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ABSTRACT: We study the phase behavior of ternary blends of A- and B-homopolymers and symmetric,
or slightly asymmetric, AB-diblock copolymer as obtained from self-consistent field theory. We choose
one value of the segregation in the weak to intermediate regime and determine the effects of varying the
relative degrees of polymerization of the components. The diagrams we obtain, which contain the classical
lyotropic phases, exemplify and make concrete a few general principles. Homopolymers longer than the
diblocks are expelled from the microstructure, while homopolymers of comparable length swell the
microstructure, a swelling which can proceed indefinitely. Very short homopolymers disorder the
microstructure. Our results can be understood as due to the varying ability of homopolymers of different
length to swell the brush formed by the diblock at the internal interfaces.

I. Introduction

Systems containing block copolymers are interesting
due to their ability to cause ordered phases of various
symmetries to form spontaneously.1 Besides being of
both fundamental and applied interest in their own
right, polymer mixtures provide systems which are well-
characterized, both experimentally and theoretically,
with which to study the phenomenon of self-assembly,
a phenomenon also displayed by lipids and short-chain
surfactants.
The behavior of a melt of pure AB-diblock is rather

well-understood.2,3 At sufficiently small values of the
effective interaction parameter øN, where ø is the
dimensionless incompatibility between unlike segments
and N is the number of statistical segments per chain,
the melt is disordered. As øN is increased, either by
lowering the temperature or by increasing the chain
length, the incompatibility causes the system to order.
Because of the connectivity of the blocks, there can be
no macroscopic phase separation into two phases of like
components. Instead, the melt undergoes a microphase
separation characterized by extensive amounts of in-
ternal interface which separate coherent regions of
A-monomer from B. The copolymer chains straddle the
interfaces, forming a “brush” on either side. The sym-
metry of the ordered phase is determined by the
architecture of the diblock, that is, the fraction f of it
which is comprised of A-monomer. In an almost sym-
metric diblock, the cost to stretch either block is nearly
the same, with the consequence that the system forms
the flat interfaces of lamellar phases. However, if one
of the blocks is sufficiently longer than the other, a
curved interface is formed, with the longer block on the
outside. This allows the longer block to relax, which
more than compensates for the necessary stretching of
the shorter block on the inside of the curved interface.
Our understanding of blends containing diblock co-

polymer is far less complete, although much progress
has been made recently.4,5 The simplest system consists
of an AB-diblock blended with A-homopolymer, of chain
lengths N and NA, respectively. The fact that this
system is now a true two-component mixture permits
two behaviors absent in the pure diblock case. On the

one hand, the blend can phase-separate into two distinct
bulk phases, each of which can be microstructured. On
the other, the blend can be swollen by added homopoly-
mer. In the extreme case, this swelling can proceed
indefinitely so that the period of the microstructure
grows without limit. This leads to the complete unbind-
ing of the ordered phase.5-7 These additional behaviors
take place in the enlarged parameter space of the binary
blend which comprises not only the polymerization
indexN and fraction f of the diblock, but also the volume
fraction φ of the homopolymer and its chain length NA
) RAN. The topology of the phase diagram is largely
determined by the parameter RA.
As noted above, the spontaneous curvature of a

copolymer layer is determined by the composition
parameter f. The ability of A-homopolymer chains to
enter a diblock layer is determined by the relative chain
lengths, i.e. by RA. This ability has been studied in
systems of polymers grafted at one end to a surface and
immersed in a homopolymer melt. It was found8 that
homopolymers longer than the chains in the brush are
expelled from it (“dry” brush), while those which are
shorter swell the brush (“wet” brush). This argument
was later extended to several other situations: to
brushes formed by diblocks assembled at an internal
flat interface between coexisting bulk phases of im-
miscible homopolymers, to the curved interfaces of
copolymer micelles,9,10 and to the phase behavior of
binary homopolymer/diblock blends in the strong seg-
regation limit.11

Phase diagrams for the case of binary AB/A blends
have recently been calculated5 and are generally in good
agreement with experiment. Our aim is to extend such
calculations to ternary systems of AB-diblocks which are
blended with both A- and B-homopolymer.
Our motivation is 3-fold: First, the microphase sepa-

ration behavior of ternary blends has received little
experimental attention.12-16 Theoretical studies have
concentrated either on the interfacial activity of diblock
copolymers between coexisting bulk phases17,18 or on the
phase diagram of disordered, homogeneous phases.19,20
The only theoretical study21 focusing specifically on the
microphase behavior of ternary blends was severely
restricted by approximations made in addition to that
of the mean-field theory. In particular, the restriction
to the lamellar phase as the only ordered structure and
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its description by a single Fourier component caused
some crucial features to be missed, e.g. the complete
unbinding. Thus our primary goal is to elucidate the
general phase behavior of these important systems,
particularly with regard to the lyotropic phases.
The parameter space of the ternary system A/B/AB

is rather large, as there are two independent chain
length ratios and two independently variable volume
fractions, in addition to f and øN. The dependence of
the phase behavior on these parameters is not obvious,
and determining it experimentally is not practical.
Thus, our second goal is to produce a representative
catalogue of typical phase diagrams and to give physi-
cally motivated interpretations of them that permit the
extension of our results to related systems.
Lastly, it is of interest to make possible the compari-

son of ternary homopolymer/diblock melts with water,
oil, and surfactant systems for which an enormous
number of experimental phase diagrams has been
assembled.22,23 The apparently universal character of
self-assembly as manifested in the often observed
sequence of lamellar to hexagonal to body-centered-cubic
to disordered phases with increasing dilution of the
amphiphile leads one to expect that information about
short-chain amphiphiles can be gained from the study
of polymers. The latter are far more easily described
theoretically than the former. Of course with the
synthesis of long chain surfactants,24 the distinction
between the two systems is becoming increasingly
artificial.
Our paper is organized as follows. In the next section,

we develop the self-consistent field theory of the AB/
A/B system in the grand canonical ensemble and in a
Fourier representation. In section III, we present the
phase diagrams obtained and interpret their structure
using arguments based upon wet and dry brushes. In
the final section, we summarize our main arguments
as to the dependence of the phase behavior on the
parameters of the system and conclude with a few
additional observations.

II. Theory
We consider a ternary blend of A- and B-homopoly-

mer, of polymerization indices RAN and RBN, respec-
tively, and AB-diblock of index N of which a fraction f
is A-monomer. We employ the Gaussian model of
flexible polymer chains and work in the grand canonical
ensemble in which the number nκ of chains of type κ )
A, B, AB is not fixed.4 The configurational part of the
partition function is

where v is the volume occupied by each monomer, zκ )
exp(âµκ), â ) 1/kBT, and µκ is the chemical potential of
component κ to within an additive constant z0. Tildes
indicate that the functional integrals are weighted by
the Wiener measure P[r;0,1] for diblocks and P[r;0,RA],
P[r;0,RB] for the homopolymers, where

where a is the statistical segment length taken to be
the same for both monomers. To simplify the formulae
below, we shall set z0 ) Nv.
Information about the configurations of the chains is

contained in the local, dimensionless, densities. That
of the A-monomers is

A similar expression holds for Φ̂B. We include a hard
core repulsion between monomers by requiring the melt
to be incompressible. As a consequence, there are only
two independent chemical potentials, and we set that
of the copolymer to zero.
To make the expression for the partition function

more tractable, one inserts a functional integral 1 )
∫DΦADΦBδ[ΦA-Φ̂A]δ[ΦB-Φ̂B], which permits the re-
placement of the densities Φ̂A and Φ̂B, which depend
on the polymer configurations, by the functions ΦA and
ΦB, which do not. After inserting a standard represen-
tation for the δ-function δ[ΦA-Φ̂A] ) ∫DWA exp[WA-
(ΦA-Φ̂A)], whereWA is imaginary, and similarly for the
other δ-function and carrying out the summations over
nκ, we arrive at the following form of the partition
function

where the free energy functional is:

The Qκ are the partition functions of single polymers in
external fields WA and/or WB. These single polymer
partition functions can be obtained from Qκ ) ∫ dr
qκ(r,Rκ), κ ) A, B, and QAB ) ∫ dr qAB(r,1) where the
end-segment distribution functions are

Because the polymers are modeled as Gaussian chains,
these distributions satisfy the diffusion equations

for the diblock and
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(2.9)
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for the homopolymers, respectively. The initial condi-
tions are qκ(r,0) ) 1 for all components. Because the
two ends of the diblock are distinct, it is also necessary
to introduce qAB

† (r,s), which is defined similiarily to
qAB, except that the functional integral eq 2.8 is taken
from s0 to 1. It satisfies (2.9) with the left-hand side
multiplied by -1 and with the initial condition
qAB
† (r,1) ) 1.
In place of calculating the exact free energy, the self-

consistent field theory approximates it by the value of
the free energy functional F(ΦA,ΦB,WA,WB) obtained by
extremizing it under the incompressibility constraint,
which is incorporated by means of Langrange multiplier
ê. The densities and fields which extremize the free
energy, and which we denote by φA, φB, wA, and wB are
solutions of the variational equations

From eqs 2.11 and 2.15 and the definition of the single
polymer partition functions Qκ, it is seen that φA is the
ensemble average of Φ̂A, and similarly for φB. They can
be written in terms of the end-segment distribution
functions as

A similar expression holds for φB.
We now expand all functions of position in a complete

set of orthonormal eigenfunctions of the Laplacian
which possess the symmetry of the phase being consid-
ered. This converts eqs 2.9-2.15 between functions into
a discrete set of coupled equations for the Fourier
coefficients. Upon truncation of the eigenfunction ex-
pansion, the equations are solved exactly following ref
25. The number of basis functions retained determines
the accuracy of the solution. The maximum number
that we can handle computationally is 50. The basis
functions contain a length scale D of the ordered
structure, and the free energy is minimized with respect
to it. By comparing the value of the free energy for
different phases, one constructs the phase diagram. In
addition to the disordered (DIS) phases, we are inter-
ested in the general behavior of the lyotropic ones. We
consider only the simple, “classical” ones: sheet-like
lamellae (LAM); cylinders, arranged on a hexagonal
lattice (HEX); and spheres, arranged on a body-centered-
cubic lattice (BCC). It is known that most of the other
phases which could arise, such as the gyroid and the
hexagonally perforated lamellar phase,26,27 would be
located in a narrow region between the lamellar and
cylindrical phases.

Density profiles of strongly swollen phases are far
from sinusoidal and require a large number of basis
functions to be represented well. However, we find that
the value of the free energy is relatively insensitive to
the number of terms kept. Additionally, we find that
for strongly swollen phases, the minimum of the free
energy as a function of D is extremely broad, so that
phases with very different length scales and composi-
tions are nearly equal in free energy. Since the com-
position of a phase is calculated with far less accuracy
than its free energy, we draw the boundaries of strongly
swollen phases with dashed lines in all figures.

III. Results and Discussion

In Figures 1-11, we present constant temperature
cuts through the three-component phase prism for
eleven different systems of a diblock copolymer and
corresponding homopolymers.
As explained above, the parameter space of the

general three-component system is too large to be
mapped out completely. We restrict ourselves therefore
to one value of the interaction parameter, øN ) 11.0,
and, with one exception shown in Figure 11, to a
symmetric diblock, f ) 0.5. This way we retain the
feature characteristic of ternary blends, namely the
competition between the two homopolymers, in general
of unequal length, to swell the brush formed by the
diblock at the internal interface. We elucidate this
behavior by systematically varying RA and RB. We
discuss the influence of changing f and øN in Figure 11
and further below.
The diagrams in Figures 1-10 are divided into two

sequences. In Figures 1-6, the A-homopolymer is
shorter than the diblock and its relative length is kept
fixed at RA ) 0.3, while that of the B-homopolymer
varies from RB ) 1.2 to 0.1. In the second sequence,
Figures 7-10, the B-homopolymer is longer than the
diblock and of fixed length RB ) 1.5, while that of the
A-homopolymer varies from RA ) 1.5 to 0.5.
We now discuss each phase diagram in turn. In

Figure 1, we show the constant temperature phase
diagram of a system with RA ) 0.3 and RB ) 1.2, in other
words, the diblock is slightly shorter than the B-
homopolymer, while it is about three times as long as
the A-homopolymer. Regions of phase coexistence
between an ordered and a disordered phase dominate
the phase diagram. The B-homopolymer is, for the most
part, expelled from the microstructure formed by the
diblock and is found in a uniform, disordered phase of
large B-homopolymer and very small A-homopolymer
content that coexists with the diblock-rich, ordered
phases. The volume fraction of B-homopolymer in the
ordered phases does not exceed 0.25.
This result can be understood as follows. If the large

B-homopolymer is added to an ordered microphase, it
would preferentially assemble in the domains formed
mainly by B-segments of the diblock so as to reduce the
number of unfavorable A, B-contacts. However, since
the size of those regions is comparable to the mean
radius of gyration of the B-block, it is smaller than the
size of the undisturbed B-homopolymer. Therefore,
were a B-homopolymer to enter the microphase, it would
have to be compressed. The loss of configurational
entropy entailed by such an arrangement is large,
whereas the gain of entropy of mixing is small because
of the larger size of the homopolymer. On the other
hand, the B-homopolymers, because of their relatively
large length, lose little translational entropy by demix-

∂qκ
∂s

) Na2

6
∇2qκ - Wκqκ κ ) A, B (2.10)

φA ) zA
δQA[wA]

δwA
+

δQAB[wA,wB]
δwA

(2.11)

φB ) zB
δQB[wB]

δwB
+

δQAB[wA,wB]
δwB

(2.12)

wA ) øNφA + ê (2.13)

wB ) øNφB + ê (2.14)

1 ) φA + φB (2.15)

φA ) zA∫0RA ds qA(r,s) qA(r,RA-s) +

∫0f ds qAB(r,s) qAB† (r,s) (2.16)
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ing from the diblock copolymer. The net effect is that
the B-homopolymer separates from the microstructure.
For the same reasons, cylindrical and spherical domains
accommodate less B-homopolymer than does the lamel-
lar phase.
In contrast, the A-homopolymers, being considerably

shorter than the A-block of the copolymer, are able to
penetrate into the brush. In order to make room for
the A-homopolymers and to avoid stretching the A-block
of the copolymer, the layer of diblock bends with the
convex side toward the A-homopolymers. This “wedge”
effect of short homopolymers gives rise to a nonvanish-
ing preferred curvature of the copolymer layer, even for
symmetric diblocks. On the binary AB/A side, it brings
about the ubiquitious sequence of first-order transitions
toward phases with greater mean curvature of their
internal interfaces: lamellar to hexagonal to body-
centered-cubic. In addition to this wedge effect, the
short homopolymer is able to reduce the stretching
energy of the diblock chains in additional ways that
favor this sequence of phases. Due to their relatively
large translational entropy, the short A-homopolymer
chains enter the cores of cylindrical and spherical
structures thus relieving some of the stretching of the
B-block. However this also increases the number of
unfavorable A, B-contacts. They also enter the inter-
stices between cylindrical and spherical structures, thus
relieving the stresses induced by the inability of these
units to fill space.
In the system shown in Figure 2, the B-homopolymer

is now shorter than the diblock, but comparable to it,
RB ) 0.9. This leads to entirely different behavior on
the AB/B binary side of the phase diagram. The
B-homopolymer is no longer expelled from the micro-
structure, as it is not larger than the B-rich regions of
the pure diblock phase. In fact, the B-domains of the
lamellar phase accomodate any amount of B-homopoly-
mer, which leads to a complete unbinding of the lamel-
lar phase as the fraction of B-homopolymer is increased.

The complete unbinding is a continuous transition, as
the wavevector, characterizing the lamellar phase,
vanishes without a jump. In this limit, the free energy
density and the composition of the lamellar phase
become equal to those of the disordered phase with the
same chemical potential. This results from the fact that
the slabs between lamellae become identical in composi-
tion to the disordered phase, and the lamellae, whose
number per unit length vanishes, do not contribute an
extensive term to the free energy. There is also a
narrow region of A-cylinders in a B-matrix, brought
about by the wedge effect of the B-homopolymers. The
cylinders also unbind into the disordered phase on the
B-rich side of the phase diagram.
On the A-rich side of the phase diagram, where

B-blocks are in the center of cylinders and spheres,
B-homopolymer cannot swell the B-blocks without
changing the curvature of the internal interfaces, and
this is prevented by the wedge effect of the short
A-homopolymer. As a result, the phase boundaries of
A-rich BCC and HEX phases change little from Figure
1 to Figure 2, in contrast to the major change in the
lamellar phase boundary.
In the system shown in Figure 3, the B-homopolymer

is now sufficiently short, RB ) 0.5, to penetrate and swell
the B-block of the copolymer. Therefore, the entire
sequence of first-order transitions from lamellar to
hexagonal to body-centered-cubic appears on the B-rich
as well as on the A-rich side. As the homopolymers are
of comparable length, the lamellar phase, in which the
“wedge” effects of both homopolymer are balanced,
occupies a large region of the phase diagram. Only
when the lamellae are well-separated does the different
ability of A- and B-homopolymers to swell the respective
brushes becomes apparent, and a larger fraction of the
longer B-homopolymer is necessary to balance the
shorter A-homopolymer. In contrast to the situation in
Figure 2 where the B homopolymers were too long to
be incorporated into the cores of the cylindrical and
spherical structures on the A-rich side of the diagram,
the B-homopolymers are now short enough to enter the
cylindrical or spherical structures and relieve some of
the stretching energy of the diblock layer.

Figure 1. Constant temperature phase diagram of the
ternary system of a symmetric AB-diblock copolymer of length
N with an A-homopolymer of length RA ) 0.3N and a B-
homopolymer of length RB ) 1.2N. The value of the effective
incompatibility parameter øN is 11.0. LAM denotes a lamellar
phase; HEX, hexagonally arranged cylinders; BCC, spheres
on a body-centered-cubic lattice; and DIS, homogeneous phases.
Regions of three-phase coexistence are shaded, biphasic re-
gions are unlabeled. Phase boundaries of strongly swollen
phases, that could not be located exactly, are shown with
dashed lines. Note the almost B-free disordered phase on the
left hand side.

Figure 2. Phase diagram for a symmetric AB-diblock of
length N with an A-homopolymer of length RA ) 0.3N and a
B-homopolymer of length RB ) 0.9N. The notation is that of
Figure 1. Note the unbinding transition of the lamellar and
hexagonal phases into the B-rich disordered phase.
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The two homopolymers are of equal size in the system
of Figure 4, with RA ) RB ) 0.3. A noteworthy feature
is that while the ordered phases cannot be swollen very
much on the binary sides of the diagram, even a small
amount of the third component permits the structures
to swell considerably. The reason is that on the A-rich
side, for example, when A-homopolymers enter the
B-cores to relieve stress, they also increase the number
of unfavorable contacts. However the addition of B-
homopolymer relieves the stress equally well without
the enthalpic penality. Note also the absence of any
unbinding transition. The homopolymers are now so
short that the increase in translational entropy on
forming a disordered phase outweighs the cost of
increased A, B-contacts in such a phase.
We see the same trend continue in Figures 5 and

6. In Figure 5 the B-homopolymer chains are now
quite short, RB ) 0.2, and less than the value of 0.25
noted19 to mark the onset of a disordering effect of

added homopolymer. In accordance with this obser-
vation, the ordered phases on the B-rich side of the
phase diagram can support no greater a volume frac-
tion of B-homopolymer than φB ) 0.21, a small value
compared with that on the A-rich side of φA ) 0.54 for
only slightly longer chains. Note that, as in Figure 3
for well-separated lamellae, a larger number of longer
chains are needed to balance the smaller chains. Oth-
erwise, a transition to a hexagonal and then to a body-
centered-cubic phase will occur with the longer ho-
mopolymer chains on the inside. This is again due to
the stronger wedge effect of the shorter chains. Re-
markably, this transition occurs for systems of Figures
3 and 5 at roughly the same lamellar spacing (D ≈ 2.5-
3.0 R0), although the diblock volume fraction is rather
different.
In Figure 6, the last of this sequence, the length of

the B-homopolymer is only 1/10 that of the diblock.

Figure 3. Phase diagram for a symmetric AB-diblock of
length N with an A-homopolymer of length RA ) 0.3N and a
B-homopolymer of length RB ) 0.5N. The notation is that of
Figure 1. Note the unbinding of strongly swollen ordered
phases.

Figure 4. Phase diagram for a symmetric AB-diblock of
length N with an A-homopolymer of length RA ) 0.3N and a
B-homopolymer of length RB ) 0.3N. The notation is that of
Figure 1. Note the phase boundaries of the BCC phase for
copolymer volume fraction smaller than 0.2 may be affected
by truncation error (cf. text).

Figure 5. Phase diagram for a symmetric AB-diblock of
length N with an A-homopolymer of length RA ) 0.3N and a
B-homopolymer of length RB ) 0.2N. The notation is that of
Figure 1. Note the high copolymer concentration at the order/
disorder transition on the right hand side.

Figure 6. Phase diagram for a symmetric AB-diblock of
length N with an A-homopolymer of length RA ) 0.3N and a
B-homopolymer of length RB ) 0.1N. The notation is that of
Figure 1. The stability region of the B-rich BCC phase is too
small to be resolved on the scale of this graph. The dot denotes
Leibler’s critical point. Note that the DIS/DIS demixing
transition takes place at øN ) 12.44 for this system.
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Therefore, its disordering effect is very strong. The
B-homopolymer volume fraction in the ordered phases
does not exceed 0.15. Note that the coexistence region
at the bottom of the phase diagram has vanished; for
the given chain lengths, the homopolymers are miscible
for øN e 12.44. Also note the continuous transition
from the disordered to the lamellar state. This critical
point is similar to the point f ) 0.5, øN ) 10.49 first
described by Leibler2 for the pure diblock melt. It is
characterized by a continuously vanishing amplitude of
the spatial modulation with a nonzero wavevector.
We now turn to the second sequence, Figures 7-10,

in which a B-homopolymer, longer than the diblock (RB
) 1.5), is blended with A-homopolymer chains of equal
or shorter length. All diagrams are dominated by large
coexistence regions between ordered phases, containing
less than 0.13 volume fraction of B-homopolymer and
an almost pure B-rich disordered phase. On the left
hand side, shorter A-homopolymers bring about ordered
phases, characterized by more strongly curved internal

interfaces, due to the increasing wedge effect of such
short homopolymers.
All our results thus far have been obtained for a

symmetric diblock and one value of the incompatibility
parameter. We now try to extend our findings to
moderately asymmetric diblocks and to different tem-
peratures. In Figure 11 we have one example of a
system containing an asymmetric diblock, f ) 0.54,
blended with two homopolymers of equal degree of
polymerization, RA ) RB ) 1.0. The resulting phase
diagram is topologically identical to the one in Figure
9. Both are characterized by internal interfaces that
have a moderate tendency to curve toward the B-side.
In the system in Figure 9, this is brought about by the
wedge effect of the homopolymers of unequal length. In
that of Figure 11, the diblock layer itself is asymmetric
and therefore has a spontaneous curvature. This result
and others like it lead us to believe that increasing f
and decreasing RA/RB have comparable effects on the

Figure 7. Phase diagram for a symmetric AB-diblock of
length N with an A-homopolymer of length RA ) 1.5N and a
B-homopolymer of length RB ) 1.5N. The notation is that of
Figure 1. Note the large region of three-phase coexistence
between the lamellar and the A- and B-rich disordered phases.

Figure 8. Phase diagram for a symmetric AB-diblock of
length N with an A-homopolymer of length RA ) 1.0N and a
B-homopolymer of length RB ) 1.5N. The notation is that of
Figure 1. The lamellar phase unbinds into the almost B-free
disordered phase on the left hand side.

Figure 9. Phase diagram for a symmetric AB-diblock of
length N with an A-homopolymer of length RA ) 0.8N and a
B-homopolymer of length RB ) 1.5N. The notation is that of
Figure 1. Note the unbinding of the hexagonal phase on the
left hand side.

Figure 10. Phase diagram for a symmetric AB-diblock of
length N with an A-homopolymer of length RA ) 1.5N and a
B-homopolymer of length RB ) 0.5N. The notation is that of
Figure 1. The unbinding transition is preempted by a first-
order transition.
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overall structure of the phase diagram, at least for
roughly symmetric diblock copolymers.
When attempting to extrapolate our results to other

temperatures, one can be guided by the following
observations. Larger values of øN favor more-strongly
segregated configurations. Consequentially, the size of
two-phase regions grows with øN. In particular, un-
binding transitions may be completely preempted by
first-order transitions for values of øN larger than some
threshold.7 On the other hand, at smaller values of øN,
one finds more-weakly segregated structures of larger
periodicity and a trend toward unbinding of swollen
phases. The stability region of ordered phases shrinks
as øN decreases. Additional homopolymer with values
of R between 0.3 and 1.0, is able to induce microphase
ordering, such that blends may be ordered, even if the
pure diblock melt is not, and ternary mixtures may be
ordered even if the binary blend is not.
Our calculations do not include the effect of fluctua-

tions. Although composition fluctuations are in general
strongly suppressed in polymer melts, they are of
importance close to a critical point, such as that in
Figure 6, and will drive the system to a weakly discon-
tinous transition.28 However, for most of the parameter
space considered here, defects in the spatial ordering
will be important. Electron micrographs12,29 of ho-
mopolymer-swollen, ordered microphases reveal a fair
degree of disorder, e.g. large amplitude undulations of
lamellar phases. This agrees with our result that, for
strongly swollen microphases, the minimum of the free
energy as a function of the repeat distance becomes
extremely shallow. It is likely that the system can lower
its free energy by making a first-order transition to
disordered micellar or bicontinous phases as suggested
in ref 5. Such disordered phases which still contain
much structure are not described well by mean-field
theory. The occurrence of such a first-order transition,
preempting the unbinding transition, would be in accord
with the experimental situation in highly swollen am-
phiphilic systems.24

IV. Summary
We summarize our main results for the phase behav-

ior of approximately symmetric diblock copolymers,

blended with corresponding homopolymers of varying
length.
(1) Homopolymers longer than the diblock (R > 1) are

expelled from the ordered phases. This is due to the
loss of configurational entropy that they would suffer
were they confined to the microstructure. Large regions
of coexistence, between an ordered phase and a disor-
dered one which contains most of the homopolymer, are
formed.
(2) Homopolymers shorter than the diblock enter the

brush formed by it, leading to phases characterized by
increasing mean curvature of the internal interfaces.
(3) Homopolymers that are slightly shorter or com-

parable to the diblock (0.5 e R e 1.0) can swell the
microphase indefinitely, leading to a complete unbinding
transition within mean field theory. We expect thermal
fluctuations to destroy a strongly swollen phase and
bring about a weak, first-order transition to a disordered
phase.
(4) Short homopolymers (0.25 e R e 0.5) swell the

microstructure, but because of the substantial entropy
they gain upon distributing themselves randomly, they
cause the unbinding to be preempted by discontinous
transitions. As homopolymers of this length enter
cylindrical and spherical structures and relieve stress
incurred on the inside of the copolymer layer, they have
an ordering effect on the ternary blend.
(5) Very short homopolymers (R e 0.25) tend to

disorder any microphase, since their gain in transla-
tional entropy outweighs the enthalpic penalty due to
the increased number of A, B-contacts.
(6) For f close to 0.5 and R not very different from 1,

increasing f and decreasing RA/RB have comparable
effects on the overall shape of the phase diagram.

V. Conclusions

We have considered the phase behavior of ternary
blends of symmetric and almost symmetric AB-diblock
copolymers with corresponding A- and B-homopolymers
at all compositions. We find that, depending mainly on
the relative chain lengths and the architecture of the
diblock, a variety of different behaviors may be ob-
served. Most of these can be explained by “wet” brush/
“dry” brush pictures9,10 and stretching arguments.11 Our
results compare favorably with experimental studies of
polymer systems with roughly symmetric diblocks and
comparable chain lengths.12,15,16 Systems with one long
and one shorter homopolymer (cf. Figures 1, 9, 10)
produce phase diagrams similar to the ones of water/
oil/surfactant mixtures (e.g. cf. Figures 37 and 38 of ref
22). Larson30,31 has modeled the amphiphile in such
mixtures by a very short AB-diblock copolymer, and the
oil and water by single A- and B-monomers. The model
has been studied by extensive Monte Carlo simulations.
It is interesting to observe that with RA ) RB ) 0.25,
the phase diagram obtained31 with a symmetric diblock
is very similar to our Figure 4 with RA ) RB ) 0.3, even
though Larson considers extremely short chains of N
equal to eight. Furthermore, the large extent to which
the ordered phases are swollen by homopolymer is
comparable in Larson’s model to that which we find.
This indicates that the disordering effect of fluctuations,
present in the simulations but not in our self-consistent
field treatment, may not be as great as one would
expect. In this connection, it would be desirable to
include micellar phases in the mean-field phase diagram
and to examine the effect of such structured, yet
disordered, phases on the stability of the lyotropic ones.

Figure 11. Phase diagram for an asymmetric AB-diblock of
N segments, 0.54N of which are of type A, blended with
corresponding homopolymers with the same number of seg-
ments. The notation is that of Figure 1. Note the similarity
of this diagram with Figure 9.
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