Polymer brushes: From self-consistent field to classical theory
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We consider planar brushes formed by end-grafted polymers with moderate to strong excluded-
volume interactions. We first rederive the mean-field theory, and solve the resulting self-consistent
equations numerically. In the continuum limit, the results depend sensitively on a single parameter,
3, whose square is the ratio of the brush height to the polymer radius of gyration, and which measures
therefore the degree to which the polymers are stretched. For large values of 3, the density profile
is close to parabolic, as predicted by the infinite-stretching theory of Zhulina et al. and of Milner
et al. As § decreases, the profile deviates strongly from a parabolic one. By calculating the most
probable paths and comparing their contribution to various properties with those obtained from
the full self-consistent theory, we determine the effect of the fluctuations about such paths. At
large values of 3, these effects are very small everywhere. As 3 decreases, fluctuation effects on the
density profile become increasingly important near the grafting surface, but remain small far from
it. For all values of #, we find that polymer paths which begin far from the grafting surface are
strongly, and almost uniformly, stretched throughout their length, including their free endpoints.
Paths which begin close to the grafting surface are also stretched, but they initially move away from
the grafting surface before reaching a maximum height and then returning to it. The classical theory
is then derived from the self-consistent field equations by retaining, for each endpoint location, only
that single trajectory which minimizes the free energy of the system. This free energy contains an
entropy, of relative weight 87!, which arises from the distribution of endpoints. Even for brushes
which are only moderately stretched, the results of the classical theory for the brush profile and
polymer endpoint distribution agree well with those of the full self-consistent theory except near the
grafting surface itself. There the density profile as calculated in the self-consistent theory shows a
characteristic decrease which is not captured by the classical theory. However it does capture the
fact that the individual polymer paths are stretched in general throughout their length, including the
endpoints, and yields non-monotonic paths for polymers whose endpoints are close to the grafting
surface. In addition, it reproduces extremely well the form of the density distribution far from the
grafting surface, which is essentially Gaussian. This results from the fact that the stretching energy
dominates the interaction energy of those polymers which extend far from the grafting surface, so
that their behavior is nearly ideal. In the limit of infinite stretching, § — oo, the theory reduces to
that of Zhulina et al. and of Milner et al.

PACS numbers 61.25.Hq, 83.70.Hq, 61.41.4¢

I. INTRODUCTION

At high surface coverage and moderate to strong excluded volume interactions, one finds that polymer chains
grafted at one end to a planar surface are strongly stretched, forming a polymer brush. [1,2] Such systems have several
applications including colloidal stabilization, surface modification, and lubrication. They also serve as a testing ground
for theoretical models and approaches due to their conceptual simplicity. After the early work of Alexander [3] and
de Gennes, [4] Milner, Witten, Cates, [5] and Zhulina and co-workers [6] developed a theory which took advantage
of the fact that in a system in which polymers are strongly stretched, as in a brush, fluctuations around the most
probable, or “classical”, paths are small, and can be ignored to first approximation. [7] This theory was derived in the
limit in which the thickness of the brush is infinitely greater than the radius of gyration of the polymers composing
it. Therefore the theory is the classical theory in the infinite-stretching limit. (We shall refer to it, accordingly, as the
ISL theory.) Tts predictions include a parabolic form for the monomer-density profile, a polymer endpoint distribution
which is non-zero only for a finite distance from the grafting surface, and a universal form for all classical polymer
paths, which are unstretched at their free end, and which differ only in their amplitude.

Since the formulation of the ISL theory, there has been little attempt to derive the classical theory for a brush
stretched a finite, and arbitrary, amount. Recently an attempt [8] to do so approximately produced a density profile
for a strongly, but finitely stretched, system which was in closer agreement with the results of a full self-consistent



field theory treatment than was that of the ISL. This indicated that a classical theory might be useful over a range
of stretching parameters.

In this article we derive the classical theory for polymer brushes which are stretched a finite, and arbitrary, amount
and compare its results with numerical self-consistent field (scf) calculations using continuum techniques analogous
to the Scheutjens-Fleer method [9,10] for discrete systems. In the continuum limit, results of both classical and scf
theories depend sensitively on a single parameter, 3, proportional to the square of the brush height to the polymer
radius of gyration. They have the following qualitative features: [11] (i) the density profile has a tail which, at
large distances, is Gaussian, (ii) the endpoint distribution is non-zero everywhere, (iii) classical paths with different
free endpoint positions are different, (iv) paths whose free endpoints lie beyond a certain distance from the grafting
surface proceed monotonically to the grafting surface, and are stretched throughout their entire length, including the
endpoint, (v) paths whose free endpoints lie within that distance initially proceed away from the grafting surface,
reach a maximum, and then continue to the surface. They are stretched everywhere except at the maximum. The
limits of both the classical and the scf theories, as the relative brush height diverges, are those of the ISL. [5,6]

The additional component which arises in our classical theory for arbitrary stretching is the entropy associated with
the distribution of end points, which has a weight 3~'. Therefore the effect of the entropy vanishes in the infinite
stretching limit § — co. Its presence at finite stretching causes the results of our classical theory to differ qualitatively
from those of the ISL. Comparison of various quantities as calculated from the classical and the scf theories for finite
values of 3 shows that the main effects of fluctuations about the classical paths occur near the grafting surface itself,
in agreement with previous predictions. [12] Entropic repulsions due to the impenetrable wall are missed completely
by the classical theory. In contrast, far from the grafting surface, the two theories become equivalent.

In Sect. II, we define the polymeric model we employ to describe the brush, and bring it to an equivalent, but
more convenient, form by applying exact transformations which utilize auxiliary fields. In Sect. III, we employ the
mean-field, or scf, approximation which results in a set of self-consistent equations that are solved numerically in
Sect. TV. Here we also calculate the most probable paths and show how they differ depending upon the location of
the endpoint and the degree to which the brush is stretched, 8. We then derive the classical approximation to the
scf theory in Sect. V and display some of its results for several values of the stretching parameter. In an appendix,
we demonstrate that the ISL of Milner, Witten, Cates and of Zhulina et al. are obtained in the limit # — oco. Sect.
VI is devoted to a detailed comparison between the classical and scf theories, and includes a comparison of individual
polymer paths, and the behavior far from the grafting surface. We also provide exact results for the scf theory in the
limit when the excluded volume interaction vanishes, which illustrates the effect of the impenetrable grafting surface.
Density fluctuations are not accounted for in the mean-field theory or the classical theory which derives from it. They
are, of course, included in molecular dynamics [13] and Monte Carlo [14-17] simulations. Direct comparison of results
is difficult, however, since simulations and scf calculations usually use different microscopic polymer models. The
expected effects of fluctuations as obtained from simple scaling ideas, and the range of validity of our assumptions,
are discussed in the final section.

II. THE PARTITION FUNCTION FOR GRAFTED POLYMERS

We begin with the partition function for n Gaussian polymers, end-grafted to an area A, and which interact via a
quadratic repulsion of strength w;

zm:i{l /Dra(.)exp{—2i2 /ONfi(s)ds}

where a denotes the Kuhn length, and the monomer density U is defined by

o { = [ $90) - hwpeyar . (1)

Ur) =Y /0 ds 8[r — ro(s)]. (2)

The circumflex denotes the dependence of the density on all individual polymer configurations. It is implicitly assumed
that all polymers end at a planar grafting surface which is impenetrable, so that they are confined to a half space. The
field h acts as a generating field, and will be used to calculate density ensemble averages and correlation functions.
The Gaussian expression for the polymer elasticity is, of course, only valid for polymers which are not stretched to
their contour length. [18] In the discussion in Sect. VII we will show that the use of the Gaussian elasticity is not a
limiting factor in the validity of our results, because the mean-field approximation breaks down before the limit of
extreme stretching is reached. More serious is the restriction in eq (1) to the second virial coefficient. [22,23] Higher



order terms in the density become important when the system is near the § point, [6] and wherever the monomer
density is expected to be large, such as the vicinity of the grafting surface. Since we are concerned in this article with
the generic features of a classical theory, we leave generalizations of the present model to future activity.

To make the expression for the partition function more tractable, we insert the identity

1= / DU() 6[W() — ¥( )], 3)

and use the integral representation of the delta function,

o1¥() = ¥()) = [ D) exp { JECIEE ﬁf(r)]dr} , (4)

the functional integral over €(-) is a contour integral along the imaginary axis. In the resulting expression for
the partition function, one can carry out the Gaussian integration over ¥(:). This yields (up to an unimportant
multiplicative factor N)

Zh]) = N/DQ() exp(—nF[Q, h]) (5)
with the new functional F' defined by

F[Q,h] = —ﬁ /(Q(l) + h(r))%dr — In Q[Q] (6)

where Q[€?] is the partition function of a single polymer in an external field Q,

ol = [ Pryex {— | gt + 9[r<s)]ds} . ™)

To this point, we have made no approximations, and the two expressions for the partition function, eqs 1 and 5, are
equivalent. We are also not closer to obtaining the partition function, since to perform the integral over the fluctuating
field Q(-) in (5) is at least as difficult as the summation over individual polymer paths in (1). The reason for rewriting
the partition function is that the mean-field approximation can now be implemented in a particularly lucid fashion,
and this is done in the next section.

III. MEAN-FIELD APPROXIMATION

Mean-field theory is obtained when the functional integral over the field (r) in the partition function 7, eq 5, is
approximated by the integrand evaluated at that value w(r) of Q(r) which extremizes the functional F'[Q]. The field
w(r) is therefore determined by the equation

8Fw,h = 0] L §lnQu]

Sw(r) - _Ew(l) B Sw(r) =0 (8)

The mean-field approximation to the free energy per polymer, F,y, is simply
Fmg = Flw,h=10]. 9)

The density distribution within the mean-field approximation, denoted by #(r), is given by

_ w(r) (10)
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and thus is proportional to the extremal field w(r). In order to estimate to what extent fluctuations are taken into
account, we calculate the connected correlation function

82 Fw, h)
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This shows that, by approximating the integral over Q in (5) by the extremal value of the integrand, we include density
fluctuations on a Gaussian level, but miss correlations completely, as expected in the mean-field approximation. Also
note that all higher correlation functions are identically zero and that the susceptibility, obtained by integrating over
the connected two-point correlation function, yields the expected mean-field scaling ~ 1/w. The effects of correlations,
and the range of parameters over which they are anticipated to be unimportant, are discussed in Sect. VII. In the
next section, we proceed to a simple limit in which fluctuations of the auxiliary field €2 can in fact be neglected.

Because the density ¥(r) is a real function, the extremum of (6) with respect to € lies on the real axis. As the
integrand in (5) contains no poles in the complex plane of 2, we can distort the integration contour so that it passes
through this extremum. By virtue of the Cauchy-Riemann conditions, we know that the extremum is in fact a saddle
point, which justifies the equivalent notation for this simplification, saddle point approzimation. The functional F[]
shows a minimum at the saddle point as €2 is varied along the imaginary axis, but it is a maximum with respect to
variation along the real axis.

By combining eqs 8 and 10, we can rewrite the self-consistent equation which stands at the heart of the mean-field
approximation as

8 In Q[w)]
hp) — — ] 11
P(r) n Swp() (11)
and the mean-field free energy per polymer
Fng = —%/dr 2 (r) — In Qw]. (12)

The mean-field approximation, which consists of neglecting the spatial correlations of the density, is expected to
be accurate when each chain interacts locally with many other chains, i.e., when the polymer concentration is higher
than that at which chains just begin to overlap. It follows that fluctuation effects might become important somewhere
near the edge of the brush because the density decreases to zero continuously and must drop below the overlap
concentration as it does so. This point will be investigated further in the discussion at the end of this article. We
will show that very far away from the grafting surface mean-field theory should become accurate again, because the
excluded-volume interaction becomes irrelevant for highly-stretched polymers.

We now show that mean-field theory is exact if one can neglect lateral variations of the density. If so, the density
becomes a function only of the distance from the wall, denoted by r;. To make the discussion more transparent, we
introduce the dimensionless coordinate z = r; /z, where Z is the length scale of the extent of the brush according to
the scaling and Flory theories [3,4]

: = N(Qwoa?/3)'/3, (13)
with ¢ = n/A the grafting density, and also introduce a dimensionless, rescaled, density
D(z) = ¥(22)z/(No). (14)

This dimensionless density satisfies the normalization condition

/OO P(z)dz = 1, (15)

as follows from the definition of the monomer density (2). Using the fact that the density does not depend on the
lateral coordinates, we can rewrite the exact partition function, eq 5, with h set to zero as

Z :N/D¢(~) exp(—nF[®]). (16)
The free-energy functional, eq 6, expressed in terms of the dimensionless density is given by
F[®] = —g ®(z)?dz — In Q[®], (17)

with the single-polymer partition function

Q[®] :/OOO Dz(~)exp{—/)’/olz'2(t)+<I>[z(t)]dt}. (18)



Note that the internal polymer coordinate has been rescaled by a factor of N, so that the integration along the
polymer contour now runs from zero to 1. The only parameter remaining in the theory is

3w\ 3 2 \?
=y (%) =5 () ()

which, being the square of the ratio of the brush height to the polymer radius of gyration, measures the extent to
which the polymers in the brush are stretched.
The self-consistent equation determining the rescaled mean-field density ¢(z) is

_ 8InQ[¢] .
o(z) = —W; (20)
and the mean field free energy is
Fp = —g/gb(z)de — 0 Ql4), (21)

The functional integral in the partition function, eq 16, involves a fluctuating field which only depends on one
coordinate, the distance from the grafting wall. By expanding the functional F'[®] around the saddle point ¢(-) up to
second order and performing the Gaussian integration over ®(-), we see that the free energy per polymer, including
Gaussian fluctuations, is given by the mean-field free energy, eq 21, plus corrections which are proportional to (Inn)/n.
These corrections vanish in the thermodynamic limit n — oo, so that the mean-field free energy is exact. [24] Thus, if
there are no fluctuations in the density parallel to the grafting surface, then there are no fluctuations in the density
perpendicular to it. The latter will only occur in a theory which permits lateral density fluctuations.

IV. NUMERICAL SOLUTION OF THE SELF-CONSISTENT EQUATION

Numerical solutions of the self-consistent equations have been obtained several times [9,10,14,25 26] using the
methods of Scheutjens and Fleer. What has not been done before, and which we do here, is to examine the most
probable polymer trajectories both as a function of their starting position, zp, and the degree of stretching of the
brush, £, in which they are embedded. The results of this section show that the most probable polymer paths for
a brush which is stretched a finite amount can be very different from those predicted by the ISL theory. They also
clarify the salient features of these paths. The ability of a classical theory to reproduce these features is one measure
by which it can be judged.

To solve numerically the self-consistent equation 20 in the continuum limit, one introduces the segment probability
amplitudes

e = [ Des0 e {5 [0+ otenar ), (22

G0 = [0t ~ e {5 [ 20+ otar | (23

which depend on the density distribution ¢(z). These amplitudes can be viewed as the polymer propagators, or
Green’s function, along and opposite the internal polymer coordinate, respectively. Note that the internal coordinate
t is defined such that its values at the free and at the grafted ends are zero and unity respectively. The initial
conditions are ¢q(z,0) = 1, [27] meaning that the initial propagator of the un-grafted polymer ends is unbiased, and
q'(z,1) = &(z), meaning that all polymers end at the grafting surface. The unnormalized probability to find the
polymer segment ¢ at position z is given by q(z,%)q!(z,t). Clearly, the single polymer partition function is given by

Ql¢] = /000 dz ¢(z,1)q1(2,1) (24)

and is independent of ¢. Using this relation and the equation of self-consistency, eq. 20, we can write the polymer
density as



o) = 5 [ atate a0 (25)

Self-consistency now demands that the density calculated via eq. 25 be equal to the density used to evaluate the
segment amplitude distributions via eqs 22 and 23. Numerically, this can easily be achieved by some linear relaxation

algorithm.
In the numerical solution, one has to discretize both the time coordinate ¢ and the spatial coordinate z. The
discretization of the time coordinate is not critical, and we found M; = 100 discretization points to be sufficient.

The spatial discretization is more sensitive. Denoting the number of spatial discretization points per unit length by
M,, we find that the Gaussian distribution of the discretized Green’s functions is well represented if M, satisfies
M, > 10v/BM;. As we checked explicitly, the solutions then correspond to the continuum limit in every respect. The
box size was always chosen large enough so that boundary effects were negligible.

Our derivation of the self-consistent equations 22, 23, and 25, is similar to the calculations in Refs. [9,14,25,26,10].
In order to be able to compare the numerical results with the predictions of the classical theory, we evaluate the self-
consistent equations in the continuum limit, in contrast to the above-cited references. In previous numerical work,
the polymer was assumed to perform a so-called restricted random walk, such that neighboring polymer segments can
only change their vertical position by one lattice unit at most.

Figure la shows our results for the density profile, ¢(z), for four different values of : 100, (solid line); 10, (dashed
line); 1, (dashed-dotted line); and 0.1 (dotted line). The bold dashed line denotes the parabolic prediction of the ISL
of Milner, Witten, Cates and Zhulina et al. While the density distributions of the scf theory are close to parabolic for
large 3, they deviate from this form considerably as § decreases, becoming progressively flatter. The impenetrable
hard wall causes a depression in the density close to the grafting surface, and pushes the density maximum away from
the wall. This maximum moves further away from the wall as 3 decreases (the results are replotted on an extended
scale in Figure 6.

Figure 1b shows the normalized end-point distribution g(z), which is given by

_4'(2,0)
9(z) = )

(Note that, according to common usage, we have defined the internal coordinate of the polymers to begin at the free
end.) Again, the results for 8 = 100 (solid line) agree well with the predictions of the ISL (heavy dashed line), but
deviations become more pronounced as § decreases (the data are replotted on an extended scale in Figure 7. Needless
to say, the end-point distribution is non-zero everywhere, however small it might become as one moves away from
the grafting surface. The asymptotic behavior of both the monomer density and the end-point distribution will be
investigated further in Sect. VI.

To gain a better understanding of the statistics of individual polymers, we calculate polymer paths with constrained
starting points. To carry out these calculations, we define a conditional segment distribution function ¢(z,t)|.,, which
is given by eq 22, but with the modified initial condition ¢(z,0) = 6[z — 2], so that one considers only polymers
starting at a height z;. The conditional, normalized, probability to find at height z a segment with the internal
coordinate ¢ of a polymer which starts at a height zy is given by

g(z, ) ]s09" (2, 1)
fOOO dzl q(z’,t)|zoq1(z’,t)'

The maximum of this function defines the most probable path of a polymer which starts at zy. The average path of
a polymer starting at zg is

. (26)

Pz, t)lz0 = (27)

(z(1)]2) = /OOO ZP(z,1)]:,dz. (28)

Our results for the statistics of end-constrained paths as a function of the amount of stretching in the brush and of
the location of the endpoint are shown in the next three figures. The value of 3 is equal to 100, 10, and 1, in Figures
2, 3, and 4, respectively. In parts a), b), and c) of these figures, we plot the most probable paths (dashed lines) and
the average paths (z(%)|s,) (solid lines) of polymers whose endpoints are constrained to zg = 2, zp = 0.5 and z; = 0.1
respectively. The position is plotted as a function of the contour variable 1 — ¢, so that the grafting surface is to
the left, at 1 —¢ = 0, and the free end is at the right, 1 —¢ = 1. The dotted lines show the probability distribution
P(z,t)|s, itself for three values of the internal polymer coordinate; 1 — ¢ = 0.9, near the free end, 1 —¢ = 0.5, and
1 —t = 0.1, near the grafted end. In part d) of the figures, we show the average paths rescaled by the end-point
positions, (z(t)|.,)/z0, for endpoints constrained to zg = 2, 1, 0.5, 0.24, and 0.1 (from bottom to top).



We make three general observations, valid for all values of 3. First, paths which start far from the grafting surface
are stretched towards the wall through their entire length, including the free endpoint. The path shown which starts
fartherest from the wall, zg = 2, is almost uniformly stretched, and appears as a straight line in Figures 2a, 3a, and 4a.
The probability distributions of such polymers are rather narrow, and the average and most probable paths are almost
indistinguishable (see Figures 2a, 3a, 4a). Second, paths which start close to the grafting surface are non-monotonic,
first moving away from the wall, reaching a maximum, and then turning towards the grafting surface (see Figures
2¢, 3¢, 4¢). Except at the maximum, all paths are stretched everywhere, including the endpoint. There is only one
end-point position for which the paths are not stretched there. It follows that polymer paths which begin at different
starting points are different in form as seen in Figures 2d, 3d, and 4d.

These results for the typical polymer paths are rather surprising, and seem to contradict scf results [25] which
appear to show that the polymer paths are unstretched at the free end, in apparent agreement with the ISL theory of
Milner, Witten, Cates and of Zhulina et al. However we believe that in Ref. [25], all polymer paths were averaged over,
regardless of their starting-point position z5. As can be seen from Figures 2d, 3d, and 4d, the stretching, proportional
to dz/d(1 —t), is positive for some of the most probable paths and negative for others, so that the average can be
rather small even though it is not small for a most probable path beginning at some arbitrary starting point. This
qualitative observations is further corroborated by results obtained within the classical theory, see Sect. V.

As we increase the degree of stretching of the brush, as measured by the parameter 3, the probability distributions
for paths starting not too close to the wall become narrowly peaked, and average and most-probable paths move very
close together (see Figures 2a, 2b, 3a). For the largest values of 3, most of the polymers in the brush are strongly
stretched, in the sense that most paths stay very close to the most probable, or classical, path. In Figure 2d we show
the universal path obtained in the ISL as a thick dashed line. Tt is simply z = sin[a(1 — ¢)/2]. The actual paths
are close to this form for an intermediate range of starting positions, but it is clear that there are distinct deviations
for very small and very large endpoint positions. We will argue in a later section that these deviations are always
present, even for extremely large values of 3. That is, polymers which start far from the grafting surface are in general
stretched throughout their length, including their end-points. They reach the limit of uniform stretching for endpoints
sufficiently far from the surface. Polymers which start sufficiently close to the surface initially move away from it and
reach a maximum before returning to it.

The physics behind these salient features is simple:

e A polymer which starts far beyond the bulk of the polymer brush is extremely stretched, and conformational
fluctuations around the most probable path are strongly suppressed. Compared to the stretching contribution to the
free energy, the interaction part is negligibly small. The stretching free energy is clearly minimized by a uniform
stretching throughout the entire length. The fraction of polymers which do have free endpoints well beyond the bulk
brush height decreases as  increases.

e A polymer which starts very close to the grafting surface is stretched little. Depending on the value of 3, the
repulsion between polymers or fluctuations around the classical path are dominant. For large values of 3, excursions
from the most probable path are costly, but the most probable paths of polymers which begin close to the wall initially
move away from it because the decaying density profile exerts a force on the polymer segments which is directed away
from the grafting surface. This argument explains the non-monotonic path seen in Figure 2¢ which begins at zo = 0.1
in the strongly-stretched brush 7 = 100. For small values of 3, fluctuations around the most probable path become
important. In this case it is the entropic repulsion exerted by the impenetrable wall which is responsible for the
non-monotonic paths, and not the interactions between polymers. It is this effect which explains the non-monotonic
paths shown in Figures 3c and 4c which also begin at zg = 0.1, but for a moderately-stretched brush, g8 = 10 and 1.
We have verified these arguments by comparing the paths obtained in the scf of the interacting system with those
obtained from the classical theory, which ignores excursions about the most probable path, and those obtained in a
system in which the polymers only interact with the hard wall, but not with one another. Calculation of such paths
is performed in Sect. VI.

As is clear from these results, fluctuations around the classical paths are always unimportant if one considers paths
which start sufficiently far away from the grafting surface. In particular a classical theory, which considers only a
single path per starting point, should always be good at the outer perimeter of a brush, and should describe most of
the brush rather well provided £ is not too small. Such a classical theory should also be able to distinguish between
the different paths taken by polymers which start far from the grafting surface, and those which start close to it.
These expectation are indeed borne out by our classical theory, advanced in the following section.



V. THE CLASSICAL APPROXIMATION

Although the single particle partition function can be calculated numerically with relative ease, as we have shown in
the last section, it is of interest to determine the classical approximation which retains only the most probable polymer
configurations. To make this approximation clear, we first rewrite the single-polymer partition function within scf,
Q[¢] of eq 18, by introducing end-constrained polymer paths z(t, z0) = 2(t)|.(0)=z,- The partition function becomes

Q:/OOO dzg /OOO Dz(~,z0)exp{—[p’/01dt [22(t,z0)+q5[z(t,zo)]]}. (29)

The classical approximation consists of replacing the functional integral over all polymer paths with constrained
starting points zg by the integrand evaluated with the paths which minimize the mean-field free energy. This eliminates
all but the most probable path for a given zg. Thus

Q.= /OOO dzg exp {—ﬂ/ol dt [22,(, 20) + dalza(t, zo)]]} ) (30)

where the classical paths z. (¢, zo) have to be determined by minimizing the system free energy. To restate: in the
classical approximation, there is only a single path for a given starting point which contributes to the free energy. To
determine this path, it is useful to interchange the dependent and independent variables describing the polymer path
from z.(t, zo), with z.(0,z0) = zo and zy(1, z0) = 0, to #(z, z0), with #(zq,20) = 0 and #(0,z;) = 1. We also define
the local stretching at z of a polymer which begins at zq; e(z, z0) = —[d#(z, z0)/dz]~!. Anticipating that paths which
start at a zg very near the grafting surface may first move away from the surface before returning to it, we define
zm(z0) to be the largest value of z attained by a path which begins at z5. The single particle partition function in
the classical approximation can then be written

0a= [ dzmew {—ﬂ / B [eGe ot + 22 e zO>} . (31)

For a polymer which first moves away from the wall, then turns around and approaches it, the path has two branches
for distances zg < z < zm(zg) and thus contributes twice to all integrals. This is accounted for by the function
¥(z, zp), which is equal to unity for z < zy and to two otherwise, The self-consistent equation for the density follows
from functional differentiation according to eq 20. In this classical limit, the equation becomes

Pailz) = Qlcl /O: 7(;(;03;)1'20 { —P / WD) [ W&o)H%] v(z,Zo)}, (32)

where zg(zm) is the inverse of z,(zg). By comparing this equation with the constitutive relationship between the
end-point distribution g.;(zg) and the density,

2) = « » V(Z’ZO) gcl(ZO)
)= [ T ()

we find the end-point distribution to be

exp {_ﬁ/ozm(zo) dz [|e(z, o)l + M] oz zo)} . (34)

e(z,z0)|

1
gcl(zo) = Q

el

It follows from eq 31 that the end-point distribution is normalized to unity, i.e.,

/000 dzg gei(zo) = 1. (35)

From eq 34, one obtains a simple expression for —In @, a quantity which is, of course, independent of zg,

2m(20)
—InQu = ﬂ/ [ 2, 20)| + | qé.czl(zo)ﬂ] Y(z,20) dz +In [ger(20)] - (36)



This expression is made particularly transparent by multiplying it by g.(zo), integrating over all zp, and using the
normalization of g.(zg), eq 35, so that one obtains

—In@, = [)’/OOO dzg gei(z0) /Ozm(zo) [|e(z,zo)| + | ¢Cl(z))|] v(z,20) dz + Am dzg ger(zo) In[gei(20)] - (37)

ez, zg

Finally, substituting this into eq 21, we obtain the desired expression for the free energy of the many-polymer system
in the classical limit,
o0 oo Zm(20) P
Fou= — g dz ¢2(2) + ﬂ/ dzg gd(zo)/ [|€(2120)| + | per(2)
0 0

0 e(2, 20)|

] ¥(z,20) dz (38)
+ /0 " dz0 gulz0) In [gar(z0)] (39)

The last term in the free energy is easily recognized to be the entropy associated with the end-point distribution.
Just such a term was introduced in the context of the adsorption dynamics of brushes [28] and for copolymer melts,
[29] but without the derivation which is provided here. Note that this entropy term is of order 3= compared to the
energy terms, and is therefore absent in the infinite stretching, or = — 0, limit of the ISL theory of Milner, Witten,
Cates, and Zhulina et al. As we show below, the presence of this term leads to qualitatively different results, even
when [ is large. The classical free-energy now has to be minimized subject to the following constraints:

i) All polymers have equal length, i.e., in our rescaled units

/Zm(ZO) 7(21 ZO) dz =1
0

ez, 20) (40)

ii) The end-point density g.(zo) is normalized to unity, eq 35.

ii1) The monomer density ¢.(z) is normalized to unity, eq 15.

iv) The monomer density ¢.i(z) and end-point distribution g.;(zg) satisfy the relation eq 33.

The last constraint is satisfied by the free energy (38) at its minimum, as can be checked by variation of eq 38 with
respect to ¢(z). Constraint iii) is satisfied if constraints i) and ii) hold, as follows by integration of eq 33. The first
two constraints are enforced by the usual method of undetermined Lagrange multipliers, i.e., by adding the terms

[ele] Zm(zo)
(z, z0) dz
dzo IT B e |
[ e l/ (2. 20)

to the free energy. Variation with respect to the end-point distribution then leads to (34) (and thus satisfies the
normalization (35)) if the Lagrange multiplier A is chosen as A = In @ — 1. Variation with respect to e(z, zg) yields

€*(2,20) = ¢e1(2) — dar(20) + 7 (20) (42)

where 7%(20) = ¢ei(20) — (20)/Bgc1(20). The physical meaning of the Lagrange multiplier 7(zg) is the magnitude of
the stretching of the polymer at its free endpoint positioned at zg.

As noted by Johner and Joanny, [28] the end-point stretching m(zg) is related to the logarithmic derivative of the
end-point distribution,

+A [/000 ger(z0)dzo — 1] (41)

1 dlnga(z)

28 dz (43)

7(z0) =
It follows trivially that the sum of the end-point stretchings of all polymers is related to the probability of finding a
polymer with its free endpoint at the grafting surface,

/OOO dzo ge(20)7(20) = i[gcl(o) — ga(oo)] = g;éO).

From eq 43 it follows that classical paths starting close to the grafting surface, where the logarithmic derivative of
gei(zo) is positive, are expected to move initially away from the grafting surface. They must ultimately turn back and
approach the wall. Classical paths starting further away from the grafting surface, where the end-point distribution

decreases, are predicted to move monotonically towards the wall. The integral over the end-point stretching of all
polymers, eq 44, is expected to be very small due to the factor of 7 in the denominator. Although strictly derived only

(44)



for the classical limit, this result is in accord with the result of Milner, [25] who found the average end-point stretching
in his scf results to be negligible. In the limit in which 8 — oo, eq 43 shows that the end-point stretching vanishes, in
agreement with the ISL theory. In the same limit the entropy term associated with the end-point distribution in eq
38 can be neglected. As we will demonstrate in Appendix A, the free-energy i1s minimized by the asymptotic classical
solution of the IST theory given in Refs [5,6].

At finite 3, however, the results are markedly different as can be seen from Figure 5a where density profiles ¢(z)
for four different values of 3 are plotted. They show an exponential tail and, as 8 decreases, deviate substantially from
the ISL parabolic solution (shown as a thick dashed line). Figure 5b shows the corresponding end-point distributions
gei(zo), which again deviate substantially from the ISL result (shown as a thick dashed line) as § decreases (the data
are replotted on an extended scale in Figure 7. The entropic term forces g.; to be non-zero everywhere for finite 3.
As this parameter decreases, the entropy of the end-point distribution becomes increasingly important. Because this
effect is ignored by scaling arguments, the estimate of the brush height given by such arguments becomes poorer.
Thus, while 3 is still the square of the ratio of the brush height as given by scaling arguments to the radius of gyration,
it can no longer be interpreted as the ratio of the square of the actual brush height to the radius of gyration.

The classical paths are, in general, stretched everywhere, including their free endpoint, in agreement with the path
analysis within the scf theory. Figure 5¢ shows, for four values of 3, the function e(zg, zg) whose magnitude is the
stretching at the endpoint. Not surprisingly, those few paths which start far from the surface are greatly stretched
there, and the value of e(zg, zg) approaches the straight line with slope unity (heavy broken line), which represents a
uniformly stretched path. The negative value of e for paths which start close to the surface indicates that these paths
initially move away from the surface before turning back, in agreement with our self-consistent results. Figure 5d
shows the difference between the maximum value z,, which these paths attain and their end-point value. Interestingly,
this difference first increases with decreasing values of 3, but the curve for § = 100 (dotted curve) lies entirely below
the curve for 8 = 10 (dashed-dotted curve).

For large (3 the results of our classical theory approach those of the ISL theory of Milner, Witten, Cates, and Zhulina
et al., which is demonstrated in Appendix A. There we also calculate the free energy within the ISL theory. As
expected, the free energy of our classical theory is always lower than the free energy of the ISL solution corresponding
to the parabolic brush profile.

VI. COMPARISON BETWEEN SELF-CONSISTENT FIELD AND CLASSICAL THEORY

As argued in the previous sections, the strong stretching of polymers almost everywhere for moderately large values
of 8, and at the perimeter of the brush for almost all values of 3, makes the classical approximation a reasonable one.
Just how accurate it is can be tested by comparison to the self-consistent results.

In Figures 6a-d we plot the density as obtained from our classical theory, (solid line), and the self-consistent density,
(dashed line), for four values of 3; 100, 10, 1, and 0.1, respectively. For the largest value of g, Figure 6a, the two
densities are virtually indistinguishable except for the immediate vicinity of the wall, where the self-consistent density
drops. For smaller values of § this density decrease near the wall becomes more pronounced. The form of the decrease
in the tail of the scf density profile is reproduced extremely well by the classical theory. This is obscured in a direct
comparison of the two profiles because they have the same normalization, yet the profile of the scf, shown dashed,
which feels the entropic repulsion of the grafting surface, is displaced from that surface, while the classical result,
shown solid, 1s not. To verify that the forms of the density profile in the tail are indeed the same, we show with
a dotted line the scf profile simply displaced towards the wall until the tails of the scf and classical distributions
coincide. The size of the displacement needed to bring about this coincidence depends on .

In Figures 7a-d we plot the end-point distribution calculated within our classical approximation, (solid line), and
the self-consistent method, (dashed line). Again, for @ = 100 (Figure 7a) the two curves are very similar, except for
the behavior near the wall. This difference increases as [ decreases, but again the form of the decay of the endpoint
distribution, g(zg), with the endpoint location, zg, is captured very well by the classical theory. This is again shown
by simply shifting the self-consistent results towards the wall, the result of which is shown by a dotted line.

The asymptotic behavior of the end-point distribution and the density for larger distances will be discussed in
Section VI.B.

A. Comparison of individual polymer paths

As we have emphasized, in the classical approximation, only one path which originates at a given endpoint is
considered, and it is obtained by minimizing the free energy contributed by the distribution of such paths. In the
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full scf, all possible paths are considered. A different approximation consists in neglecting the interaction between
polymers altogether, which is valid for the entire brush in the limit # — 0 and for all values of 3 for the outer
perimeter of the brush. We use this approximation, which is introduced in Appendix B, mainly to discuss the effects
of the impenetrable grafting wall, and to show that some of the effects found in the self-consistent and classical theory,
mainly the stretched end-points and the non-monotonic paths, are already present in this limit. One way of assessing
the importance of the fluctuations about the classical paths is to compare the most probable path for a given endpoint
as obtained from the full scf with the classical path having the same endpoint. We make that comparison in this
section for four paths with different endpoints, zg, embedded in brushes with three different degrees of stretching, 3.
Figure 8 shows paths in a strongly stretched brush, 8 = 100, one in which we expect the classical theory to be good.
Figure 8a shows a path which begins at zqg = 2, well outside the bulk of the brush which, as seen in Figure 6a, extends
to about z = 0.85. The most probable path as calculated from the full scf is shown with a broken line, and that
from the classical theory is shown dotted. They are almost indistinguishable, and represent a path which is uniformly
stretched. This becomes more evident by comparison with the average path calculated within the interaction-free
theory, which 1s denoted by a heavy broken line. Figures 8b and 8c show that for a path that begins well inside the
brush, at zg = 0.5 and zy = 0.24, the classical and scf paths are still very similar. There are pronounced differences
from the path of the non-interacting theory, which means that the repulsive interaction between monomers is the
driving force for the path characteristics both within the scf and the classical theory. For a path which begins very
close to the wall, zop = 0.1, Figure 8d shows that there is some small difference between the classical and scf paths.
Both paths move away from the wall initially before returning to it. At this value of 3, this effect is due entirely to
the interactions; that is, to the fact that the decreasing density profile causes a force on the polymer directed away
from the wall. This is evident because the path of the non-interacting theory is monotonic.

Figures 9a-d show the same sequence for a brush much less strongly stretched, g = 10. The density profile of this
brush, shown in Figure 6b, still does not extend much beyond z of about 0.9. Thus a path which begins at zg = 2, as
in Figure 9a, is still uniformly stretched and very well described by the classical theory. Both the classical and the scf
paths are very similar to the non-interacting path (heavy broken curve). The classical description is also very good
for the path which begins well within the brush at zg = 0.5, as can be seen from Figure 9b. In Figures 9¢ and 9d, the
paths of the classical approximation are quite distinct from the most probable paths within the full scf, although the
non-monotonic nature of the paths is captured. The difference in the classical and scf paths for zy = 0.1, Figure 9d,
reflects the fact that at this value of 3, the non-monotonic nature of paths starting very close to the wall is mostly
due to the entropic repulsion of the wall, which the scf calculation feels, but which the classical approximation does
not. This is evident from comparison with the path of the non-interacting (bold broken line), which shows an even
stronger non-monotonic behavior than the scf path, see Figure 9d. In this case, the interaction actually pushes the
monomes closer to the wall because the monomer density initially increases as one moves away from the wall.

Finally, in Figure 10, we compare paths in a brush which is hardly stretched at all, = 1. The profile of this
brush is shown in Figure 6¢c. A polymer which is stretched beyond the bulk of the brush is still well described by
our classical theory, as seen in Figure 10a. The difference between the scf and classical theories is now greater for
paths beginning within the brush at zo = 0.5, and even more so for those beginning very near the wall at z; = 0.24
or zg = 0.1. Again this is due to the increased importance of the entropic repulsion of the wall in a weakly stretched
brush. Thus we see that differences between our classical and the scf theory become more pronounced as 8 decreases,
and become observable for progressively larger end-point positions. However the qualitative features of the path
statistics as determined by the self-consistent treatment of the interacting system are captured well by the classical
approximation, even for values of # as small as unity. These features are the near-uniform stretching of paths with
large values of the endpoint, and the non-monotonic behavior of paths with endpoints close to the grafting surface.

B. Behavior for large distances
1. Classical theory

For large distances from the grafting surface the behavior simplifies enormously. As we saw in the self-consistent
and classical results, paths with large values of the starting position are almost uniformly stretched, i.e. the stretching
function e is given by

e(z,z0) > 2o, (45)

independent of z. Using this approximation in the classical expression for the end-point distribution, eq 34, and
employing the normalization of ¢, eq 15, the end-point distribution can be written down immediately as [30]
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d(z0) = g exp{=B(:3 +1/20)) (46)

Thus plots of In[g(z0)]/8 vs. zo when shifted by a #-dependent constant should be the same for all 3 at large zg.
Figure 11a shows such a plot of the classical results for the end-point distribution for the four different values of 3
already shown in Figure 5b, together with the prediction (46) (dashed line). The p-dependent constant has been
chosen so that all data coincide for zg = 2. The fit is excellent. We also show a purely Gaussian distribution,

9(z0) ~ exp{—Pz}, (47)

denoted by a solid line. As can be seen, the asymptotic scaling of (46) describes the data quite well for the larger
values of zp, which indicates that the effect of the interaction is negligible for polymers paths ending far away from
the wall. The density can be readily calculated according to eq 33 if one neglects the interaction term inversely
proportional to zg in the expression for the end-point distribution, eq 46. The result is

¢(z) ~ Ei(—pz%)/2, (48)
where Ei(z) is the exponential integral. For large arguments, this approximation to the classical density behaves as
exp(—p2z?)
~— 4
o) ~ T (49)

This again suggests plotting In[¢(z)]/# shifted by a S-dependent constant vs. z for several values of 3. We do so in
Figure 11b where we have chosen the (-dependent constants so that all curves coincide as z = 2. We also show the
approximations according to eq 48 as heavy broken curves, shifted so that they pass through the same point. The
agreement is quite satisfactory. According to eq 49, the density profile in the tail of the distribution is essentially
Gaussian, ¢ ~ exp(—32%) ~ exp(—3r3 /2Na?). This is just the distribution expected from ideal, non-interacting
chains, and it arises because the interaction energy of chains whose endpoints are well beyond the average brush
height is small compared to their stretching energy. Furthermore, the uniform stretching observed for such chains is
also characteristic of ideal chains.

2. Self-consistent field theory

The major difference between the self-consistent and classical theories arises from the fact that the former includes
the entropic repulsion due to the wall while the latter does not. The entropic repulsion of the wall is also accounted
for in the non-interacting system, presented in Appendix B. Furthermore the interaction-free theory should provide
a good approximation to scf results at large distances because for polymers with endpoints far from the wall, the
stretching contribution to the free energy is much larger than that due to interactions.

The end-point distribution g(zg) of the free scf theory is, according to eqs 26 and B4, given by

9(20) ~ 2320 exp(—F22). (50)

The only difference between this and the asymptotic classical result, eq 47, is the prefactor of zy, which reflects the
entropic, repulsive pressure due to the wall. In Figure 12a we plot In[g(z0)/z0]/8 for the three different values of
B shown already in Figure 1b, together with the approximation (50) (full line). We also show the behavior of the
function g(zo) ~ zoexp[—B(2% + 1/z)], dashed line, which takes the interactions into account in an approximate
fashion. All data are normalized so as to coincide for zg = 3. As can be seen, the asymptotic scaling of (50) describes
the data quite well for the larger values of z5. However for the larger values of 3, i.e., for the solid line (8 = 100)
and the broken line (§ = 10), the monomer-monomer repulsion is important for intermediate values of zg, and here
the approximation denoted by the broken line gives better agreement. The difference between the two heavy lines is
small for large values of zg.

An approximation for the density ¢(z) at large z can be obtained from the end-point distribution of the free scf
theory, eq 50, and the assumption of uniform stretching, eq 45. Using these approximations in the constitutive
relation, eq 33, one obtains

B(z) ~ %\/gErfc(\/Bz). (51)

For large distances z, this result behaves as
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exp(—pz?)
Bz

Once again, we see that the decay of the density is essentially Gaussian, just as in the classical theory, eq 49. In Figure
12b we replot the densities from Figure la as In[¢(2)]/8, together with the approximation of eq 51, again scaled so
that all data coincide as z = 4. The agreement is satisfactory. The asymptotic limit where the data are predicted to
scale according to (52) is only reached for the two largest values of §.

This Gaussian decay contrasts with the ¢ ~ exp[—(z — zn)%/?] prediction of Ref. [31] for the density profile
in the immediate vicinity of the brush edge. This form was obtained by taking into account, in an approximate
fashion, fluctuations around the classical paths of the infinite-stretching, § — oo, limit. We looked for a behavior
~ exp[—(z — zm)??] at intermediate length scales in our scf results, but were not able to detect such a decay over
any appreciable range of data. A different method was used in Ref. [32], where path fluctuations around a step-like
density profile were taken into account, leading to a profile decaying asymptotically as ¢ ~ 1/322.

These different results show that care must be taken in the choice of the density profile around which one expands
when considering the effect of fluctuations about the classical paths.

¢(2) ~ : (52)

VII. DISCUSSION

This paper contains the derivation and solution of the classical theory for polymer brushes, together with a detailed
comparison with numerical results of a self-consistent field theory. Self-consistent field methods have been applied to
polymer brushes before, but the fact that the continuum theory depends on a single parameter, 3, which measures
the degree of stretching, has not been used to its full potential. The classical theory reduces to the infinite-stretching
theory of Zhulina et al. and Milner et al. in the limit 8 — oo, but is not a systematic expansion about this limit. It is
simply the theory which results from ignoring the contribution to the free energy from all polymer paths other than
the most probable ones. We find some results of the classical and the scf theory to be comparable even for values
of # which are small. These include the properties of the brush at large distances from the wall. Such a result is
easily understood because the properties at large distances are dominated by strongly stretched configurations. On
the other hand, properties of the brush near the grafting surface itself are not captured well by the classical theory
except for larger 3, because 1t misses the entropic repulsion of the wall.

The conditions of applicability of the self-consistent field and classical theory presented in this article are obviously
important. As discussed in Section II the second virial expansion we employ breaks down close to the § point and
at densities near close-packing, but we will not be concerned with the consequences here. The approximations we
have made limit the applicability of the present results in two essential ways. The first approximation is to ignore the
correlations of density fluctuations, which is the signature of mean-field theory, and the second is to ignore all but the
most probable polymer configurations, which is the classical approximation.

We discuss the validity of the mean-field approximation first. The weak requirement for mean-field theory to be
applicable is that one chain interacts with many other chains. This condition is satisfied if the surface coverage is
greater than that characteristic of the mushroom regime [33] based on the swelling behavior in good solvent. This
condition requires

- w\—2/5

ca® > N0/ (a—S) , (53)

and tells us that the polymer chains become ideal at large length scales due to screening of the excluded volume
interaction. We now want to derive the much stronger condition under which the polymer chains are ideal on all
length scales. To that end we define the Gaussian blob size &g, which is the size of a single polymer coil below which
the excluded volume interaction w is irrelevant. The blob size £ and the number of monomers in the Gaussian blob,

Ng, are obviously related by g ~ aNé/Q. A simple Flory argument determines the crossover monomer number Ng
to be

w

Ng ~ (—3)_2. (54)

a

For a much longer polymer with N > N¢g these Gaussian blobs act as non-interpenetrating subunits, so that the
polymer size £ is given by

3/5
&~ (i) g ~ aN>/® (1)1/5. (55)

NG (13
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The polymers in a brush are strongly stretched and thus break up into stretching blobs of size £g containing Ng
monomers each. [34] Due to the effective force acting on these blobs they align in a row so that the brush height A is
determined by

N
h~ N—SE'S, (56)

which, using the scaling relation (55) for &g, leads to a formula for the number of monomers inside a stretching blob
in terms of the brush height,
aN\*"? fwy1/2
N~ (22) 0 (5) 57
° ( h ) a3 ( )

The monomer concentration inside a stretching blob can thus be written as

Ng h?

~ T~ 58
& wa?N?2 (58)

cs

The average monomer concentration in a brush of height A is obviously given by ¢ ~ No/h. Assuming a close packing
of the stretching blobs, 1.e., ¢ = cg, we infer the brush height to scale like A ~ N(waa2)1/3, in agreement with the
original Flory prediction and our results. The polymers are ideal on all length scales if the number of monomers in a
stretching blob is smaller than the number of monomers in a Gaussian blob, which means

N 9\ 5/6
~ <w ) <1 (59)
G

oad

Together with the constraint that the monomer area fraction on the grafting surface is smaller than unity, ca? < 1,
this leads to the following condition under which the mean-field approximation is valid, [5]

(3)2 <oa? < 1. (60)

a3

Which of lower bounds on ¢a? is more restrictive, (53) or (60)? The answer depends on the excluded volume

interaction. If (w/a®)? > 1/N the lower bound (60) is more restrictive, since the chains need to interact with other
chains in order to be ideal. If however (w/a®)? < 1/N the chains are ideal on all length scales even without being
stretched; this corresponds to relatively short chains close to the 6 point, for which higher-order virial coefficients are
important and our model breaks down. Tt is therefore the bound (60) which limits the applicability of the mean-field
approximation within the present context.

For the Gaussian chain model to be applicable, we need the brush height to be smaller than the contour length
of the polymer, i.e., h < Na. Inserting the scaling result for h, we obtain w/a® < 1/(ca?). Since the grafting area
fraction ¢a? is smaller than unity, this condition is always fulfilled in the case where mean-field theory is valid, i.e.,
where condition (60) holds.

The discussion was based so far on uniform stretching and a uniform density within the brush. Assuming condition
(60) to hold, we ask where in the brush should we expect the mean-field approximation to break down locally? This
will occur only if the polymer stretching and the monomer concentration are both locally smaller than average, so
that the stretching blobs can swell beyond the Gaussian blob size without reaching the close-packing limit of blobs.
Repeating the above analysis for a spatially varying monomer density ¢(z) and polymer stretching dz/d¢, we find
that the condition for a local break-down of the mean-field assumption 1s

dz\ > w? \ /3
{QS(Z) and <dt) }< <aa8> . (61)
Close to the grafting surface the density decreases, but the average stretching of polymers is non-zero. The scaling
analysis therefore does not predict a break-down of mean field theory here. At the perimeter of the brush, however,
the average stretching of the polymers is small and the concentration decreases drastically, also. It is therefore in
the small region between the maximum in the end-point distribution (where the end-points of the polymers tend to
have low tension and the density is already lower than unity, see Figures la and b and a little further away from the

grafting surface (where the polymers tend to be stretched rather uniformly, see Figures 2d, 3d, 4d that correlation
effects might be important, depending on the value of the constant w?/ca®. Contrary to what one might expect,
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correlation effects are negligible as one moves far away from the grafting surface. Although the density reaches zero
exponentially, the chains are so strongly stretched that the self-interaction is irrelevant (assuming that relations (60)
holds).

Validity of the classical approximation requires that the chains be strongly stretched on average, i.e., 22/a’N =
23/3 > 1. With the definition of 3 above, this leads to a lower bound on the excluded volume interaction, which can
be written as

oQaiN?’ < (a%)z' (62)

Combining this constraint with (60), one obtains a window of applicability for the grafting density, 1/N < oa? < 1,
a window which is easy to satisfy experimentally. As can be seen from Figures 2d, 3d, and 4d the chains are not
stretched equally, and we expect that the classical approximation will be poor near the wall where the stretching is
small, but be excellent in the region of the tail where the stretching is large. These expectations are confirmed by
comparison of our classical results with those of the full self-consistent theory even for values of 8 of the order of unity.
Thus there 1s an ample region over which results of the classical theory should be valid, and it will be of interest to
study its application to other polymer systems.
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APPENDIX A: THE INFINITE STRETCHING LIMIT, 8 —

For large (3 the results of our classical theory approach those of the ISL theory of Milner, Witten, Cates, and Zhulina
et al. In this section we show that, indeed, our theory reduces to theirs in the limit of infinite stretching. We begin
with the expression for the classical free energy, eq 38. In the limit 8 — co, the free energy becomes

J;d _ _% /000 ds 6%(2) + /OOO dzo 9(z0) /0 le(z, 20)| + %d; (A1)

Variation with respect to e leads to again to eq 42. In contrast, variation with respect to g(zo) does not lead to
an equation determining g(zp), since it appears only linearly. In fact, the resulting equation can always be solved,
since the generating functional contains a term proportional to the undetermined Lagrange multiplier A, see eq 41. It
follows that the end-point distribution is only determined by its relation to the density, eq 33. However, as we recall
below, the density profile is completely determined to be parabolic by the fact that the endpoints are unstretched in
the limit 8 — oo, as shown by eq 43.

1. Parabolic density profile

When the endpoints are unstretched, the stretching function e of eq 42 reduces to
e*(z,20) = 6(2) — é(20) (A2)

so that the equal-length constraint, eq 40 can be written as

%o dz .
/0 [6(z) — $(z0)] 1% L (A3)

Changing the integration variable from z to ¢, and using the notations ¢q = ¢(0) and ¢,, = ¢(z0), one obtains

[P d¢ B
/ =gy ! (A4)

where ¢/(¢) = (dz(¢)/d¢)~" and z(¢) is the inverse function of ¢(z). This equation is an example of an Abel equation,
which can be solved as follows. First one multiplies both sides by fio dé.,/\/¢:, — ¢. and obtains
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/4’0 dg., B /¢>o do., /¢10 do
2 [¢z0 - ¢z]1/2 B [¢z0 - ¢z]1/2 0 ¢/(¢)[¢ - ¢20]1/2

z

_ /¢o dé /¢ d¢z0
a ¢'(0) Jy, (020 — 0:112[6 — ¢2,]'/?

z

_ % dé
= s (49)

z

The integral on the left can be carried out so that (A5) gives

%o
oo =x [ 2 (A6)

Taking a derivative with respect to ¢, on both sides, one obtains a differential equation for ¢(z)
do(z
d<z ) = /oo =302, (AT)

This equation can be solved by separation of variables, and finally gives, together with the boundary condition

#(0) = o, the solution

2
T 2

8() = do - " (A8)

It is this solution that has been plotted in Figures la and 5a as a heavy broken line. The normalization condition for
@, eq 15, determines the density at the wall to be

b0 = <%)2/3. (A9)

The height of the brush, z,,, beyond which the density is identically zero, is then

6 1/3
Zm = (F) ~ (0.8471. (A10)
2. End-point distribution

As noted above, in the infinite-stretching limit, the end-point distribution is only determined via its relation to the
density, eq 33. With the stretching function (A2), this integral equation becomes

Y 9(z0)dzo
6= | 0G) — o(2 )12

_ 2 % g(z0)dzo
e A

T

where, in the last step, we used the result for the density profile from the previous section. With new variables

Yo = z2, — 22 and y = 22, — z? this integral equation attains the form of an inhomogeneous Abel equation,

WTE =t [ BTG (12

m
We use the same procedure as in the last section and compose both sides of (A12) with the integral operator

[y dy//z =y, leading to
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dy /y 5 —y0)/ V2 — v
\/r v Jo (y — yo)'/?
g(

N |= )=

Nh

z5, = Yo) / dy
\/22 — Y Jyo x_y1/2(y_y0)1/2
"y IV om — o) (A13)
VZim — Yo
Taking a derivative with respect to z on both sides, one obtains

(2m) l/x dy( 2 Mo~ = e 2] (Al14)

. )
Y. T T =

— 22 and changing y back to y = z2, — 22 one arrives at

d(zm)z Zm '(z

I
S~

: _ .2
Choosing z = z;,

Using the parabolic result for ¢(z), and performing the integral in (A15), one obtains the result of Zhulina et al. and
Milner, Witten, Cates
2
9(20) = -20(z7, — )%, (A16)
whose integral is normalized to unity. This is the asymptotic function which we plotted in Figure 1b and 5b as heavy
broken lines.
With the infinite 8 results for ¢(z), eq A9, and g(zg), eq A16, the limiting form of the classical free energy, eq 38 is

fcl
g

= (6m)%/33/20 + ﬂ(21n[67r] —5)/3 ~ 1.0624 + /30 2910.

APPENDIX B: NON-INTERACTING GRAFTED POLYMERS

If one neglects the interactions between polymers, the segment probability amplitudes 22 and 23 are solutions of
the free diffusion equation,

dq(z,t) 1 9%q(z,1)

ot 4B 922

(B1)

—0q1(2,1) B iaqu(z,t)

ot 48 922 (B2)

With the initial conditions for a polymer fixed with one end to the impenetrable wall and with the other end at a
distance zq from this wall, ¢(z,1) = 8(z — z0) and ¢(2,0) = 8(z), the solutions can be calculated using the method
of images. The solution of ¢ is given by

q(z,t):@[exp{—w}—exp{—w}], (B3)

while the normalized solution for ¢! is
Tzt 2
Ooq (2,1) = p zexp 4 — p 220 (B4)
Jo dzqt(zt) 1-t

These solutions describe the polymer statistics completely.
The average, as opposed to most-probable, paths (z(¢, zp)),
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Jo” za(z, )04 (2,1)
Joodz g2 OLogt (2 1)

(z(1, 20)) = (B5)

can be calculated exactly and are given by

(2(1,20)) = \/—7[1/2 Bzit/(1 \/ [1, Bz5t/(1 —t)] (B6)

L=t t(l _ 1)
Zof?’\/_

where = is the incomplete gamma function.
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FIG. 1. SCF results for the a) rescaled density profiles ¢ as a function of the rescaled distance z from the grafting surface.
Shown are results for 3 = 0.1, 1, 10, and 100 (dotted, dash-dotted, dashed, and solid lines, respectively), progressively
approaching the asymptotic result (valid for 3 — oo), shown as a thick dashed line. b) Rescaled end-point distribution g as
a function of the end-point position zp. The results are for the same values of § as in a) and again approach the asymptotic
result (thick dashed line).

FIG. 2. SCF results for § = 100, showing the average paths (solid curves) and the most probable paths (broken curves) for
constrained endpoints at a) zp = 2, b) zo = 0.5, and c) zp = 0.1. Also shown are the probability distributions for the monomer
segments with ¢ = 0.1, 0.5, and 0.9 (dotted lines). d) Plotted are the average paths rescaled by the end-point position for
zo =2, 1, 0.5, 0.24, and 0.1 (from bottom to top). The universal path of the ISL is shown as a thick dashed line.

FIG. 3. SCF results for polymer paths for 3 = 10, with the same notations as in Figure 2.
FIG. 4. SCF results for polymer paths for 8 =1, with the same notations as in Figures 2 and 3.

FIG. 5. Classical results for the a) rescaled density profiles ¢ as a function of the rescaled distance z from the grafting
surface. Shown are results for § = 0.1, 1, 10, and 100 (dotted, dash-dotted, dashed, and solid lines, respectively), progressively
approaching the asymptotic result (valid for 3 — oo), shown as a thick dashed line. b) Rescaled end-point distribution g as
a function of the end-point position zp. The results are for the same values of § as in a) and again approach the asymptotic
result (thick dashed line). ¢) End-point stretching e(zo, z0) as a function of the end-point position zp, for the same parameters
as in a). Negative values indicates path moves away from grafting surface. The heavy broken line is of slope unity and denotes
the expected end-point stretching for uniform stretching. d) Difference between maximum z,(z0) and end-point positions zg
for the same parameters as in a).

FIG. 6. Comparison of the monomer density ¢(z) obtained with SCF theory (broken line) and the classical theory (solid
line) for a) # =100, b) # =10,c) =1, and d) # = 0.1. The dotted line denotes the SCF theory results shifted to the left by

an amount which depends on (3.
FIG. 7. Comparison of the end-point distribution g(zo) obtained with SCF theory (broken line) and the classical theory

(solid line) for a) # =100, b) # =10,c) § =1, and d) 8 = 0.1. The dotted line denotes the SCF theory results shifted to the

left by a variable amount.
FIG. 8. Comparison of SCF and classical theory results for polymer paths for # = 100 and end-points constrained to a)

zo = 2, b) zo = 0.5, ¢) zo = 0.24, and d) zo = 0.1. The SCF results for the most probable paths are denoted by broken lines',
while the paths obtained within the classical theory are denoted by a dotted line. The heavy broken lines give the predictions

of the exactly solvable interaction-free SCF theory.
FIG. 9. Comparison of SCF and classical theory results for polymer paths for 3 = 10 with the same parameters and notations

as in Figure 8.
FIG. 10. Comparison of SCF and classical theory results for polymer paths for § = 1 with the same parameters and notations

as in Figure 8 and 9.
FIG. 11. Asymptotic results of the classical theory. a) Shown are the results for the end-point distribution for the same

parameters as in Figure 5b plotted as [In g(z0)]/8 plus a S-dependent constant, denoted ¢(3). The prediction according to (46)
is plotted as a heavy broken line. The heavy solid line denotes the behavior of a purely Gaussian end-point distribution, eq
47. b) Shown are the results for the monomer density for the same parameters as in Figure 5a plotted as [In ¢(z)]/8 plus a
(-dependent constant denoted d(3). The predictions according to eq 48 are plotted as heavy broken lines.

FIG. 12. Asymptotic results of the SCF theory. a) Shown are the results for the end-point distribution for the same
parameters as in Figure 1b plotted as [In g(z0)/z0]/3. The prediction according to (50) is plotted as a heavy solid line. The
heavy broken line denotes the behavior of an approximation which takes the interactions into account, see text. b) Shown are
the results for the monomer density for the same parameters as in Figure 1a plotted as [In ¢(z)]/B. The predictions according
to (51) are plotted as heavy broken lines.
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