system is a = 0.5, τ = −2.0. The system is a microemulsion. c) At a = 0.5
and τ = 0.5. The system is an ordinary fluid. These three systems are
indicated in the phase diagram of Fig. 3.
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compositionof these systems will resolve the very basic issue underlying the
concept of rafts.
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