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We derive from the self-consistent field equations the classical theory of polymer brushes. It
results from ignoring, for each position of the polymer end point, all but the most probable config-
uration. Results for the brush density profile and polymer end distribution depend sensitively on
the square of the ratio of the characteristic brush height to the polymer radius of gyration, §. For
finite 3, the monomer density exhibits a Gaussian tail and the polymer end-points are stetched. In
the limit of infinite 3, this classical theory reduces to that of Milner et al. and Zhulina et al.

PACS numbers 61.25.Hq, 83.70.Hq, 61.41.4¢

At high surface coverage one finds that polymer chains grafted at one end to a surface are strongly stretched and
form a polymer brush. After the early work by Alexander [?] and de Gennes [?], Semenov [?] observed that this
strong stretching implies that fluctuations around the most probable, or “classical”, paths are unimportant. Milner
et al. [?] and Zhulina et al. [?] implemented this idea in the limit of infinitely strong stretching, i.e., in the limit in
which the brush height is infinitely larger than the unperturbed polymer radius of gyration. Results include a density
profile which is parabolic, a polymer end distribution which is non-zero only for a finite range of distances from the
grafting surface, and a universal form for all polymer paths which are unstretched at their free end, and which differ
only in their amplitude. Except in this limit of infinitely strong stretching, formulation of the classical theory, which
results from ignoring all polymer configurations other than the most probable, has received little attention [?]. A
recent attempt to do so in an approximate fashion [?] produced density profiles for a strongly, but finitely stretched,
system which were closer to those calculated from the full self-consistent theory than were the results of [?,7] for the
limiting case of an infinitely stretched system. This indicated that a classical theory might yield rather good results
for brushes over some non-zero range of polymer stretching. In this Letter we derive the classical theory for polymer
brushes and show that it not only yields useful results over a wide range of the stretching parameter, but also provides
unexpected insights as well. In particular we find that, in general, (i) the density profile has a Gaussian decaying
tail, (ii) the end-point distribution is non-zero everywhere, (iii) classical paths with different end points are different,
(iv) paths with endpoints beyond a certain distance from the grafting surface proceed monotonically to the grafting
surface, and are stretched throughout their entire length, including the endpoint, (v) paths with endpoints within
that distance initially proceed away from the grafting surface, reach a maximum, and then continue to the surface.
They are stretched everywhere except at the maximum'. As it should, the classical theory reduces, in the limit of
infinite stretching, to that of Refs. [?,7].

We begin with the partition function for n Gaussian polymers of N units end-grafted to an area A interacting via
a quadratic repulsion with excluded volume w

/D1~a(.)exp {_%/ON ds fg(s)H exp {—%/dr <i>2(1~)}. (1)

The Kuhn length is denoted by a, and the monomer density is defined by <i>(1) =", fON ds 8[r — ro(s)]. We insert
the identity 1 = fD<I>6(<I>—<i>), use the integral representation of the delta function, 6(<I>—<i>) = [DQexp [ Q[<I>—<i>]dr7
and carry out the Gaussian integration over ®. This yields Z ~ [ DQexp(—AcF[Q]), with F[Q] = — [ d2Q*(z)/2wo —
In Q[Q2] where Q[Q] is the partition function of a single polymer in an external field Q. We have assumed that the
coverage o = n/A is sufficiently great that the field depends only on the vertical coordinate z which measures the
distance from the grafting surface. Note that with this assumption the free energy per polymer is given exactly by
the minimum value of F[Q] in the thermodynamic limit of infinite A [?]. This value is, by definition, that given
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!These results have been compared with detailed self-consistent field-theory calculations [?]. We find full agreement concerning
the polymer path characteristics, and also, for stretching which is not too small, good quantitative agreement for the calculated
monomer density profiles and end-point distributions.



by self-consistent field theory, and occurs for the field, w, obtained from the solution of the self-consistent equation
w(z) = —owb log Q[w]/éw = we(z), where ¢ is the ensemble average of the monomer density.
The mean-field free energy per polymer in units of kT is

F = —w/ooo dz (;52(2)/20 —1n Q. (2)

Although the single particle partition function can be calculated exactly numerically [?,7], it is of interest to determine
the classical approximation which retains, for each position of the polymer end point, only the most probable polymer
configuration. To make this approximation clear, we change the variable describing the polymer path from z(s, zq)
with 2(0, z0) = zo, 2(N,20) = 0 to s(z, z0) with s(z0,20) = 0, 5(0,20) = N, and define E(z,20) = —[ds(z, z0)/dz] 7 .
Anticipating that paths which start at a zy very near the grafting surface may first move away from the surface before
returning to it, we define zp,(z0) to be the largest value of z attained by a path which begins at zg. The single particle
partition function can then be written

Q:/Ooo dz, /IDE(~,~)exp{—/OZM(ZD) az [%|E(z,zo)|+%]}. (3)

The functional integral over all stretching functions E selects only those which satisfy the constraint that all polymer
paths have the same length. The self-consistent equation for the density follows from functional differentiation,
¢(z) = —oélog Q/bwe.

The classical approximation consists of replacing the functional integral over the F in Eq.(??) by the integrand
evaluated with the function e(z, zg) which extremizes the mean-field free energy F, thereby eliminating all but the
most probable path for a given zg.

The self-consistent equation which determines the density becomes, in this classical limit,

o [¥ dzg Zm(z0) T3 , wo(z')
=9 . |e<z,zO>|eXp{‘/o o [l ol || ®)

where zg(zm) is the inverse of zp,(2z0). By comparison with the constitutive relationship between the end-point
distribution g(zg) and the density,

zZ) = - yA 7g(2j0)
o= [ ©)

the end-point distribution is found to be

(o) = Sexp {_/Ozmw dz [2‘% (2, 20)] + %] } | (6)

From this equation one obtains a simple expression for —In Q, a quantity which is, of course, independent of zg.
The expression is made particularly transparent by multiplying it by g(zo), integrating over all zg, and using the
normalization [ dzy g(z9) = 0. One obtains

o= /OOO dzo@ /Ozm(zo) dz I:%Le(z, o)l + M] N /Ooo 2,00 | <M> , (7)

le(z, zo0)| o o

which is the free energy of a single polymer in an external field w¢. Finally, substituting this into Eq.(??), we
obtain the desired expression for the free energy of the many-polymer system. We choose to write it in terms of the
dimensionless coordinate z = z/2 with 7 = [N(2wea®/3)/3], the rescaled density ¢(2) = ¢(2)z/(No) and endpoint
distribution function §(zo) = g(z0)z/c which satisfy the normalizations [ dz ¢(2) = 1 and [ dzo g(z0) = 1 respectively,
and the rescaled stretching function €(z, zg) = e(z, z9) N/Z. The result for the free energy per polymer in units of kT
in the classical limit is, to within an unimportant constant,

Ia 1 oo B oo Zm(Z0) (g(g) 1 o)

- = —= d525+/ dzg g(z / dz[ez,z +7:|+—/ dzg g(zo) In [g(z 8
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where 8 = N(3w202/2a2)1/3 is the square of the ratio of the typical brush height z to that of the unperturbed polymer

radius of gyration aV/N. The last term in the free energy is easily recognized to be the entropy associated with the



end-point distribution. Just such a term was introduced in order to study the dynamics of polymer brushes [?] and,
more recently, in the context of strongly segregated polymer melts [?]. The present calculation furnishes a simple
derivation of this important term. When this free-energy is extremized with respect to the density ¢(z) and end-point
distribution g(Zg), subject to their normalizations, rescaled versions of Eqs. (?7) and (??) are obtained. Variation

with respect to é(z, zg) subject to the equal-length constraint fogm(iu) dz/le(z, zo)| = 1 yields
(2, 70) = 9(2) — ¢(20) + T*(Z0) (9)

The physical meaning of the Lagrange multiplier 7 is the magnitude of the stretching of the polymer at its free
endpoint.

In the limit in which 8 — oo, the entropy term can be neglected, and the free-energy 1s minimized by the asymptotic
classical solution given in Refs [?,?]. At finite 3, the results are markedly different?. They are summarized in Fig.
1. Density profiles for four different values of g, plotted in Fig. la), approach the asymptotic parabolic solution
(shown as a thick dashed line) as 3 increases. The profiles for finite § show a Gaussian tail, and deviate substantially
from the parabolic shape as 3 decreases. Figure 1b) shows the corresponding end-point distributions g, which again
approach the asymptotic result (shown as a thick dashed line) as # increases. The entropic term forces g to be
non-zero everywhere for finite 3 and leads to a rather uniform end-point distribution for small 3.

The classical paths are, in general, stretched everywhere including their endpoint. Fig. 1c) shows, for four values of
B, the function é(Zzg, zg) whose magnitude is the stretching at the endpoint. Not surprisingly, those few paths which
start far from the surface are greatly stretched there. The negative value of e for paths which start close to the surface
indicates that these paths initially move away from the surface before turning back. Fig. 1d) shows the difference
between the maximum value z,, which these paths attain and their end-point value.

The above is the classical theory of polymer brushes. The conditions of applicability of the theory are obviously
important. The approximations we have made limit the applicability of the theory in different ways. The essential
ones are to ignore density fluctuations, which is mean-field theory, and to ignore all but the most probable polymer
configurations, which is the classical approximation. Validity of the former requires that the chains are Gaussian on
all length scales, i.e., that the Gaussian blobs are larger than the Pincus blobs, which is satisified for w?/a% < oa?.
We note that the inverse grafting density can not exceed the monomer area, i.e., ca? < 1. The validity of the classical
approximation requires that the chains be strongly stretched, 2/aN1/2 = (2[)’/3)1/2 > 1. Using the definition of 3
above, we can conveniently write these three conditions as

1/o%a* N3 < w?/a® < ga? < 1. (10)

As noted in Ref. [?], the excluded volume w should be large, but not too large, in order for a classical theory to be
applicable. As can be seen from Fig. 1c) the chains are not stretched equally, and we expect that the classical profile
will be poor near the wall where the stretching is small, but be excellent in the region of the tail where the stretching
is large. These expectations are confirmed by comparison with the results of the full self-consistent theory even for
values of 3 as small as the order of unity [?]. There are two other, less crucial, assumptions that have been made; that
the brush is well characterized only by the one coordinate perpendicular to the grafting surface, and that the polymers
are never so strongly stretched that the Gaussian model becomes inapplicable. The first of these requires that the
surface coverage satisfy oca? > (w/a3)_2/5N_6/5, which is the onset of the mushroom regime based on the swelling
exponent in good solvent [?]. This requirement is satisfied if w obeys Eq.(10) and if w/a® > 1/N'/? which is true
for moderately long chains and if one is not too close to the #-point. The second requirement is that z < Na, which,
with the restriction w/a® < 1 is satisfied for coverages ca? < 1. The Gaussian model is thus applicable whenever
mean-field theory is. Thus there is an ample region over which the results of the classical theory should be valid, and
it will be of interest to study its application to other polymer systems.

We acknowledge useful discussions with J.F. Joanny, A. Johner, and H. Orland. This work was supported in part
by the National Science Foundation under grant No. DMR9531161.

2We note that the present calculation is not a systematic expansion of the partition function, Eq.(1), in powers of 1/3. The
accuracy of the classical theory can be estimated from a comparison with a self-consistent field calculation [?].
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FIG. 1. a) Rescaled density profiles ¢ as a function of the rescaled distance z from the grafting surface. Shown are results for
# =0.1, 1, 10, and 100 (dotted, dash-dotted, dashed, and solid lines, respectively), progressively approaching the asymptotic
result (valid for f — o), shown as a thick dashed line. b) Rescaled end-point distribution g as a function of the end-point
position zp. The results are for the same values of § as in a) and again approach the asymptotic result (thick dashed line). c)
End-point stretching € as a function of the end-point position Zzp, for the same parameters as in a). Negative values indicates
path moves away from grafting surface. d) Difference between maximum Zz,,(2Z0) and end-point positions zo for the same
parameters as in a).



