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ABSTRACT Self-consistent field theory is used to determine structural and energetic properties of metastable intermediates

and unstable transition states involved in the standard stalk mechanism of bilayer membrane fusion. A microscopic model of

flexible amphiphilic chains dissolved in hydrophilic solvent is employed to describe these self-assembled structures. We find

that the barrier to formation of the initial stalk is much smaller than previously estimated by phenomenological theories.

Therefore its creation it is not the rate-limiting process. The relevant barrier is associated with the rather limited radial expansion

of the stalk into a hemifusion diaphragm. It is strongly affected by the architecture of the amphiphile, decreasing as the effective

spontaneous curvature of the amphiphile is made more negative. It is also reduced when the tension is increased. At high

tension the fusion pore, created when a hole forms in the hemifusion diaphragm, expands without bound. At very low membrane

tension, small fusion pores can be trapped in a flickering metastable state. Successful fusion is severely limited by the

architecture of the lipids. If the effective spontaneous curvature is not sufficiently negative, fusion does not occur because

metastable stalks, whose existence is a seemingly necessary prerequisite, do not form at all. However if the spontaneous

curvature is too negative, stalks are so stable that fusion does not occur because the system is unstable either to a phase of

stable radial stalks, or to an inverted-hexagonal phase induced by stable linear stalks. Our results on the architecture and

tension needed for successful fusion are summarized in a phase diagram.

INTRODUCTION

The importance of membrane fusion in biological systems

hardly needs to be emphasized. It plays a central role in

trafficking within the cell, in the transport of materials out

of the cell, as in synaptic vesicles, and in the release of

endosome-enclosed external material into the cell, as in viral

infection. Although proteins carry out many functions lead-

ing up to fusion, such as ensuring that a particular vesicle

arrives at a particular location, or bringing membranes to be

fused into close proximity, there is much evidence that they

do not determine the actual fusion mechanism itself. Rather

the lipids themselves are responsible for the evolution of

the fusion process in which the lipid bilayers undergo topo-

logical change (Lee and Lentz, 1998; Zimmerberg and

Chernomordik, 1999; Lentz et al., 2000).

The physical description of the fusion process has, until

very recently, been carried out using phenomenological

theories that describe the membrane in terms of its elastic

moduli (Safran, 1994). The application of these theories to

fusion has been reviewed recently (Zimmerberg and Cherno-

mordik, 1999). The fusion path that has been considered by

these methods is one in which local fluctuations are assumed

to cause a rearrangement of lipids in the opposed cis leaflets,

resulting in the formation of a stalk (Markin and Kozlov,

1983). To release tension imposed on the membranes by the

reduction of the solvent between them, the inner cis layers

recede, decreasing their area, and bringing the outer, trans,

leaves into contact. In this way the stalk expands radially to

form a hemifusion diaphragm. Creation of a hole in this

diaphragm completes formation of the fusion pore.

In recent years, coarse-grained models of amphiphiles

(Müller et al., 2003a) havebeenused toprovide amicroscopic,

as opposed to phenomenological, description of membranes.

Fusion was studied within two such models. One, in which

nonflexible molecules were composed of three segments, was

studied by Brownian dynamics simulation (Noguchi and

Takasu, 2001); and the other, in which the amphiphiles were

modeled as flexible polymer chains in solvent, was studied by

Monte Carlo simulation (Müller et al., 2002b). Both models

showed a markedly different path to fusion than the

phenomenological approaches assumed. Along this new

path, the creation of the stalk is followed by its non-axially

symmetric growth, i.e., elongation. After the stalk appears,

there is a great increase in the rate of creation of holes in either

bilayer, and the holes are created near the stalk itself. After

a hole forms in one bilayer, the stalk elongates further and

surrounds it, forming a hemifusion diaphragm. Formation of

a second hole in this diaphragm completes the fusion pore.

Alternatively, the second hole in the other membrane can

appear before the elongated stalk surrounds the first hole. In

this case, the stalk aligns the two holes and surrounds them

both forming the fusion pore. This mechanism has also been

observed more recently in molecular dynamics simulations

(Marrink and Mark, 2003; Stevens et al., 2003). As has been

stressed by us recently (Müller et al., 2003b), this alternative

mechanism can be distinguished experimentally from the
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earlier hemifusion mechanism because it predicts at least two

phenomena that are not compatible with the earlier hypoth-

esis. The first is lipidmixing between the cis leaf of one bilayer

with the trans layer of the other, a phenomena that has been

observed (Evans and Lentz, 2002; Lentz et al., 1997). The

second is transient leakage through the holes, noted above,

which is correlated in space and time with the fusion process.

Just such correlated leakage has recently been observed and

extensively studied (Frolov et al., 2003).

The Monte Carlo simulations of the fusion process

showed very clearly the nature of the process, and obtained

quantitative correlations between leakage and fusion. Un-

fortunately, simulations are computationally expensive, so

that investigation of the fusion process for different

molecular architectures and membrane tensions is imprac-

tical. Moreover, simulations are not well suited for cal-

culating free energy barriers of the fusion intermediates in

the mechanism observed over a wide range of tension and

amphiphilic architecture. Not only would one like to obtain

these barriers, one would also like to compare them to those

of the intermediates involved in the original hemifusion

mechanism. To do so, we employ a standard model of

amphiphilic polymers, which we describe in the next section,

and solve it within the framework of self-consistent field

theory (SCFT). In the first article of this series we examine

the original hemifusion mechanism, whereas in the second

we shall consider the new mechanism observed in the

simulations.

In Properties of Isolated Bilayers we present the basic

properties of the isolated bilayers and monolayers that result

from our calculation. These properties include the spatial

distribution of hydrophilic/hydrophobic segments, the area

compressibility, the bending rigidity, and spontaneous cur-

vature. We compare them to those obtained independently

from previous Monte Carlo simulations, and from experi-

ments on liposomes and polymersomes. It should be noted

that these effective macroscopic properties are calculated

within our microscopic approach, and are not required as

input, in contrast to the common phenomenological descrip-

tions of fusion based on membrane elasticity theory.

In Energetics of the Stalk and of its Radial Expansion we

examine the free energy landscape along the standard

hemifusion pathway, the path shown in Figs. 1 and 2. This

is the same path assumed in phenomenological approaches,

but we use a microscopic molecular model to calculate the

distribution of microscopic components in the system along

this trajectory, and the free energy that results. The initial

configuration of the system is that of two parallel bilayers

(Fig. 1 a). Hydrophilic portions of the amphiphile are shown

as dark shaded, hydrophobic portions are shown as light

shaded, and solvent is shown as unshaded. To bring the

bilayers into close contact requires energy to reduce the

amount of solvent between them. Consequently the free

energy per unit area, or tension, of the bilayers increases.

Fusion is one possible response of the system to this

FIGURE 1 Density profiles of the stalk-like structures shown in the (r, z)

plane of cylindrical coordinates. As the structures are axially symmetric, the

figure and its reflection about the z axis are shown for the viewer’s

convenience. The amphiphiles contain a fraction f ¼ 0.35 of the hydrophilic

component. The bilayers are under zero tension. Only the majority

component is shown at each point: solvent segments are not shown;

hydrophilic and hydrophobic segments of the amphiphile are dark and light

shaded, correspondingly. Distances are measured in units of the polymer

radius of gyration, Rg, which is the same for both the amphiphiles and for

the homopolymer solvent. (a) Two bilayers in solvent. There is no stalk

between them. Their thickness, d, defined in Eq. 4, is shown. (b) Unstable

transition state to the formation of the initial stalk, a state we label S0. The

radius of the stalk is R ¼ 0.6 Rg. In general the stalk radius R is defined by

the condition on the local volume fractions fA(R, 0) – fB(R, 0)¼ 0. (c) The

metastable stalk itself, which we label S1. Its radius is R ¼ 1.2 Rg. (d ) The

unstable transition state between the metastable stalk and the hemifusion

diaphragm. This transition state is denoted S2. Its radius is R ¼ 2.8 Rg. (e) A

small hemifusion diaphragm of radius R ¼ 3.4 Rg. The radius is shown

explicitly.
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increased tension. Along the standard pathway, close contact

of the cis layers is followed by the creation of an axially

symmetric unstable intermediate, or transition state, shown

in cross section in Fig. 1 b, which leads, under conditions

detailed below, to a metastable, axially symmetric stalk, Fig.

1 c. If the system is under sufficient tension, this stalk

pinches down, passes through another unstable intermediate

(Fig. 1 d ), and expands to form a hemifusion diaphragm

(Fig. 1 e). To determine the radius at which a hole forms in

this diaphragm to complete the fusion pore, we calculate in

Formation and Expansion of Fusion Pore the free energy of

an axially symmetric fusion pore as a function of its radius.

Density profiles of fusion pores are shown in Fig. 2. We

assume that when the free energy of the expanding

hemifusion diaphragm exceeds that of a fusion pore of the

same radius, a hole forms in the diaphragm converting it into

a fusion pore (Fig. 2 b). Not surprisingly, the radius of the

fusion pore that is formed cannot be too small, as in Fig. 2 a,

for then its free energy would be higher than that of the

hemifusion diaphragm. Once the pore has formed, it will

expand if the membranes are under tension. Fig. 2 c shows

the profile of an expanded pore, although this one is in a

membrane of zero tension. We are able to calculate the free

energy of the system at all stages of the pathway for various

architectures of the amphiphile and tensions of the

membrane.

The most notable results of our calculation are:

1. The free energy barrier to form a stalk, that is, the free

energy difference between the initial configuration of Fig.

1 a and that of the transition state Fig. 1 b, is small—on

the order of 10 kBT, much smaller than the estimates of

phenomenological theories (Kuzmin et al., 2001).

2. The more important fusion barrier is encountered on the

path between the metastable stalk (Fig. 1 c), through

another transition state (Fig. 1 d ), to a small hemifusion

diaphragm (Fig. 1 e). The height of this barrier depends

strongly on both the effective spontaneous curvature of

the amphiphile and the membrane tension. As expected,

the barriers to fusion are reduced as the architecture is

changed so as to approach the transition from the

lamellar to the inverted-hexagonal phases. The effect of

tension on the barriers to fusion is less dramatic, but still

very important.

3. We find that the hemifusion diaphragm does not expand

appreciably before converting to the fusion pore.

4. The small fusion pore formed by rupturing the hemi-

fusion diaphragm can, at low tension, be trapped in

a metastable state and not expand further. This result

provides an explanation for the flickering fusion events

that are observed experimentally. As the tension is

increased, however, this metastable state disappears and

the fusion pore, once formed, expands without limit, thus

resulting in complete fusion.

5. We observe that the regime of successful fusion is rather

severely limited by the architecture of the lipids. If their

effective spontaneous curvature is too negative, fusion is

pre-empted by the formation of either an inverted-

hexagonal phase or a stalk phase. If their curvature is not

sufficiently negative, fusion is prevented by the absence

of a metastable stalk.

We discuss these results further in Discussion.

THE MODEL

We consider a system consisting of an incompressible

mixture of two kinds of polymeric species contained in

a volume V. There are na amphiphilic diblock copolymers,

composed of A (hydrophilic) and B (hydrophobic) mono-

mers, whereas the ns solvent molecules are represented by

hydrophilic homopolymers consisting of A segments only.

The fraction of hydrophilic monomers in the diblock is

denoted f, and the identical polymerization indices of both

the copolymer and the homopolymer are denoted N. The

hydrophilic and hydrophobic monomers interact with a local

repulsion of strength x, the Flory-Huggins parameter.

Provided that these parameters are chosen appropriately,

FIGURE 2 (a) Density profile of a fusion pore of radius R/Rg ¼ 2.4. Were

the radius any smaller, the pore would be absolutely unstable to a stalk-like

structure. In general the pore radius is the larger value of the radial co-

ordinate that satisfies the condition on the local volume fractions fA(R, 0) –

fB(R, 0) ¼ 0. (b) A pore of radius R/Rg ¼ 3.4 and (c) one of radius R/Rg ¼

6.0. The radius is shown explicitly. The hydrophilic fraction of the

amphiphile, f ¼ 0.35, as in Fig. 1 and the tension is zero, again as in Fig. 1.

Distances are measured in units of the radius of gyration Rg.
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this model is essentially equivalent to that which we

simulated earlier (Müller et al., 2003b). We emphasize that

the earlier simulation and the calculation presented here are

completely independent. Comparison of results obtained

from the two different calculations, therefore, are instructive.

The partition function of the system of flexible chains with

Gaussian chain statistics can be formulated easily in either

canonical or grand canonical ensembles (Matsen, 1995;

Schmid, 1998), but is too difficult to be evaluated analytically.

Consequently we employ the well-established SCFT, to

obtain a very good approximation to the partition function.

This theory has been recently reviewed (Schmid, 1998), so

we relegate to the Appendix a brief reminder of the salient

features of the approximation. It suffices here to say that the

inhomogeneous systems we shall be studying are character-

ized by a local volume fraction of hydrophilic units, fA, and

of hydrophobic units, fB. Due to the incompressibility

constraint, these two volume fractions add to unity locally. It

is convenient to control the relative amounts of amphiphile

and of solvent, and therefore the relative amounts of A and

B monomers, by an excess chemical potential Dm, the

difference of the chemical potentials of amphiphile and of

solvent. Within this ensemble, the SCFT produces a free

energy, V, which is a function of the temperature, T, the

excess chemical potential, Dm, the volume V, and, when

bilayers are present, the area A that they span. In addition, the

free energy is a function of the local volume fractions fA and

fB, which are obtained as solutions of a set of five nonlinear,

coupled equations, given in Eqs. 8–12. Acceptable solutions

are defined by various constraints. For example, we require

that all solutions be axially symmetric, an assumption

embedded in all previous treatments of the stalk/hemifusion

process. We take the axis of symmetry to be the z axis of the

standard cylindrical coordinate system (r, u, z). Further, we

require all solutions to be invariant under reflection in the z¼ 0

plane. ThusfA(r,u, z)/fA(r, z)¼fA(r,�z), and similarly

forfB. Other constraints aremore interesting. For example, to

describe a stalk-like structure, as in Fig. 1, we require that the

solution display a connection, along a portion of the z axis,

between the hydrophobic portions of the two bilayers.

Further, we constrain its radius, R, defined by the condition

fA(R, 0)¼fB(R, 0), to be a value specified by us. In this way

we are able to calculate the free energy of stalk-like structures

as a function of their radius. To reiterate, once a solution of the

set of nonlinear coupled equations is found which, for given

temperature, excess chemical potential and volume satisfies

the various constraints imposed, the free energy within the

SCFT follows directly. We now turn to a description of the

results of this procedure for the systems of interest. We begin

with those obtained for isolated bilayers.

PROPERTIES OF ISOLATED BILAYERS

Here we present a range of microscopic and thermodynamic

properties of isolated bilayer membranes in excess solvent

that follows from our calculation. The most basic structural

properties of the bilayer membrane are the distribution of the

hydrophilic and hydrophobic segments across it. In Fig. 3 we

present the composition profiles obtained within the SCFT

approach, shown by solid lines, and compare them to those

obtained from our independent simulations (Müller et al.,

2003b), which are shown by the symbols. The profiles from

simulation are averaged over all configurations. In the Monte

Carlo simulation we used amphiphilic polymers consisting

of 11 hydrophilic and 21 hydrophobic monomers. This

corresponds to a hydrophilic fraction f ¼ 11/32 � 0.34, the

value we also used in the SCFT calculations. Fig. 3

corresponds to a system under zero tension. The profiles

change quantitatively, but not qualitatively, as the tension is

increased.

The overall agreement between the SCFT and averaged

Monte Carlo simulation results is very good. The position

and the width of the regions enriched in A (head) and B (tail)

segments of the amphiphile and solvent segments are

reproduced quantitatively in the SCFT model. The small

discrepancies in the A/B interfacial width can be attributed

to capillary waves and peristaltic fluctuations present in the

Monte Carlo simulations, but neglected in the SCFT

calculations.

Thermodynamic properties of the bilayer can be calcu-

lated from the free energy of the system that contains such

a bilayer of areaA:We denote this free energyVm(T, Dm, V,

A). Similarly, we denote the free energy of the system

without the membrane, i.e., a homogeneous amphiphile

solution, V0(T, Dm, V). The difference between these two

free energies, in the thermodynamic limit of infinite volume,

defines the excess free energy of the membrane,

FIGURE 3 Results from SCFT (solid lines) for the composition profile

across a bilayer membrane that is under zero tension. For comparison, the

profile obtained independently from simulation by averaging over config-

urations is shown in symbols. The hydrophilic fraction of the amphiphiles is

f ¼ 0.34.
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dVmðT;Dm;AÞ[ lim
V/N

½VmðT;Dm;V;AÞ �V0ðT;Dm;VÞ�:

(1)

The excess free energy per unit area, in the thermodynamic

limit of infinite area, defines the lateral membrane tension

gðT;DmÞ[ lim
A/N

½dVmðT;Dm;AÞ=A�: (2)

In the grand canonical ensemble this tension g can be related

to the temperature and chemical potential by means of the

Gibbs-Duhem equation

dgðT;DmÞ ¼ �ds dT � dsadðDmÞ; (3)

where ds is the excess entropy per unit area, and dsa is the

excess number of amphiphilic molecules per unit area. This

relation is quite useful because it shows that one can set the

tension to any given value by adjusting the excess chemical

potential of amphiphiles at constant temperature.

Depending on the applied tension, the thermodynamic

behavior of the membrane can be classified into three generic

types. For values of the tension that are sufficiently small and

positive, the membrane is metastable with respect to rupture,

and it is this range of tension that we consider below. For

larger positive values of g, the membrane becomes abso-

lutely unstable to rupture, whereas for negative g, the system

is unstable to an unlimited increase in the membrane’s area,

which simply leads to formation of the bulk lamellar phase.

In the following, we shall use the dimensionless tension,

g/gint, where gint is the interfacial free energy per unit

area between coexisting solutions of hydrophobic and hydro-

philic homopolymers at the same temperature.

The dependence of the membrane thickness,

d ¼ dsaV=ðna 1 nsÞ; (4)

and membrane tension, g, on the exchange chemical

potential is shown in Fig. 4. The agreement is excellent

between the SCFT predictions and the independent simula-

tion results averaged over all configurations. From the

membrane tension, the area compressibility modulus, kA,

can be obtained by using any of the equivalent relations,

kA [A
@g

@A
¼ �dsa

@g

@dsa

¼ ðdsaÞ
2@ðDmÞ

@dsa

: (5)

Most of the earlier treatments of membranes relied on

elasticity theory, in which a membrane is described solely by

its elastic properties, such as the bending modulus, kM, the

saddle-splay modulus, kG, and the spontaneous curvature, c0
(Safran, 1994). These moduli are normally taken either from

an experimental measurement or from a microscopic theory.

The SCFT approach, being based on a microscopic model,

allows one to calculate these moduli in a straightforward

manner that can be sketched as follows.

One calculates within the SCFT the excess free energies

due to small spherical and cylindrical deformations of an

interface containing an amphiphilic monolayer. These excess

free energies depend upon microscopic parameters, such

as the amphiphile hydrophilic fraction f, as well as the

curvatures of the deformations. They are then fit to the

standard Helfrich-Hamiltonian HE of an infinitely thin

elastic sheet, which depends upon phenomenological

parameters, and the curvatures of the deformations. This

Hamiltonian for a saturated, tensionless monolayer is

(Safran, 1994)

HE ¼

Z

dA½2kMðM � c0Þ
2
1 kGG�; (6)

where M and G are the local mean and Gaussian curvatures

of the deformed monolayer. From the fit, one obtains the

phenomenological parameters in terms of the microscopic

quantities. Details of this procedure can be found in Matsen

(1999) and Müller and Gompper (2002). Because SCFT

ignores fluctuations, the moduli obtained are the bare, un-

renormalized values. The effect of renormalization is usually

small (Peliti and Leibler, 1985) and depends on the lateral

length scale of the measurement. Fusion proceeds on a lateral

length scale that does not exceed the membrane thickness by

a great deal and, on this length scale, we expect the

renormalization of the elastic constants to be small.

In Fig. 5 awe show the calculated spontaneous curvature of

an amphiphilic monolayer as a function of the hydrophilic

fraction f of the amphiphile. The former is a monotonic

FIGURE 4 Bilayer thickness, d, measured in units of the radius of

gyration Rgwith scale to left, versus excess chemical potential as obtained in

our SCFT calculation (solid line). This result is compared to that of an

independent simulation averaged over all configurations (solid circles). Also

shown is the excess free energy per unit area, or tension, of the bilayer, scale

to the right, as a function of the exchange chemical potential. Results

obtained in our SCFT calculation are shown by the solid line, and those

obtained in an independent simulation are shown by the dotted line. The

error bar shows the uncertainty in the exchange chemical potential at which

the bilayer is without tension as determined in the simulations.

Field Theoretical Study of Membrane Fusion 3281

Biophysical Journal 87(5) 3277–3290



function of the latter. This is to be expected, as the phe-

nomenological spontaneous curvature attempts to capture

some of the effects of the differing hydrophilic and hy-

drophobic volumes in the amphiphile, which are specified by

f, on the membrane configurations. The above result provides

a direct mapping between the phenomenological property c0,

which can be measured experimentally (Rand et al., 1990;

Leikin et al., 1996) and the microscopic variable f used in our

calculations. Our results for the area compressibility, kA, and

elastic moduli kM and kG are shown in Fig. 5 b. In agreement

with experiments on model lipid systems, they are not very

sensitive to changes in amphiphile architecture parameter f or,

equivalently, to the spontaneous curvature c0. For comparison

with ourmodel system, we present in Table 1 the properties of

lipid and amphiphilic diblock membranes determined

experimentally.

Lipid membranes are known to exhibit strong mutual

repulsion at small separations, usually attributed to so-called

hydration forces (Parsegian and Rand, 1994). We calculated

the free energy of a system containing two planar bilayers in

excess solvent under the condition that the distance between

the cis interfaces be constrained to a given value. This

technique has been used before to study monolayer inter-

actions in a similar system (Thompson and Matsen, 2000),

and we refer the reader to this article for details.

One finds that there are two generic features of the free

energy of the two bilayers as a function of their separation.

First at sufficiently small separation, when heads of the

amphiphiles come in contact, the membranes experience

strong repulsion due to this contact, a repulsion that rises

steeply as the separation is further reduced. Second at a

somewhat larger separation, there is a very weak attraction

between the two membranes. These two features have been

exhaustively analyzed (Thompson and Matsen, 2000). It has

been determined that the repulsion arises mostly from the

direct steric interaction between the head segments of the

amphiphiles in the contacting cis monolayers. The weak

attraction occurs because the solvent molecules prefer to

leave the confining intermembrane gap to increase their

conformational entropy. This is simply the well-known

depletion effect, about which there is a very large literature

(Götzelmann et al., 1998). The combination of the short-

range repulsion and the depletion effect attraction produces

a minimum in the free energy at some separation. The dis-

tance at which this minimum occurs, typically on the order

of one Rg between opposing cis leaves, is the equilibrium

separation.

The reasonable description of the properties of self-

assembled monolayers and bilayers presented above provides

confidence that our model can be used to describe the

structural changes that occur in membranes during the fusion

process.

FIGURE 5 (a) Dependence of the product of spontaneous curvature and

bilayer thickness, c0d, on hydrophilic fraction f of the amphiphile.

Experimental values of c0d for DOPE and DOPC from Table 1 and the

corresponding values of f are shown. (b) Plot of the dependence of

dimensionless values of the area compressibility, kA, bending modulus,

kM, and saddle-splay modulus, kG, moduli on the hydrophilic fraction f of the

amphiphile.

TABLE 1 Structural and elastic properties of

bilayer membranes

Polymersomes Liposomes

EO7 DOPE DOPC

d 130 Å 38.3 Å* 35.9 Åy

c0d no data �1.4§ �0.42z

kA/gint 2.4 4.4y 2.9y

kM/gintd
2
3 102 1.67 6.0z 6.0§

Key: d, bilayer membrane thickness; c0, monolayer spontaneous curvature;

kA, bilayer area compressibility modulus; kM, monolayer bending modulus;

gint ¼ 50 pN/nm, oil/water interfacial tension. Data on EO7 polymersomes

is taken from Discher et al. (1999). Values of d, c0, and ka for DOPE were

obtained by linear extrapolation from the results on DOPE/DOPC(3:1)

mixtures and pure DOPC.

*From Rand and Parsegian (1989).
yFrom Rand et al. (1990).
zFrom Chen and Rand (1997).
§From Leikin et al. (1996); see also http://aqueous.labs.brocku.ca/lipid//.
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ENERGETICS OF THE STALK AND OF ITS

RADIAL EXPANSION

The formation and stability of the initial interconnection

between the membranes, the stalk itself, has not received

much theoretical attention. Creating the stalk requires the

membranes to undergo drastic topological changes, which

cannot be easily described by continuum elastic models. The

common approach has been to assume that two small hy-

drophobic patches (one in each membrane) are produced by

thermal fluctuations in the region of contact. Hydrophobic

interactions then drive the connection of these energetically

costly regions, and result in the formation of a metastable

structure, the stalk (Markin and Kozlov, 1983). The size of

the hydrophobic patches and the distance between them can

be optimized to minimize the free energy of the unstable

transition state. With the use of this strategy, continuum

elastic models have estimated the free energy barrier to

create a stalk to be ;37 kBT (Kuzmin et al., 2001). The

SCFT method allows us to obtain solutions for both the

unstable transition state to stalk creation and for the stalk

itself, if it is indeed metastable.

The dependence of the free energy of stalk-like structures

on their radius, R, when the bilayers in which they form are

under zero tension, is shown in Fig. 6 a. It is plotted for

various values of the architectural parameter, from f ¼ 0.45,

which corresponds to an amphiphile with a very small

negative spontaneous curvature, to f ¼ 0.25, an amphiphile

with a large negative spontaneous curvature. From Fig. 5 a it

is seen that this f-range includes DOPC and DOPE lipids,

which are frequently utilized as components of model lipid

membranes in fusion experiments. At f ¼ 0.45 we could not

find a stalk-like solution for 2.2 , R/Rg , 4. The system

would spontaneously rupture in the vicinity of the symmetry

axis r ¼ 0, resulting in a fusion pore-like structure.

The extremal points of the free energy of the system with

a stalk-like structure with respect to its radius correspond to

intermediate structures and transition states. The free energy

extrema of the intermediates are saddle points with respect

to deformations, and are therefore unstable, whereas those

of the intermediates are local minima, and are therefore

metastable. In the inset to Fig. 6 a we identify three states

with extremal free energies. Depending on the values of the

architecture parameter f and the membrane tension g, we

find the following solutions playing central roles in the

description of the membrane fusion process:

The transition state between the unperturbed bilayers and

the metastable stalk, S0.

The metastable stalk itself, S1.

The transition state that occurs as the initial small stalk is

radially expanded into the hemifusion diaphragm,

denoted S2.

It is clear from Fig. 6 a that the metastable stalk solution S1
(and therefore the transition state S0) exists only for suf-

ficiently small values of the hydrophilic fraction f. At zero

membrane tension this minimal f is ;0.36, which corre-

sponds to the spontaneous curvature c0d ¼ �0.9, approxi-

mately that of a 1:1 mixture of DOPE and DOPC lipids. To

our knowledge, this is the first theoretical prediction of

the metastability of the stalk itself. Existence of the stalk

intermediate is crucial for the fusion dynamics, since it

separates the fusion process into two activated stages: creation

of the stalk and its further expansion.We argue, therefore, that

for those conditions, specified by f and g, under which there is

no S1 solution, fusion will be considerably slower or, perhaps,

impossible. Fig. 6 a also shows that, at small stalk radius, R,

the free energy barrier to create the stalk, which corresponds

FIGURE 6 (a) The free energy, F, of the stalk-like structure connecting

bilayers of fixed tension, zero, is shown for several different values of the

amphiphile’s hydrophilic fraction f. In the inset we identify the metastable

stalk, S1, the transition state, S0, between the system with no stalk at all and

with this metastable stalk, and the transition state, S2, between the metastable

stalk and a hemifusion diaphragm. The architectural parameter is f¼ 0.30 for

this inset.No stable stalk solutionswere found for f¼0.45 in the region shown

with dashed lines. They were unstable to pore formation. (b) The free energy

of the expanding stalk-like structure connecting bilayers of amphiphiles with

fixed architectural parameter f ¼ 0.35 is shown for several different bilayer

tensions. These tensions, g/gint, are shown next to each curve.
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to the state S0, does not exceed 5 kBT. This value is much

smaller than the 37 kBT predicted by the phenomenological

calculation (Kuzmin et al., 2001). Of course, one can ask how

applicable our results for block copolymer membranes are to

biological ones. If we take as a natural measure of energy the

dimensionless quantity gintd
2/kBT, where d is the membrane

thickness, we obtain a value of;60 in our system, a factor of

2.5 less than that (�150) for a typical biological bilayer. This

suggests that our energies should be scaled up by a factor of

;2.5 to compare them with those occurring in biological

membranes. Even after doing so, however, they are still much

smaller than the estimates of the phenomenological theories.

We infer from this result that the phenomenological

approaches, based on the continuum elastic description, are

not accurate in describing the drastic changes in membrane

conformations on the length scales comparable to the

membrane thickness.

In Fig. 1 b, we show the calculated density profiles of the

different segments in the unstable transition state structure S0
at f ¼ 0.35 and g/gint ¼ 0. As can be seen, the interface

between A and B segments is extremely curved, and the stalk

radius R ¼ 0.6 Rg is much smaller than the membrane

hydrophobic core thickness. For clarity, we show only the

majority component at each point. The interfaces between the

different components appear to be sharp in such a graphical

representation, but actually they are relatively diffuse, as can

be seen in Fig. 3.

The behavior of the free energy of the stalk-like structure as

it expands into a hemifusion diaphragm under non-zero

tension is shown in Fig. 6 b, and one clearly sees a second

local maximum at R/Rg � 3 that corresponds to the second

unstable transition state, S2. The maximum results from the

competition between the elimination of the energetically

costly bilayer area, which reduces the free energy as�gpR2,

and the creation of diaphragm circumference, which increases

it as 2pltriR. Here ltri is a line tension. Fig. 6 b shows that this

second maximum is, in general, much greater than that en-

countered in creating the stalk itself. Therefore we infer that

crossing this barrier is the rate-limiting step of the hemifusion

mechanism. As the tension increases, the height of this barrier

decreases. Thus at very high tension, on the order of 0.5gint for

f ¼ 0.3, this local maximum disappears entirely, leading to

stalk expansion without any barrier at all. The rather strong

dependence of this barrier height on tension contrasts with the

behavior of the free energy of the metastable stalk itself,

which, from Fig. 6, is seen to depend only weakly on the

tension. We also note that the minimum in the free energy

corresponding to the metastable stalk is exceedingly shallow.

This means that these interconnections are easily reversible,

and would constantly fluctuate in size.

We recapitulate, in Fig. 7, the dependence of the free

energy of the metastable stalk S1, and of the unstable tran-

sition state S2 on the tension, g, and on the architectural

parameter f. The free energy of the metastable stalk, S1,

varies greatly with f, and decreases substantially for smaller f,

i.e., as the spontaneous curvature of the amphiphile becomes

more negative. Although our calculation applies to mem-

branes composed of a single amphiphile, and not a mixture,

it clearly strengthens the argument that one role of such

negative curvature lipids as phosphatidylethanolamine,

present in the plasma membrane, is to make metastable

and thermally accessible the formation of stalks, which are

necessary to begin the fusion process (de Kruijff, 1997). For

sufficiently small values of the architectural parameter f, the

free energy of the metastable stalk actually becomes lower

than that of the unperturbed bilayers. Presumably this leads

to the formation of the thermodynamically stable ‘‘stalk

phase’’ recently realized experimentally in a lipid system

(Yang and Huang, 2002).

In summary, both an increase in the membrane tension

g and a decrease in the hydrophilic fraction f favor stalk

expansion into the hemifusion diaphragm. The density pro-

files in the transition state between the metastable stalk and

the hemifusion diaphragm are shown in Fig. 1 d, and that of

the unstable, expanding, hemifusion diaphragm in Fig. 1 e.

Note how thin is the hydrophobic region on the axis of

symmetry in Fig. 1 d and next to the triple junction in Fig. 1 e,

compared to the thickness of the bilayers away from the

diaphragm.

FORMATION AND EXPANSION OF FUSION PORE

The hemifusion diaphragm is a possible intermediate along

the path to fusion, but for complete fusion to occur, a hole

must nucleate in the diaphragm leading to the formation of

the final fusion pore. Here we consider the energetics of the

fusion pore. The manner in which we obtain solutions

corresponding to the pore and determine its free energy are

similar to those for the stalk described above. A density

FIGURE 7 The free energy, F, of the metastable stalks S1 (dashed lines)

and the transition states S2 (solid lines) as a function of the tension for

different architectures f ¼ 0.25, 0.30, 0.35, and 0.40. Note that there is no S1
solution for f ¼ 0.4 at the values of tension we studied.
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profile of a fusion pore is shown in Fig. 2 a. In the plane of

mirror symmetry between the two bilayers, there are two

radii at which the volume fraction of hydrophobic and

hydrophilic elements are equal, i.e., for which fA(r, 0) –

fB(r, 0) ¼ 0. We define the radius, R, of the fusion pore as

the greater of these two distances. This choice is consistent

with the definition of the radius of a stalk-like structure, the

only radius at which fA(r, 0) – fB(r, 0) ¼ 0, as can be seen

from the following: if one begins with a stalk-like structure

of radius R and introduces a hole into it to create a pore, then

the radius of the pore, according to the above definition, is

also R, as it should be. We are able, therefore, to directly

compare the free energies of the pore and stalk-like structures

with the same radius.

The free energy of the fusion pore in a system with fixed

architecture, f¼ 0.35, but under various tensions is shown in

Fig. 8. As the tension on the membrane is increased from

zero, the free energy of the pore decreases as �2gpR2 for

large radius R, similar to the free energy decrease of the

hemifusion diaphragm. The factor of 2 arises because pore

expansion eliminates both membranes, whereas hemifusion

expansion removes only one.

The free energies of the fusion pores, shown in solid lines

in Fig. 8, are compared with those of the stalk-like structures

under the same conditions, which were shown previously in

Fig. 6 b. We assume that a hole forms in the hemifusion

diaphragm converting the diaphragm into a fusion pore when

the free energy of the pore becomes lower than that of the

stalk-like structure. The radius at which the free energies of

the expanding stalk and of the fusion pore become equal is

R � 2.5–3.5 Rg. Of course, there is not a sharp transition

from the stalk to the pore, because the free energies are

finite. There is instead a region of radii where the transition

from the stalk to the fusion pore occurs, and which is char-

acterized by a free energy difference of the order of thermal

fluctuations kBT. Because the stalk and pore structures are so

similar at such small values of radius, it is likely that there is

only a very small free energy barrier associated with rupture

of the hemifusion diaphragm, which converts it to the fusion

pore. Therefore, our calculations indicate that the hemifusion

diaphragm would hardly expand before the fusion pore

would form. This agrees with the conclusion of a recent

phenomenological calculation (Kuzmin et al., 2001).

Fig. 8 shows that, except at low tension, the hole forms in

the diaphragm after the barrier to diaphragm expansion has

been crossed. Therefore within the standard hemifusion

mechanism, the barrier to hemifusion expansion is, in fact,

the major barrier to fusion.

At very low tensions, our results show that the most

important barrier to fusion is no longer that governing the

expansion of the hemifusion diaphragm, but becomes that

associated with the expansion of the fusion pore itself. As

a consequence of the large barrier to expansion of the fusion

pore, pores of small radius, R � 3.4 Rg, become metastable

for most architectures for tensions g/g0 ,;0.1. This

metastability persists to zero tensions, as seen from Fig. 9.

Note that the potential minimum of the metastable pore is

quite shallow, therefore one would expect that thermal

fluctuations will easily cause it to expand and contract, or

FIGURE 8 The free energies, F, of a fusion pore (solid lines) and of a stalk

(dashed lines, compare to Fig. 6 b) of radius R are shown. Under the

assumption that the stalk-like structure converts to a fusion pore when their

free energies cross, one can read off the barrier between metastable stalk and

formation of the fusion pore. The membranes are comprised of amphiphiles

with fixed architecture, f ¼ 0.35, and are under various tensions g/g0 as

indicated in the key. Note that the fusion barrier decreases with increasing

tension.

FIGURE 9 The free energies, F, of a fusion pore (solid lines) and of a stalk

(dashed lines) of radius R are shown. In contrast to Fig. 8, the membranes

here are under zero tension, and are comprised of amphiphiles with various

values of f. The instability of the fusion pores at small radius is indicated by

arrows. For f¼ 0.3, 0.35, and 0.4, the stalk-like structure converts into a pore

when it expands to a radius R� 2.4 Rg at which the free energies of stalk-like

structure and pore are equal. For the system composed of amphiphiles of f¼
0.25, however, the stalk-like structure converts at R � 2 Rg into an inverted

micellar intermediate (IMI), whose free energy is shown by the dotted line.

The fusion pore is unstable to this IMI intermediate when its radius decreases

to R � 3.4 Rg. Thus the IMI is the most stable structure under these

conditions.
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flicker, at the minimum free energy configuration with an

amplitude of the order of 1 Rg. Note also that the activation

barrier to reseal the fusion pore is quite substantial, on the

order of 5 kBT, which would translate to ;13 kBT in lipid

systems. This means that flickering pores can be long-lived

metastable states and, depending on the tension, might either

reseal or expand. In retrospect, it should not be surprising

that a small fusion pore is metastable in a tensionless

membrane. Its free energy must increase linearly with its

radius due to the line tension cost of its circumference. On

the other hand as its radius decreases, the pore eventually

becomes sufficiently small so that the inner sides of the pore

come into contact, repelling each other and causing the free

energy to again increase. Thus there must be a minimum at

some intermediate distance. If the radius is decreased below

some critical value, the compressed pore structure becomes

unstable to the stalk-like structure. This instability is shown

with arrows in Fig. 9. The density profile of such a margin-

ally stable pore occurring in a membrane with f ¼ 0.35 and

R ¼ 2.4 Rg is shown in Fig. 2 a.

Fig. 9 shows that the small flickering pore would be

thermally excited from a metastable stalk for most of the

architectures shown, f ¼ 0.40, 0.35, and 0.30. As the archi-

tecture changes such that f decreases still further, the stalk free

energy becomes negative—meaning that it is favorable to

create many of them, which leads to the formation of a stalk

phase. This occurs for non-zero tension as well.

Lastly, we note from Fig. 9 that at very low tension and

very small values of the architectural parameter ( f ¼ 0.25,

corresponding to a large and negative spontaneous curva-

ture), both the fusion pore and the stalk-like structure are

unstable to another structure, the inverted micellar in-

termediate (IMI), introduced by Siegel (1986). Interestingly,

this configuration was suggested previously as a possible

player in the fusion process, but has been largely neglected

because free energy estimates obtained from elastic ap-

proaches were prohibitively high. As will be shown in our

second article, the IMI and related linear stalk intermediates

are very important in describing fusion.

DISCUSSION

We have carried out a self-consistent field study of the fusion

of membranes consisting of flexible block copolymers in

a solvent of homopolymer. The main purpose of this article

was to evaluate the free energy barriers encountered within

the standard hemifusion, or stalk, mechanism.We summarize

our major findings in Fig. 10 in a phase diagram depicting the

parameter space of amphiphile architecture and tension.

We find that as the architecture of the amphiphile f is

changed so that its spontaneous curvature decreases from

zero and becomes more negative, fusion is enhanced. There

are at least two reasons for this. First, the initial stalk

becomes metastable only if f is sufficiently small (i.e., the

spontaneous curvature is sufficiently negative). This is the

case in the region to the left of the nearly vertical black

dashed line in Fig. 10. Presence of the metastable stalk

intermediate is crucial for fast fusion, because its formation

represents the first of at least two activated steps in the fusion

process. Within the hemifusion mechanism, the second

activated step is the radial expansion of the stalk into

a hemifusion diaphragm. We expect that in the region in

which the stalk is not metastable, fusion would be extremely

slow, if not impossible.

We also find that for a sufficiently small f the stalk

intermediate becomes absolutely stable with respect to the

system with unperturbed membranes. There is a small region

(shown in the figure between the dotted and solid lines) in

which the stalk is not only stable with respect to the

unperturbed system, but is more stable than any other

intermediate we have considered. Consequently we predict

formation of a ‘‘stalk phase’’ in this region. This result is in

accord with recent experiments onmodel lipid systems (Yang

andHuang, 2002). As the spontaneous curvature ismade even

more negative, linear stalks, which are precursors to the

formation of an inverted-hexagonal phase, become evenmore

stable than radial stalks. Hence the stalk phase becomes

unstable with respect to the inverted hexagonal phase.

We remark that, according to our calculations on bilayers

comprised of a single amphiphile, the variation of archi-

tectures within which successful fusion can occur is quite

small. One way that a system composed of many different

amphiphiles can ensure the appropriate effective architecture

is to employ a mixture of lipids comprised of those with

small spontaneous curvatures, or lamellar formers, and those

FIGURE 10 A phase diagram of the hemifusion process in the

hydrophilic fraction-tension, ( f, g), plane. Circles show points at which

previous independent simulations were performed by us. Successful fusion

can occur within the unshaded region. As the tension, g, decreases to zero,

the barrier to expansion of the pore increases without limit as does the time

for fusion. As the right-hand boundary is approached, the stalk loses its

metastability, causing fusion to be extremely slow. As the left-hand

boundary is approached, the boundaries to fusion are reduced, as is the time

for fusion, but the process is eventually pre-empted due to the stability either

of radial stalks (forming the stalk phase), or linear stalks (forming the

inverted hexagonal phase).
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with larger negative spontaneous curvatures, or nonlamellar

formers. Further, to remain within the small region of suc-

cessful fusion, the ratio of these different kinds of lipids

must be regulated, as indeed it is (Morein et al., 1996;

Wieslander and Karlsson, 1997).

We also note that the restrictions we have found on the

possible variation of curvature, if fusion is to be successful,

arise from stability arguments involving the stalk itself.

Therefore any fusion mechanism that begins with the

formation of a stalk will have this same phase diagram even

though the subsequent path to fusion may differ radically

from the standard hemifusion mechanism.

Within the range of the parameters where fusion can occur,

we find that the activation barriers of the three major stages of

the standard hemifusion process, which are stalk formation,

stalk expansion, and pore formation, are affected differently

by changes in architecture and in tension. The first activation

barrier is associated with creation of the initial metastable

stalk. Its height is essentially independent of the membrane

tension and increases only very weakly as f is increased. Stalk

creation is apparently not a rate limiting step, because the

corresponding barrier does not exceed 5 kBT in our model, or

13 kBT if we extrapolate our results to lipid systems. This

value is much lower than previous estimates of phenomeno-

logical theories (Kuzmin et al., 2001).

In the second stage, during radial stalk expansion, the

corresponding barrier is a very sensitive function of the am-

phiphile architecture, as can be seen in Fig. 7. At small ten-

sion it ranges from �10 kBT for amphiphiles with small f up

to �25 kBT for more symmetric amphiphiles. Again, this

range translates into 25–63 kBT for biological bilayers. These

observations are consistent with well-known fusion enhance-

ment effects of lipids with large and negative spontaneous

curvature, such as DOPE, when they are added to fusing

membranes (Chernomordik et al., 1995; Chernomordik,

1996). The effect of membrane tension on the stalk expansion

barrier has also been determined. We find that increased

tension lowers the activation barrier to radial stalk expansion

and pore formation. This is in accordwith experiment (Monck

et al., 1990). We predict that this barrier to fusion can, in

principle, always be reduced and eliminated by sufficient

tension. However, if the architecture of the amphiphiles is

unfavorable, resulting in a very high barrier at zero tension,

the tension needed to eliminate this barrier can be pro-

hibitively high, and fusion will be pre-empted by membrane

rupture. Results on the thermodynamics of membrane rupture

will be presented in the second article of this series.

The third stage of the process, nucleation of a hole in the

diaphragm to convert the hemifusion diaphragm into a fusion

pore and the pore’s expansion, appears to present no ad-

ditional barrier to fusion at most non-zero tensions. Thus we

find that the largest barrier encountered in this standard

hemifusion mechanism is that associated with the expansion

of the stalk into a hemifusion diaphragm. The diaphragm

does not expand very much, however, before this maximum

barrier is reached.

At very low tensions, the controlling barrier is that

associated with the expansion of the fusion pore. This leads

to the prediction of the transient stability of small fusion

pores. We believe that these structures correspond to

‘‘flickering pores’’ observed experimentally in lipid bilayer

fusion (Fernandez et al., 1984; Spruce et al., 1990;

Chanturiya et al., 1997).

Despite the agreement between our results on the hemi-

fusion mechanism and the experimental observations men-

tioned above, there remain experimental observations that

this hypothesis does not explain. First, lipid mixing is

observed to occur not only between the cis monolayers, but

also between cis and trans layers (Lentz et al., 1997). Second,

transient leakage is observed, and it is correlated spatially and

temporally with fusion (Frolov et al., 2003). In addition to

these experimental observations, simulation studies have

revealed, both in planar bilayer fusion and in vesicular fusion,

a very different pathway subsequent to the formation of the

initial metastable stalk. To understand these discrepancies,

we have performed calculations similar to those presented

here for the alternative mechanism recently proposed by

Noguchi and Takasu (2001) andMüller et al. (2002b, 2003b).

These results will be presented in the second article of this

series.

APPENDIX A: SELF-CONSISTENT FIELD

THEORY FOR POLYMER SYSTEMS

The first step in any field-theoretic approach to such systems is to convert the

partition sum over all possible molecular configurations into an integration

over configurations of corresponding, smooth, collective variables, the

density and chemical potential fields. The derivation of the effective field-

theoretic Hamiltonian of our polymer model follows a standard prescription,

so we give only the final expression here:

Here z [ exp(Dm/kBT) is the relative activity of the amphiphiles, where

Dm ¼ ma – ms, the difference in bulk chemical potentials of the amphiphile

and the solvent. There is only one independent chemical potential because

the liquid is assumed to be incompressible. The fixed number density of

polymer chains, (na 1 ns)/V, is denoted F. Thus the total number density of

chains is fixed, but the relative amounts of amphiphile and solvent chains is

H½T;Dm;V;A;wA;wB;fA;fB; j�

kBTF
¼ �Qs½wA� � zQa½wA;wB�1 xN

Z

dV fAðrÞfBðrÞ

1

Z

dV ðfAðrÞwAðrÞ1fBðrÞwBðrÞÞ1

Z

dV jðrÞðfAðrÞ1fBðrÞ � 1Þ: (7)
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controlled by the chemical potential difference, Dm. The Flory interaction

parameter, x, is inversely proportional to the temperature. The Qs[wA] and

Qa[wA, wB] are the single chain partition functions of the solvent and

amphiphile molecules subjected to the local chemical potential fields, wA(r)

and wB(r), which act on the A and B segments, respectively. The local

volume fractions of A and B monomers are given by fA(r) and fB(r). The

‘‘local pressure’’ j(r) is the Lagrange multiplier field introduced to enforce

the incompressibility condition.

The mean field approximation, which is at the heart of the SCFT

approach, amounts to extremizing the field-theoretic Hamiltonian with

respect to all the fields upon which it depends. Fluctuations at this extremum

are ignored. In systems of relatively long chains, in which composition

fluctuations are small, the results of this approximation are very good indeed

(Bates and Fredrickson, 1999).

It can be shown that the field configurations that correspond to stationary

points of H½T;Dm;V;A;wAðrÞ;wBðrÞ;fAðrÞ;fBðrÞ; jðrÞ�; denoted in the

following by an over-bar, satisfy the following set of coupled nonlinear

equations:

�wwAðrÞ ¼ xN�ffBðrÞ1 �jjðrÞ (8)

�wwBðrÞ ¼ xN�ffAðrÞ1 �jjðrÞ (9)

1 ¼ �ffAðrÞ1 �ffBðrÞ (10)

�ffAðrÞ ¼

Z 1

0

ds qsðr; sÞqsðr; 1� sÞ

1 z

Z f

0

ds qcðr; sÞq
y

c ðr; sÞ (11)

�ffBðrÞ ¼ z

Z 1

f

ds qcðr; sÞq
y

c ðr; sÞ; (12)

where the single chain propagators qc(r, s), q
y
c ðr; sÞ; and qs(r, s) satisfy the

usual modified diffusion equations for the flexible polymer chains with the

Gaussian statistics; e.g., for the homopolymer solvent it is

@qsðsÞ

@s
¼ R

2

g=
2
qsðr; sÞ � �wwAðrÞqsðr; sÞ;

with qsðr; s ¼ 0Þ ¼ 1: (13)

Here Rg is the radius of gyration of the unperturbed Gaussian polymer. The

value of the free energy of the stationary configuration is given simply by

VmðT;Dm;V;AÞ¼H½T;Dm;V;A; �wwA; �wwB; �ffA; �ffB;�jj�: (14)

The system of nonlinear equations (Eqs. 8–12) together with the equations

for the propagators (Eq. 13) can be solved numerically in real space by

a straightforward relaxational iterative algorithm (Drolet and Fredrickson,

1999). The real-space approach has far more flexibility in studying localized

structures, such as the fusion intermediates, than does the more numerically

optimized spectral approach (Matsen and Schick, 1994). The recently

proposed pseudo-spectral techniques (Rasmussen and Kalosakas, 2002)

appear to be very efficient, but they rely heavily on the numerical fast

Fourier transforms, which are not available for the cylindrical coordinates,

r ¼ (r, u, z), that we use in our calculations. Because the local volume

fractions are required to be axially symmetric, fA(r, z), fB(r, z), and to be

symmetric under reflection in the z ¼ 0 plane, the problem is two-

dimensional and need only be solved in one quadrant. We impose reflecting

boundary conditions at z ¼ 0, z ¼ zmax, r ¼ 0, and r ¼ rmax, where zmax and

rmax determine the size of the computational cell. They were set to 8 Rg and

15 Rg, respectively. We discretized all the fields on a uniform lattice with

resolution Dr ¼ Dz ¼ 0.1 – 0.05 Rg. In solving the diffusion Eq. 13 we used

contour length discretization of Ds¼ 0.01 – 0.001. This gave us an accuracy

of no less than 0.1 kBT in the free energy. On a 1-GHz, Pentium III

workstation, ;5 min were required to obtain convergence for a configura-

tion, fA(r, z) and fB(r, z), at a given value of f and g.

To describe a stalk-like structure, the solutions must smoothly connect

the hydrophobic regions of the two bilayers. The radius, R, of the stalk, again

defined by fA(R, 0) – fB(R, 0) ¼ 0, must take a value that we specify. To

facilitate finding such a solution we apply, at the beginning of our cal-

culations, auxiliary external fields that favor hydrophobic segments along

the axis of symmetry between the two trans leaves. After the system

assembles into the desired structure, these auxiliary external fields are

switched off, and the solution is allowed to relax. Far from the axis of

symmetry, the membranes reach their equilibrium separation. Again this

minimum is due to the short-range repulsion and the attractive depletion

interaction between the bilayers. Once a solution satisfying these constraints

is obtained, the free energy of the stalk-like structure is then calculated. It is

the difference, at constant chemical potential (or, equivalently, constant

tension), between the free energy of the system with two bilayers connected

by the stalk-like structure, and that of the two unperturbed bilayers without

the interconnection.

APPENDIX B: REACTION COORDINATE

CONSTRAINT

The SCFT strategy and its numerical implementation along the lines

presented above are capable, in practice, only of identifying thermodynamic,

locally stable configurations of the system. To clarify this point, consider the

following construction. Suppose we first extremize H with respect to the

chemical potential fields wA(r) and wB(r), and the incompressibility field

j(r). Then, at least in principle, we obtain a free energy functional that

depends only on the physical density fields fA(r) and fB(r):

F½fA;fB�[extremumfwA ;wB ;jgH½wA;wB;fA;fB;j�; (15)

where we have suppressed the dependence on the thermodynamic variables,

T, Dm, V, andA:An extremum ofF½fA;fB� is the system’s free energyVm.

This extremum corresponds to a thermodynamic, locally stable state if, and

only if, the matrix of the second derivatives d2F=dfAðrÞdfBðr#Þ is posi-

tive definite in that configuration, i.e., the locally stable configurations

correspond to the minima of the free energy density functional F½fA;fB�:

To distinguish them from other kinds of solutions, we will refer to these

locally stable structures as intermediates.

In studying an activated process, such as membrane fusion, we need to

know not only the free energy of the intermediates along some reaction path,

but also the properties of the transition states, which correspond to saddle

points of the free energy functional F½fA;fB�: Unfortunately, finding

a saddle point of a functional poses a serious numerical problem. In particular,

commonly used relaxational algorithms prove to be inadequate for this task,

because they rely on local stability around a solution, which is obviously

lacking at the saddle point. Newton-Raphson type algorithms are capable of

finding any extremal points as long as the initial configuration is within the

basin of attraction of that point. Unfortunately,we do not know the location of

a saddle point in advance, so these methods are also not very practical.

In some cases one can identify the unstable directions of the functional

and stabilize it by applying a suitable constraint. As an example, consider

a transition state between the stalk and the hemifusion diaphragm. We treat

this situation in detail in the main text and use it here simply for illustration.

We confine the possible solutions to be axially symmetric and to have

a mirror symmetry with respect to z ¼ 0 plane because the unstable mode of

either the stalk or diaphragm can be associated with an overall radial

contraction or expansion of the structure. We further constrain the solution

by requiring that, in the z¼ 0 plane, the A/B interface (i.e., the locus of points

at which fA(r) � fB(r) ¼ 0) be located on a circle of some specified

radius R. This radius plays the role of a reaction coordinate. To impose the

constraint, we employ a Lagrange multiplier, cR (Matsen, 1999). The

corresponding constrained field-theoretic Hamiltonian is then given by
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HR½wA;wB;fA;fB;j;cR�

kBTF
[
H½wA;wB;fA;fB;j�

kBTF

�cR

Z

dV dðzÞdðr�RÞðfBðrÞ

�fAðrÞÞ: (16)

The first two SCFT Eqs. 8 and 9 should be modified accordingly to

wAðrÞ ¼ xNfBðrÞ1jðrÞ1cRdðzÞdðjrj�RÞ

wBðrÞ ¼ xNfAðrÞ1jðrÞ�cRdðzÞdðjrj�RÞ; (17)

and the third equation expressing the local density constraint is sup-

plemented by the additional local constraint of

0¼ ðfBðr;zÞ�fAðr;zÞÞjr¼R;z¼0; (18)

where, again, (r, z) are cylindrical coordinates. The Lagrange multiplier cR

plays the role of the local chemical potential that couples to the density

fields. The solution of the SCFT equations optimizes the free energy with

respect to cR as well as the other fields. The same relaxational iterative

approach as that used for the nonconstrained case proved to be efficient for

solving this modified problem.

In general, for an arbitrary position of the constraint R, the value of the

Lagrange multiplier cR is non-zero, which means that the correspond-

ing field configuration is not a solution of the original nonconstrained

system. Nevertheless, at the points where cR is zero, the constrained and

nonconstrained sets of equations become identical, i.e., an extremum of the

constrained free energy functional is also an extremum of the noncon-

strained functional.

The free energy of the constrained system, FR, quite generally, satisfies

the following ‘‘force balance’’ equation:

dFR

dR
¼�2pRcR

d½fBðr;zÞ�fAðr;zÞ�

dr

�

�

�

�

r¼R;z¼0

: (19)

The condition cR ¼ 0 is equivalent to dFR/dR ¼ 0, so that the extremal

points of FR as a function of R are also the extremal points of F½fA;fB� as

a function of R. Clearly, a minimum of free energy FR of the restricted

system corresponds to a minimum of F½fA;fB�; whereas a maximum of FR

corresponds to a saddle-point configuration of F½fA;fB�: By scanning

a range of R-values, we can identify all the metastable intermediates and

unstable transition states along a particular path. Moreover, even those

constrained configurations for which cR 6¼ 0 have a transparent physical

interpretation, and provide a wealth of additional information, are in-

accessible by the nonconstrained calculations. For other applications of

similar constraints we refer the reader to the literature (Matsen, 1999; Müller

et al., 2002a; Duque, 2003).

APPENDIX C: MODEL PARAMETERS

To make a direct comparison with our previous independent Monte Carlo

simulations (Müller et al., 2003b), we match corresponding model parame-

ters. The length scale in SCFT calculations is usually set by the polymer

radius of gyration Rg. For the polymers in the simulations, the radius of

gyration was found to be Rg ¼ 6.93u, where u is the spacing of the cubic

lattice into which the simulation volume is divided. Because of the

incompressibility constraint, the volume per polymer, V/(na 1 ns), with na
and ns the number of amphiphilic and solvent polymers respectively, enters

the SCFT free energy only as a multiplicative factor and in a dimensionless

ratio V=½ðna1nsÞR
3
g�: As this ratio was taken to be 1.54 in the simulations,

we take the same value in evaluating the SCFT free energy. The energy scale

in SCFT is set by the product of the Flory interaction parameter x and

the polymerization index N. It has been shown previously that the choice

xN ¼ 30 corresponds to the simulated system (Müller et al., 2003b).

We acknowledge very useful conversations with L. Chernomordik,

F. Cohen, M. Kozlov, B. Lentz, D. Siegel, and J. Zimmerberg. We are

particularly grateful to V. Frolov for sharing his knowledge and expertise

with us.

Financial support was provided by the National Science Foundation under

grant Division of Materials Research 0140500 and the Deutsche

Forschungsgemeinschaft Mu1674/1. Computer time at the John von
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