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   ABSTRACT

We introduce a microscopic model 
of a lipid with a charged headgroup
and flexible hydrophobic tails, a 
neutral solvent, and counter ions. 
Short-ranged interactions between 
hydrophilic and hydrophobic 
moieties are included as are the Coulomb interactions
between charges. Further, we include a short-ranged interaction between charges and neutral
solvent, which mimics the short-ranged, thermally averaged interaction between charges and
water dipoles. We show that the model of the uncharged lipid displays the usual lyotropic 
phases as a function of the relative volume fraction of the headgroup. Choosing model
parameters appropriate to dioleoylphosphatidylethanolamine in water, we obtain phase
behavior that agrees well with experiment. Finally we choose a solvent concentration and 
temperature at which the uncharged lipid exhibits an inverted hexagonal phase and turn on 
the headgroup charge. The lipid system makes a transition from the inverted hexagonal to
the lamellar phase, which is related to the increased waters of hydration correlated with the
increased headgroup charge via the charge-solvent interaction. The polymorphism displayed 
upon variation of pH mimics that of the behavior of phosphatidylserine.

   INTRODUCTION
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Biological lipids in solution display several different lyotropic phases,
and the implications this may have for biological function has been a 
subject of speculation for many years (Cullis et al., 1985 ; de Kruijff 
1997 ). Lipid phase behavior depends upon several factors, some of 
which are intrinsic to the lipid architecture itself. For example, an 
increase in the length of the hydrocarbon tails brings about transitions from lamellar, L , to 

inverted hexagonal, H
II

, phases (Seddon, 1990 ), whereas an increase in the volume of the 

headgroup brings about the reverse (Gruner, 1989 ). Other factors regulating phase
behavior are externally controlled, such as temperature, solvent concentration, and solvent
pH (Hope and Cullis, 1980 ; Seddon et al., 1983 ; Bezrukov et al., 1998 ). It is these 
factors that are the focus of this paper.

Lipid phase behavior has been addressed extensively by the construction of
phenomenological free energy functions, which contain terms describing, inter alia, bending,
hydration, and interstitial energies (Helfrich, 1973 ; Kirk et al., 1984 ; Rand and Parsegian,
1989 ; Kozlov et al., 1994 ). Such approaches, which obtain their several parameters from
experimental measurement of various quantities, are quite useful, particularly in correlating
phase behavior with other thermodynamic properties. Nonetheless, it would clearly be 
desirable to derive all thermodynamic quantities, including the phase behavior, by applying
statistical mechanics to a microscopic model of the system. In addition to simplifying the
description considerably, such approaches would correlate phase behavior with the 
architectural properties of the lipid itself and its solvent.

Analytic, mean-field approaches of statistical mechanics have been applied to anhydrous
lipids to investigate behavior of increasing complexity. Such methods have been combined
with realistic models of lipid tails to determine how the hydrocarbon chains pack in 
aggregates and in bilayers (Marcelja, 1974 ; Gruen, 1981 , 1985 ; Ben-Shaul et al., 1985
; Fattal and Ben-Shaul, 1994 ). Results for the bilayer are in good agreement with
molecular dynamic simulation (Tieleman et al., 1997 ). These methods have shown that, in
a neutral, anhydrous system, the entropy of the lipid tails always favors the H

II
 over the L

phase, and that a change in area per headgroup could bring about a transition between them 
(Steenhuizen et al., 1991 ).

Aggregates, such as the lipid bilayer, in the presence of solvent have also been considered
within the mean-field approach applied to lattice models (Leermakers and Scheutjens, 1988

). In addition to the tails, one must now model the solvent and the headgroups, and 
phosphatidylcholine and phosphatidylserine headgroups are among those that have been
described (Meijer et al., 1994 ). The method is flexible and has been applied to many
different systems, including bilayers with trans-membrane guest molecules (Leermakers et 
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al., 1990 ). Results are quite good, with the exception that the local volume fraction of
solvent inside the bilayer is rather large, several orders of magnitude greater than that
observed in experiment (Jacobs and White, 1989). Lattice models, however, are not 
well-suited to the description of transitions between phases of different symmetry.

It would be extremely useful to have available a relatively simple and tractable model of
lipids that was capable, at least, of describing the effect of their architecture upon their phase
behavior. With this in hand, one could, inter alia, examine the various bicontinuous phases 
to determine their stability or metastability (Shyamsunder et al., 1988), and to explicate the
reasons they facilitate the crystallization of membrane proteins (Landau and Rosenbusch, 
1996 ). Further, one could explore mixtures of lamellar- and nonlamellar-forming lipids to
determine the role that the latter play in lipid-protein interactions (Epand, 1998 ), 
membrane fusion (Markin et al., 1984; Siegel, 1993), and membrane function (Hui, 1997

), all areas in which the importance of their presence has been indicated.

Toward this end, a model system of solvent and monoacyl lipid embedded in a continuous
space was recently introduced. Its phase diagram was obtained by solving the mean-field
theory exactly (Müller and Schick, 1998 ). It displayed both L  and H

II
 phases, so that the 

transition between them could be studied as a function of lipid architecture. The dependence 
of the transition on the architectural parameters, length of tail, and volume of headgroup,
was that observed in experiment. However, the fraction of solvent within the bilayers was 
again too large.

In this paper, we use a model of a lipid computationally more tractable than that used by
Müller and Schick: one whose hydrocarbon tails are modeled as flexible chains rather than
within the rotational isomeric states framework used earlier (Flory, 1969; Mattice and
Suter, 1994 ). We first study the model with an uncharged headgroup. Its phase behavior,
both with respect to variations in architecture and in solvent concentration, is as expected,
and in agreement with experiment. In particular, choosing model parameters appropriate to
dioleoylphosphatidylethanolamine (DOPE), we obtain a phase diagram similar to that
observed (Gawrisch et al., 1992; Kozlov et al., 1994). We extract the variation with
temperature and solvent concentration of the lattice parameter of the inverted hexagonal
phase, and compare it to experiment (Tate and Gruner, 1989 ; Rand and Fuller, 1994). 
The agreement is excellent. We also find that the concentration of solvent within the bilayer
is vanishingly small. We then allow the headgroup to be negatively charged. We introduce 
counter ions into the system, include the Coulomb interaction between all charges, and also 
a short-ranged interaction between charges and neutral solvent, an interaction that models
the thermally averaged interaction between charges and the dipole of water. As the charge 
on the headgroup is turned on, the L  phase is stabilized with respect to the H

II
. In effect, as 
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the charge on the headgroup increases, so too do the waters of hydration. In addition, the
counter ions that are attracted to the headgroup are also enlarged by their own waters of
hydration. It is the totality of these waters that effectively increases the headgroup volume 
and therefore stabilizes the lamellar phase.

The paper is organized as follows. In the next section, we introduce the model for the
charged lipid, the solvent, and counter ions, specify all the interactions between them, and
set up the partition function of the system. In the Theory section, we first derive the 
self-consistent field theory for it. At the heart of the theory are four self-consistent equations
for the electrostatic potential of the system and the three effective fields that determine the 
headgroup, tail, and solvent densities. One of these self-consistent conditions is simply the
nonlinear Poisson-Boltzmann equation. We then expand all functions of position into a
complete set of functions having a specified space-group symmetry, and rewrite the 
self-consistent equations in terms of the coefficients of these expansions. These equations 
are solved numerically, and the free energies of the various phases computed. A comparison
of the free energies yields the phase diagram.

In the Results section, we first present the phase diagram for the neutral lipid as a function
of temperature and one architectural parameter. We include here only the classical phases, 
lamellar, inverted and normal hexagonal, and inverted and normal body-centered-cubic, as 
well as the disordered phase. For the remainder of this subsection, we choose an architecture 
such that the anhydrous, neutral lipid orders into the H

II
 phase. Results for the system in the

presence of a neutral solvent, along with comparisons to experiment, are presented next.

In the next subsection, we consider the charged lipid. We choose a water concentration such
that the neutral lipid remains in the H

II
 phase. By varying the counter ion concentration, we

turn on the charge on the headgroup, and thus all Coulomb interactions, and all short-ranged 
interactions between charges and solvent. We find that the L  is indeed stabilized with

respect to the H
II

 phase, in agreement with experiment (Hope and Cullis, 1980 ; Bezrukov 
et al., 1998 ).

   THE MODEL

We consider a system composed of charged lipids, neutral solvent,
and counter ions in a volume V. There are n

L
 lipids, each of which 

consists of a head, with volume v
h
, and two equal-length, completely

flexible tails each consisting of N segments of volume v
t
. Each lipid 

tail is characterized by a radius of gyration R
g

 = (Na2/6)1/2, with a the statistical segment
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length. The heads carry a negative charge eQ
h
. The solvent consists of n

s
 neutral particles 

of volume v
s
, whereas the n

c
 counter ions have charge +e and negligible volume,

v
c
 = 0. There are five dimensionless densities that totally specify the state of the system; the 

number density of the headgroups, 
h
, of the tail segments, 

t
, and of the solvent, 

s
, and the

charge density of the headgroups, e
h
, and of the counter ions, e

c
. They can be written as 

(1)

(2)

(3)

(4)

(5)

We have chosen v
h
 as a convenient volume to make all densities dimensionless. In the

above, R
s,j

 is the position of the jth solvent particle, and R
c,i

 the position of the ith counter 

ion. The configuation of the lth lipid is described by a space curver r
l
(s), where s ranges 

from 0 at the end of one tail, through s = 1/2 at which the head is located, to s = 1, the end of
the other tail. The nominal probability that the charge on the headgroup of the lth lipid, 
eQ

h,l
, is equal to e or 0 is p or 1  p, respectively. As we model the case in which charges 

can associate or dissociate from the headgroup, it will be necessary to average the partition
function of the system with respect to the charge distribution. This corresponds to an
annealed distribution in the nomenclature of Borukhov et al. (1998) . The concentrations of 
lipid, solvent, and free counter ions are controlled by chemical potentials. In particular,
increasing the number of free, positive, counter ions implies, by charge neutrality, an
increase in the negative charge on the headgroups, and thus corresponds to an increase in the 
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pH of the system.

The interactions among these elements are as follows. First, there is a repulsive, contact
interaction between headgroup and tail segments, and also between solvent and tail
segments. The strength of the interaction is kTv

h
, where k is Boltzmann’s constant and T

the absolute temperature. Second, there is the Coulomb interaction between all charges. The
dielectric constant of the solvent is denoted . Finally, there is a contact interaction between
all charges and the neutral solvent, whose strength is kTv

h
. This is to model the

short-ranged, thermally averaged interaction between charges and the dipole of water, an
attractive interaction that decreases like r 4 and is of strength e2u2/6 2kT, where u is the 
dipole moment of water (Israelachvili, 1985 ). Thus, the energy per unit volume of the
system, E/V, can be written 

(6)

where 

(7)

is a dimensionless measure of the strength of the Coulomb interaction. The grand partition
function (Matsen, 1995 ) of the system is 

(8)
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Here,  r
l
 denotes a functional integral over the possible configurations of the lth lipid and 

in which, in addition to the Boltzmann weight, the path is weighted by the factor [r
t,l

(s);
0, 1], with 

(9)

with  an unimportant normalization constant. The notation  Q
h,l

 denotes an integral

over the probability distribution of the charge on the headgroup of the lth lipid. We have 
enforced an incompressibility constraint on the system with the aid of the delta function (1 

 
h
  

s s
  

t t
), where 

s
 = v

s
/v

h
, and 

t
 = 2Nv

t
/v

h
. The latter parameter is the lipid

architectural parameter. The relative volume of the headgroup with respect to that of the 
entire molecule is 1/(1 + 

t
).

The model is now completely defined. The solvent is specified by 
s
, its volume per particle 

relative to that of the headgroup, and the architecture of the lipid is characterized by 
t
. 

There are three interactions, hydrophobic-hydrophilic, charge-charge, and charge-solvent, 
whose strengths are given by , *, and , respectively. The external parameters are the
temperature, conveniently specified in terms of a dimensionless temperature T*  (2 N) 1, 
the fugacity of the solvent, z

s
, and the fugacity of the free counter ions, z

c
, which, by charge

neutrality, controls the charge on the lipid headgroups. The characteristic length in the
system is the radius of gyration, R

g
. In the next section, we derive the self-consistent field

theory for the model, first in real space, and then in Fourier space.

   THEORY

Real space

Evaluation of the partition function of Eq. 8 is difficult because the
interactions are products of densities, each of which depends on the
specific coordinates of one of the elements of the system. This
dependence is eliminated in a standard way. We illustrate it on 

h
(r) which, from its definition in Eq. 1, depends on the coordinates of the headgroup,

r
l
(1/2). One introduces into the partition function the identity 

(10)
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in which 
h
(r) does not depend on any specific coordinates of one of the elements of the

system, but is simply a function of r. The integration on W
h
 extends up the imaginary axis.

Inserting such identities for the five densities 
h
, 

t
, 

s
, 

h
, and 

c
, and a similar identity for

the delta function expressing the incompressibility condition, one rewrites the partition
function, Eq. 8, as 

(11)

where 

(12)

is the partition function of a single lipid in external fields W
h
, W

t
, and U

h
, 

(13)

is the partition function of a single counter ion of unit positive charge in an external
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potential U
c
, and 

(14)

is the partition function of a single solvent particle in the external field W
s
. It is convenient 

to shift the zero of all chemical potentials so that z
l
  1/v

h
, z

c
  z

c
/v

h
, and z

s
  z

s
/v

h
. The 

partition function, Eq. 11, can then be written in the form 

(15)

with 

(16)

No approximations have been made to this point. What has been accomplished is a rewriting
of the partition function from a form, Eq. 8, in which all entities interact directly with one
another, to a form, Eqs. 15 and 16, in which they interact indirectly with one another via
fluctuating fields. Although the integrals in Eq. 15 over 

h
, 

t
, 

s
, P

h
, P

c
, and  could all be

carried out, because they are no worse than Gaussian, the integrals over the fields W
h
, W

t
, 

W
s
, U

h
, and U

c
 cannot. Therefore, we use the self-consistent field theory in which we 

replace the integral in Eq. 15 by its integrand evaluated at its extremum. The values of W
h
, 

h
, etc., which satisfy the extremum conditions, will be denoted by the corresponding

lower-case letters w
h
, and 

h
, etc. The equations that determine them are six self-consistent

equations for the six fields w
h
, w

t
, w

s
, u

h
, u

c
, and . They are 
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(17)

(18)

(19)

(20)

(21)

(22)

Because the field  is easily eliminated, the six equations readily reduce to five. The
simplicity of Eq. 21 reduces this, in practice, to a set of four equations. The five densities 

h
,

t
, 

s
, 

h
, and 

c
 are functionals of all of the above fields except , and, therefore, close the 

cycle of self-consistent equations: 

(23)

(24)

(25)

(26)

(27)
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(28)

(29)

The density 
h
(r) is simply the expectation value of 

h
(r) in the single lipid ensemble.

Similar interpretations follow for the other densities. Note that one of the self-consistent
equations, Eq. 20, is simply the nonlinear Poisson-Boltzmann equation, and u(r) the electric
potential.

With the aid of the above equations, the mean-field free energy, 
mf

, which is the free 

energy function of Eq. 16 evaluated at the mean-field values of the densities and fields, can 
be put in the form 

(30)

(31)

with E given by Eq. 6. The thermodynamic potential, , is that appropriate to an 
incompressible system calculated in the grand ensemble; the negative of the osmotic 
pressure multiplied by the volume. Thus, the above equation states that the osmotic pressure 
is the sum of the ideal partial osmotic pressures plus a correction due to the interactions.
Within mean field theory, this correction is simply the energy per unit volume of the system.

We now specify that the charges in the system can associate with or disassociate from the
headgroup in response to the local electrostatic potential. This implies that the partition
function of a single lipid, 

l
 is to be averaged over the nominal charge distribution that

Q
h
 = 1 with probability p, and Q

h
 = 0 with probability 1  p (Borukhov et al., 1998 ). The 

consequence of this averaging is that 
l
[w

h
, w

t
, u

h
] of Eq. 12 becomes 

(32)

where 
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(33)

(34)

Although this appears to introduce an unknown parameter p into the problem, the condition 
of charge neutrality, 

(35)

relates this parameter to the fugacity of the counter ions, z
c
. In practice, we use this fugacity 

to control the pH and the amount of charge on the lipids.

There remains only to specify how the single-lipid partition function is obtained. One
defines the end-segment distribution function 

(36)

which satisfies the equation 

(37)

with initial condition 

(38)

The partition function of the lipid is then 

(39)

From this expression for the single-lipid partition function and Eqs. 23, 24, and 27, one 
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obtains expressions for the local density of the lipid heads, 

(40)

of the lipid tails, 

(41)

and of the charge density on the lipid heads, 

(42)

To summarize: there are four self-consistent equations to be solved for the fields w
h
, w

t
, w

s
, 

and electrostatic potential u. These equations, obtained from simple algebraic manipulation
of Eqs. 17-22, can be taken to be 

(43)

(44)

(45)

(46)

Note that we have chosen here to write the Poisson-Boltzmann equation, Eq. 20, in its local, 
rather than its integral form. When the four fields are known, the corresponding densities
follow from Eqs. 26, 29, 40, 41, and 42.

Rather than attempt to solve these equations in real space, a difficult task for the periodic
phases in which we are interested, such as H

II
, we recast the equations in a form that makes

straightforward their solution for a phase of arbitrary space-group symmetry (Matsen and 
Schick, 1994 ).

Fourier space

We note that the fields, densities, and the end point distribution function depend only on one
coordinate r. Therefore, in an ordered phase, these functions reflect the space-group
symmetry of that phase. To make this symmetry manifest in the solution, we expand all
functions of position in a complete, orthonormal set of functions, f

i
(r), i = 1, 2, 3, ... , each of
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which have the desired space group symmetry; e.g., 

(47)

(48)

Furthermore, we choose the f
i
(r) to be eigenfunctions of the Laplacian 

(49)

where D is a length scale for the phase. The functions for the lamellar phase are clear. They
can be taken to be 

(50)

(51)

Expressions for the unnormalized basis functions for other space-group symmetries can be
found in X-ray tables (Henry and Lonsdale, 1969 ) because they are intimately related to 
the Bragg peaks. In the tables cited, those for the hexagonal phase, space group (p6m) can be
found on page 372, and that of the bcc phase, space group (Im3m) on page 524.

The four self-consistent equations become 

(52)

(53)

(54)

(55)

To obtain the partition functions and densities, we proceed as follows. For any function
G(r), we can define a symmetric matrix, 

(56)
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Note that (G)
1i

 = (G)
i1

 = G
i
, the coefficient of f

i
(r) in the expansion of G(r). Matrices 

corresponding to functions of G(r), such as 

(57)

are evaluated by making an orthogonal transformation, which diagonalizes (G)
ij
. With this 

definition, Eqs. 26 and 29 yield the solvent density and counter ion charge density, 

(58)

(59)

(60)

To obtain the remaining densities, we need the end-point distribution function. From Eq. 37, 
we obtain 

(61)

(62)

with initial condition q
i
(0) = 

i,1
. The solution of this equation is 

(63)

From this, the remaining densities follow from Eqs. 40, 41, and 42: 

(64)
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(65)

(66)

with 

(67)

The mean-field free energy, Eq. 31, takes the form 

(68)

with the mean-field energy being given by 

(69)

We have expressed the Coulomb energy as a product of the charge densities and
electrostatic potential. Note that this free energy still depends parametrically on D, the 
length scale of the phase, so that the value of D that minimizes it must be determined. Once 
this is done, we compare the free energies obtained for phases of different space-group
symmetry, and thereby determine the phase diagram of our model lipid system.

The infinite set of self-consistent equations, Eqs. 52-55 must be truncated to be solved
numerically. We have used up to 50 basis functions. This truncation is sufficient to ensure, 
for T* > 0.03 and 1/(1 + 

t
) < 0.66, an accuracy of 10 4 in the free energy v

h mf
/kTV. As 

noted, one must also determine the length scale that minimizes the free energy. This is
usually straightforward because there is a single well-defined minimum for a phase of given 
symmetry at given thermodynamic parameters: temperature, and chemical potentials. Were
there more than one minimum, this would reflect a tendency for the system to phase separate 
into two phases with the same nontrivial space-group symmetry, an extremely unusual 
occurrence. The single minimum that one finds normally is sharp, that is, the free energy
varies rather rapidly with D. Only in cases in which phases are greatly swollen is the 
minimum extremely shallow and difficult to locate.
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   RESULTS

The neutral lipid

We first apply our method to a neutral lipid. We show here the phase
behavior of the neutral lipid, in the absence and in the presence of
solvent. Figure 1 shows the phase diagram of the pure lipid as a 
function of the dimensionless temperature T*, and the architecture of 
the lipid. The latter is characterized by the single parameter 1/(1 + 

t
) which is the relative 

volume of the headgroup to that of the entire lipid. It is analogous to, but not the same as, the
single parameter used by Israelachvili (1985)  to characterize the geometry of lipids. Shown
are the lamellar phase, L , the normal and inverted hexagonal phases, H

I
 and H

II
, and the

normal and inverted body-centered cubic phases bcc
I
 and bcc

II
. The occurrence of

bicontinuous phases will be discussed in a later paper.

View larger version (16K): 
[in this window] 

[in a new window]
 

FIGURE 1   Phase diagram of the neutral lipid as
a function of dimensionless temperature, T*  1/2

N, and relative headgroup volume, 1/(1 + 
t
). In 

addition to the disordered phase, D, there are 
normal and inverted body-centered cubic phases,
bcc

I
 and bcc

II
, normal and inverted hexagonal 

phases, H
I
 and H

II
, and the lamellar phase L . 

One sees that the phase behavior is reasonable and in accord with packing considerations; as
the headgroup increases in volume, the system passes through a series of phases from the
inverted ones with most curvature, through the lamellar phase, to the normal ones of most
curvature. To model a lipid, which, like phosphatidylserine, adopts the H

II
 configuration 

when essentially neutral (Cullis et al., 1985 , Bezrukov et al., 1998 ), we have chosen
1/(1 + 

t
) = 0.24 in our subsequent studies. For comparison, the value appropriate for DOPE, 

calculated from the molecular volumes in the literature (Rand and Fuller, 1994 ), is
0.254. For the convenience of the reader interested in carrying out similar calculations, we
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present, in Table 1, the values of the first three nontrivial Fourier components of the
headgroup density 

h
(r), the lattice parameter D/R

g
, and the free energy 

mf
v

h
/kTV for the L

, H
II
, and bcc

II
 phases at T*  = 0.04. We note, in passing, that the relative intensities of 

X-ray Bragg peaks can be determined directly from the Fourier components of the various
densities with which they are associated.
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TABLE 1   Anhydrous, neutral lipid: the lattice parameter,
the free energy, and the first three non-trivial Fourier
components of 

h
(r) for L , H

II
, and bcc

II
 phases at

T* = 0.04 and 1/(1 + 
t
) = 0.24 

The effect on this neutral lipid of the addition of a solvent of small volume, characterized by

s
 = v

s
/v

h
 = 0.1, close to the value of 0.096 (Rand and Fuller, 1994 ; Kozlov et al., 1994),

appropriate to water and a phosphatidylethanolamine headgroup, is shown in Fig. 2. There is 
a lamellar phase at small solvent volume fractions and low temperatures. This phase 
becomes unstable with respect to the H

II
 phase, which envelops it at higher temperatures.

There is a large region of two-phase coexistence between the ordered lipid-rich phases and 
an almost pure solvent phase. These features are reasonable, and are observed in the systems
of aqueous dialkyl didodecylphosphatidylethanolamine and of diacyl
diarachinoylphosphatidylethanolamine (Seddon et al., 1984). Of particular interest is that
we find a small temperature region of re-entrant hexagonal-lamellar-hexagonal transitions, 
an unusual feature that has been observed in DOPE (Gawrisch et al. 1992; Kozlov et al.
1994 ). As a consequence, there is an azeotrope at which the transition between lamellar
and hexagonal phases occurs without a change in the concentration of water. We have used 
the coordinates of this point, T*  = 0.06 and 

s
 = 1.42, denoted T

0
 and (

s
)
0
, to normalize the

temperature and solvent-density axes. There is a small region of bcc
II
 in our phase diagram. 

Again, the possible occurrence of bicontinuous phases will be examined in a later
publication. The uncertainty in the temperature of the phase boundaries, T/T introduced by
the truncation of the number of basis functions, is approximately 2 × 10 3.
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FIGURE 2   Phase diagram of a neutral lipid with
1/(1 + 

t
) = 0.24 in a solvent with 

s
 = 0.1 as a

function of temperature, T/T
0
, and fraction of

solvent, 
s
/(

s
)
0
, with T

0
 and 

s
(

s
)
0
 the 

temperature and volume fraction of solvent at the
azeotrope. 

As the volume fraction of water is increased, we find that the period of all structures
increases, as is expected. In Fig. 3, we compare experimental results on DOPE taken in the
inverted hexagonal phase at a temperature T = 22°C, just above that of the azeotrope (Rand 
and Fuller, 1994 ), to our values calculated just above the azeotrope. Knowing the
molecular weight of DOPE, we convert the volume fraction of solvent, 

s s
, which occurs in 

the calculation, to the experimental variable of weight fraction of water. The lattice
parameter of the hexagonal phase in the calculation, however, is measured in units of the
radius of gyration of either lipid tail. What value should be taken to model DOPE is 
unknown. Hence, we have used, in the comparison, the lattice parameter D, in units of D

0
, 

the lattice parameter at the azeotrope. The agreement is excellent.

View larger version (12K): 
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FIGURE 3   Comparison of theoretically
calculated and experimentally measured values of
the lattice parameter D/D

0
 of the H

II
 phase at a

temperature just above the azeotrope versus 
weight fraction of water, 

w
w. The lattice 

parameter at the azeotrope is denoted D
0
. 
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An effective value of the radius of gyration can be defined as that value that brings
agreement between the calculated and measured lattice parameters. As the former, at the
azeotrope, is D(T

0
)  D

0
 = 4.79R

g
0, and the latter is 58.9 Å (Rand and Fuller, 1994 ), the 

equivalent radius of gyration at the temperature of the azeotrope, R
g
0, is 12.3 Å for a single

tail, not unreasonable when compared to the extended length of a single chain of DOPE,
which is approximately 26 Å.

As the temperature of the system is lowered, the period of all structures increases, which is
due to the lengthening of the tails as their entropy decreases. We would again like to
compare our results with those of the DOPE system. To do so, we must address the
temperature dependence of the radius of gyration, R

g
, which appears in the theory, and 

which is not given a priori. Because the model chain is flexible, the radius of gyration is
related to the mean square end-to-end distance, , by a numerical constant, R

g
 = / , so

their dependence on temperature is the same. To compare our results to DOPE, we shall
assume that the temperature dependence of the radius of gyration that appears in the 
calculation is the same as that given for lipid chains by the Rotational Isomeric States 
Model, a model that describes the properties of such chains very well (Flory, 1969; Mattice
and Suter, 1994). Thus we assume 

(70)

where the angle  takes the values 180° and ±70° corresponding to trans, gauche+ and gauche
 configurations, and c is a constant. The statistical average of cos  is 

(71)

with  = exp( T
rism

/T) and T
rism

 = 280.25 K. From the behavior with temperature of R
g
(T), 

the lattice parameter, D(T), at any temperature can be obtained from 

(72)

Again, it is the factor D(T)/R
g
(T) that occurs naturally in the calculation.

A comparison of the experimentally measured (Kirk and Grunner, 1985; Tate and Gruner,
1989 ) and theoretically calculated lattice parameters versus temperature is shown in Fig. 4. 
In part (a), the variation of the parameter of the H

II
 is shown at two different lipid weight
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fractions. The agreement is very good. In part (b), the comparison is made of the H
II

 and L

parameters along the coexistence with excess water. Note that this comparison is a much 
more stringent test, because it requires not only that the dependence of the lattice parameters
on solvent concentration and on temperature be reproduced well by the calculation, but also 
that the phase boundaries be given well. Considering these requirements, the agreement is 
rather good. It should be noted that the agreement in Fig. 4 b does not depend on the exact
temperature of the triple point, which is difficult to locate precisely, but only on the 
existence of stable H

II
 and L  phases, which coexist with excess water.

View larger version (24K): 
[in this window] 

[in a new window]
 

FIGURE 4   Comparison of theoretically
calculated and experimentally measured values of
the lattice parameter, D(T)/D

0
, versus absolute 

temperature T (a) for two different weight 
fractions of lipid, 

l
w, and (b) along coexistence 

with excess water. The absolute temperature of
the azeotrope is denoted T

0
. 

As seen in Fig. 4 b, the lattice parameter of the H
II

 phase is much larger than that of the L

at the triple point. This is due to the coexistence with excess solvent, which swells the
hexagonal cores, but which is only weakly present between the lamellae. In contrast, when
the lamellar and hexagonal phases are only in two-phase coexistence with one another and
there is no excess solvent, the hexagonal phase, in general, has a smaller lattice parameter 
than the coexisting lamellar phase, as shown in Fig. 5. This is because, over almost all of
their coexistence region, the H

II
 phase has a smaller volume fraction of solvent than does the 

L  phase, as can be seen from the phase diagram of Fig. 2. Only over the re-entrant region,

which occurs as the triple point is approached, does this balance shift. This shift in the 
relative size of the latter parameters through the re-entrant region is in agreement with 
experiment (Kozlov et al., 1994 ).
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FIGURE 5   Lattice parameter of the H
II

 and L
phases along their mutual coexistence as a
function of absolute temperature. The absolute 
temperature of the azeotrope is denoted T

0
. 

It is of interest to determine if any one effect can be said to drive the transition from the H
II

to L  phase in the neutral system. To this end, we examine the individual terms in the

thermodynamic potentials per unit volume 
mf

v
h
/kTV = Ev

h
/kTV  S

l
v

h
/kV  (S

s
v

h
/kV + 

s
ln z

s
) of the L  and H

II
 phases, as the transition is crossed, by increasing the solvent 

fugacity, z
s
, at constant temperature T/T

0
 = 0.67. In Table 2, we show the contributions to 

the free energy per unit volume of the L  phase and that of the H
II

 phase coming from the

interaction energy, Ev
h
/kTV, the lipid tails, S

l
v

h
/kV, and the solvent S

s
v

h
/kV  

s
ln z

s
. All 

contributions are evaluated at the transition itself, which occurs at z
s
  3.15, and are 

measured with respect to the free energy per unit volume of the disordered phase. We also
show the difference in the contribution of each term to the free energies of each phase, and
the derivative of this difference with respect to the solvent fugacity. The difference in the 
contribution of the entropy of the lipid tails is positive because, with the lipid architecture
we have chosen, the large tail volume relative to that of the head favors the hexagonal phase. 
The interaction energy favors the lamellar phase, as does the solvent, presumably because 
the interstices of that phase are two-dimensional, whereas those of the inverted hexagonal
phase are one-dimensional. The difference between the lipid entropy contributions decreases 
with increasing solvent concentration because the packing constraints in the H

II
 phase

become more severe as the size of the cores increases (Gruner, 1989 ). However, it is 
apparent that neither this term, nor either of the others, changes so rapidly with solvent 
concentration compared to the others that any particular effect can be said to drive this 
transition.
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TABLE 2   Neutral lipid: contributions to the free energy per
unit volume and temperature in the L  phase and in the H

II
phase, the difference in these contributions, and the derivative
of this difference with respect to the solvent fugacity

The charged lipid

We now turn on the negative charge of the headgroups by varying the chemical potential of
the free counter ions while enforcing charge neutrality. Increasing the density of free,
positive counter ions in our closed system is equivalent to increasing the magnitude of the
negative charge density on the headgroups. It therefore corresponds to an increase in the pH
of an experimental system. The charge on the headgroups is annealed, meaning that it is
determined by the local value of the electrostatic potential, and therefore the headgroup
charge varies with the location of that group. The parameter * , defined in Eq. 7, measures 
the strength of the Coulomb interaction. It can be written as the ratio of two lengths, *  = 
/L

l
, where   e2/ kT is the Bjerrum length, and L

l
  v

h
/4 R

G
2 is a length characterizing the

architecture of the lipid. It is reasonable that * be larger than, or of order, unity, and we 
have arbitrarily taken *  = 1.

In addition to the Coulomb interaction, the short-ranged, thermally averaged interaction
between charges and the water dipole is also of importance. It varies with separation r as
(kT/6)(u/e )2( /r)4  (r), with u the dipole moment of water and  the Bjerrum length. The 
above expression is valid for distances such that r/  > (u/e )1/2. For water,   7 Å, and 
(r)/kT  4.6 × 10 4( /r)4. To approximate this short-ranged interaction by a contact
interaction of dimensionless strength, , is equivalent to using /kT evaluated at some fixed
distance. Any reasonable choice shows that  is small. We have arbitrarily chosen 
 = 0.1, which corresponds to (r)/kT evaluated at 1.9 Å, a distance within the regime in
which the approximate expression for the charge-dipole interaction is valid.

Shown in Fig. 6 is the temperature of the transition, T*, between H
II
 and L  phases as a 

function of the magnitude of the average charge density on the headgroups, 
h
  

h;1
. The

range of charge density corresponds to the headgroups varying from being neutral to fully
charged. The region beyond the almost vertical line at |

h
|  0.22 would correspond to the

headgroups being charged with a probability greater than unity, and is therefore unphysical. 
The maximum value of |

h
| is slightly different in the two phases. One sees that, with 

increasing headgroup charge equivalent to increasing pH, the inverted hexagonal phase
becomes unstable with respect to the lamellar phase, just as in the experiments on 
phosphatidylserine in water (Hope and Cullis, 1980; Bezrukov et al., 1998). Furthermore, 
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the pH at the transition increases with increasing temperature, in accord with experiment 
(Hope and Cullis, 1980 ).
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FIGURE 6   Transition temperature between L
and H

II
 phases for the same lipid as in Fig. 2, but 

now with a charged headgroup. The
dimensionless strength of the Coulomb interaction 
is *  = 1, and that of the interaction between
charges and neutral solvent is  = 0.1. The solvent
fugacity is fixed at z

s
 = 3. 

In Fig. 7 a, we show the volume fraction profiles in the L  phase at a value of

z
c
 = 0.1228, z

s
 = 3, and temperature T*  = 0.04 at which the H

II
  L  transition occurs. The 

position through the system is divided by the lattice parameter of the phase, which, in units
of the radius of gyration of the lipid, is D

L
/R

g
  4.14. All looks reasonable. In particular, the

volume fraction of solvent within the bilayer is negligible, in agreement with molecular 
dynamic simulations of a single charged bilayer (López Cascales et al., 1996 ). We obtain 
similar results when the lipid is neutral. In Fig. 7 b, the charge density profile of the same 
structure is shown. One sees that the charge on the headgroup mimics, but does not
reproduce, the headgroup volume fraction. This is because the charge on the headgroup is
not fixed, but varies with the local electrostatic potential. The counter ion density is fairly 
uniform because we have used a single dielectric constant, that of water, throughout the
system. In principle, a more realistic position-dependent dielectric constant could be used, 
which would lead to a reduced counter ion density in the tail region. Such a procedure would 
entail a significant change in the Poisson-Boltzmann equation, Eq. 46, because it is the
divergence of the electric displacement. 

(73)

that is proportional to the free charge density. The second term cannot be ignored in the
region around the headgroups where the dielectric constant varies rapidly between its values
in the tail and water regions. It accounts for the orientation of water dipoles near the



Theory of Lipid Polymorphism: Application to Phosphatidylethanolamin... http://www.biophysj.org/cgi/content/full/78/1/34

25 of 31 07/27/06 11:31

headgroups. The fact that the position-dependent dielectric constant depends on the initially
unknown head, tail, and solvent densities, (r) = 

h h
(r) + 

t t t
(r) + 

s s s
(r), further

complicates the equation. For these reasons, we have used the uniform dielectric constant in
this initial study. Interestingly, the approximation of a uniform dielectric would have much 
less effect had we modeled larger counter ions, such as Na+. Their very size, coupled with
the incompressibility conditions and the interactions, would cause their density in the tail
region to be much reduced (López Cascales et al., 1996 ) when calculated by the
Poisson-Boltzmann equation (Borukhov et al., 1997).
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FIGURE 7   (a) Volume fraction distribution in 
the L  phase of the solvent, headgroups, and tails,
in the system of Fig. 6 at a counter ion chemical 
potential of z

c
 = 0.1228 corresponding to the L  

 H
II
 transition. The temperature is T*  = 0.04, and

the lattice parameter of the lamellar phase is
D

L
/R

g
 = 4.14. (b) Charge densities arising from 

the headgroups, the counter ions, and the total
charge density in the L  phase under the same 
conditions as in (a). 

In Fig. 8 a and b, we show the volume fraction and charge density profiles for the H
II
 phase 

at the same value of z
c
 as in Fig. 7. The cut through the system is taken along the

nearest-neighbor direction, and the distance is normalized to its lattice parameter D
H

 

 3.83R
g
. Again, the wavelength of the H

II
 phase is smaller than that of the L  phase because, 

in two-phase coexistence, i.e., in the absence of a reservoir of excess water, the cores of the 
cylinders are not swollen with water, and the hexagonal phase contains a smaller volume 
fraction of water than does the lamellar phase. One can infer from Fig. 8 a that, in the
nearest-neighbor direction, there is far more interdigitation of lipid tails than in the lamellar 
phase. This makes sense, because the tails must certainly stretch to fill the space between 
cores in the second-neighbor direction, so that interdigitation is expected in the
nearest-neighbor direction.
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FIGURE 8   (a) Volume fraction distribution in 
the H

II
 phase of the solvent, headgroups, and tails,

in the system of Fig. 6 at a counter ion chemical 
potential of z

c
 = 0.1228 corresponding to the L  

 H
II

 transition. The temperature is T* = 0.04, and
the lattice parameter of the inverted hexagonal
phase is D

H
/R

g
 = 3.83. (b) Charge densities 

arising from the headgroups, the counter ions, and
the total charge density in the H

II
 phase under the 

same conditions as in (a). 

To investigate this transition further, we show, in Table 3, the contributions in the L  and the 

H
II

 phases of the various terms in the thermodynamic potential per unit volume 

mf
v

h
/kTV = (E

1
 + E

2
 + E

3
)v

h
/kTV  S

l
v

h
/kV  (S

s
v

h
/kV + 

s
ln z

s
)  (S

c
v

h
/kV + 

c
ln z

c
). 

Here E
1
 is the hydrophilic-hydrophobic interaction proportional to N, E

2
 is the electrostatic

interaction proportional to *, and E
3
 is the charge-solvent interaction proportional to . 

These contributions are evaluated at the transition itself, and are measured from the free
energy per unit volume of the disordered phase. We also show the difference between these
contributions to each phase, and the derivatives of each of these differences with respect to 
the counter ion fugacity, z

c
. There are several interesting things to note. The electrostatic

energy is a relatively small contribution to the free energy of each phase, and hardly differs
between them. Therefore, it does not have a large effect in bringing about the transition. The
contribution of the counter ions to the free energy of each phase is of the same order of
magnitude as the electrostatic interaction and, like it, does not change rapidly with the
counter ion fugacity. The contribution of the short-range charge-solvent interaction is small,
but it changes most rapidly with the counter ion fugacity, and, therefore, appears to be most 
important in actually bringing about the transition itself.
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TABLE 3   Charged lipid with both Coulomb and
charge-solvent interactions: contributions to the free energy
per unit volume and temperature in the L  the H

II
 phases, the 

difference in these contributions, and the derivative of this
difference with respect to the counter ion fugacity
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The physical mechanism in the experimental system appears to be clear. The lipid with an
almost neutral headgroup forms the H

II
 phase because the volume of the headgroup is

relatively small compared to that of the entire lipid. As the charge on the headgroup is turned 
on, it attracts an increasing volume of waters of hydration via the attractive interaction 
between the charge and the dipoles of water. In addition, more counter ions, enlarged by 
their own waters of hydration, are attracted to the headgroup. Thus, the headgroup becomes 
effectively larger, and drives the transition to the L  phase.

Just as we have calculated the variation with temperature and solvent concentration of the
H

II
 lattice constant of neutral DOPE, so we should be able to calculate its recently measured

variation with salt concentration in binary mixtures of DOPE and dioleoylphosphatidic acid,
(Döbereiner, unpublished). It would  be interesting to do so.
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