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We consider the effect of mobile ions on the applied potential needed to reorient a lamellar system

of two different materials placed between two planar electrodes. The reorientation occurs from a

configuration parallel to the electrodes favored by surface interactions to an orientation

perpendicular to the electrodes favored by the electric field. The system consists of alternating A and

B layers with different dielectric constants. The mobile ions are assumed to be insoluble in the B

layers and hence confined to the A layers. We find that the ions reduce the needed voltage most

strongly when they are constrained such that each A lamella is electrically neutral. In this case, a

macroscopic separation of charge and its concomitant lowering of free energy, is attained only in the

perpendicular orientation. When the ions are free to move between different A layers, such that

charge neutrality is only required globally, their effect is smaller and depends upon the preferred

surface interaction of the two materials. Under some conditions, the addition of ions can actually

stabilize the parallel configuration. Our predictions are relevant to recent experiments conducted on

lamellar phases of diblock copolymer films with ionic selective impurities. © 2010 American

Institute of Physics. fdoi:10.1063/1.3383243g

I. INTRODUCTION

Block copolymers are polymeric materials with specific

chain architecture in which several blocks of different chemi-

cal nature are linked covalently. The simplest design is that

of a diblock in which two polymeric blocks, A and B, are

connected. Even in this design the system manifests a rich

phase structure of self-assembled periodic arrays of spheres,

cylinders, or planes, which has many applications such as

templates for nanoscopic devices.
1–6

One difficulty which

must be overcome before block copolymer arrays can be

exploited is the fact that, when produced as a thin film, the

array tends to align with the substrate due to preferential

interactions between it and one of the polymer blocks. In

many applications, however, the desired orientation is one in

which the ordered structure is aligned perpendicular to a sub-

strate. For example, if a cylindrical array is aligned perpen-

dicularly, then the cylinder cores can be etched away and

replaced by a metal. Further removal of the material sur-

rounding the cores produces an array of wires useful for

sensors.
1
One method to bring about this orientation is to

subject the film to an electric field,
3,7–12

a technique which

takes advantage of the difference in dielectric constants be-

tween the two polymer blocks. Because the electric field

needed to produce the desired orientation can be rather high,

on the order of 10 V /mm, it can happen that the material

undergoes dielectric breakdown before alignment is

achieved. As a way of lowering the electric field needed for

alignment, Tsori et al.
13
suggested that one could introduce

free ions into the system. Presumably if the ions were pref-

erentially soluble in one of the blocks, the induced dipole

moment of that block would become much larger in the per-

pendicular orientation. The increase in polarization would

bring about the desired decrease in the electric field needed

for alignment.

This procedure has been utilized experimentally and the

desired increase in orientation obtained for a given applied

field.
14,15

In spite of this success, it is not completely clear

how the addition of ions brings about the desired result. It

has been argued that instead of increasing the induced dipole

moment, large amounts of added ions introduced in one of

the two blocks simply change the respective dielectric

constant.
15
A different argument

16
is that the addition of large

amounts of ions changes the strength of the interaction be-

tween the different monomers even in the absence of an ex-

ternal field. In support of this latter suggestion, introduction

of ions has been shown to affect the phase behavior of block

copolymers, behavior which scales with this interaction

strength.
17,18

To elucidate the origin of free-ion effects in block co-

polymer systems, we have considered the effect of free ions

on a system which is simpler, but which shares its mesos-

copic periodic morphology. Our model system is a rigid

stack of alternating A/B lamellae. The entire stack is con-

fined between two external flat electrodes. The A and B

lamellae are characterized by two dielectric constants, kA
and kB, respectively. Free ions are then introduced into the A

layers. It is assumed, arbitrarily, that the positive charges are

immobile and distributed uniformly throughout the A layers,

creating a uniform charged background, while the negativead
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counterions are mobile throughout the A regions. An inter-

change of the role of positive and negative charges will have

no effect on the results of our calculation. The fraction of

ions dissolved in the two kinds of layers is, in general, dif-

ferent, and we consider the case of greatest contrast in which

there are no charges in the B lamellae. We calculate, within

mean-field theory, the system free energy in the presence of a

voltage V0 applied across the plates. The free energy de-

pends, of course, upon the relative orientation of lamellae

and electric field. In this case, our results show that there is a

smaller reduction in the field needed to reorient the sample,

and that for the critical reorienting electric field depend

strongly upon the location of the counterions. If they are

confined to the A lamellae such that each is electrically neu-

tral, then separation of charge occurs only over distances of

the order of the thickness of the A lamellae when the lamel-

lae are parallel to the substrate. In contrast, the charges can

be separated over lengths of the order of the entire film thick-

ness when lamellae are oriented perpendicularly. Hence, the

latter configuration is favored, and the desired orientation

can be brought about with an electric field significantly

weaker than that needed without ions. However, if the coun-

terions are free to move between different A lamellae, then

the separation of charge occurs over distances of the order of

the sample thickness in both orientations, so that the system

behavior is not easily predicted. In this case, our results show

that there is a smaller reduction in the field needed to reorient

the sample, and that the magnitude of the reduction depends

upon whether the surface interactions prefer the A compo-

nent, whose lamellae contain ions, or the B component. The

effect is larger if the surface interactions prefer the B com-

ponent. If they prefer the A component, we find that the

introduction of ions can even stabilize the parallel orienta-

tion.

II. THE MODEL

We consider a system, of volume V, consisting of alter-

nating layers of materials denoted A and B with dielectric

constants kA and kB, respectively. All layers but the two
closest to the two surfaces schosen arbitrarily to be B layersd
are of equal thickness l /2 so that the structural periodicity is

l. The two layers adjacent to the plate electrodes are each of

thickness l /4, as they would be in a system of unstrained

lamellar block copolymer. The material fills the space be-

tween two plates, which are parallel to the sx ,yd plane, one at
z=0 at which Vsx ,y ,0d=0, the other at z=d at which

Vsx ,y ,dd=V0. Each plate is of area Splate. Just as in the ex-

periments, there is a thin insulating layer between the plates

and the material, keeping the total amount of ions in between

the two plates fixed. We assume the system contains N+ im-

mobile, monovalent, cations distributed with uniform density

r+ in the A lamellae, and zero density within the B lamellae.

The counterions are also monovalent and assumed to be mo-

bile with a nonzero number density, r−srd, only within the A
lamellae; there are no counterions in the B lamellae, and the

entire lamellar system is electrically neutral.

The Maxwell equations which govern this electrostatic

system with linear dielectric materials are, within the SI sys-

tem,

¹ 3 Esrd = 0 and s1d

¹ · sksrde0Esrdd = esr+srd − r−srdd , s2d

where e.0 is the unit of charge. The first equation is satis-

fied identically by introducing the electrostatic potential Vsrd
such that Esrd=−¹Vsrd. With this the remaining Maxwell

equation takes the form

¹ · sksrde0 ¹ Vsrdd = − esr+srd − r−srdd . s3d

In our model system, the number density of positive charges

within the A lamellae is constant, r+srd=r+, and the dielec-

tric constant ksrd=kA, a constant, so that Eq. s3d becomes
the Poisson equation

¹2Vsrd = −
e

kAe0
sr+ − r−srdd r in lamellae A. s4d

Within the B lamellae, the number density of all charges,

cations and anions, is taken to vanish, and ksrd=kB a con-

stant, so that within these regions Eq. s3d becomes the

Laplace equation

¹2Vsrd = 0 r in lamellae B. s5d

At an A/B interface at which the dielectric properties of the

material changes abruptly, the potential Vsrd is continuous,
the parallel component of E is continuous as follows from

Eq. s1d, and the normal component of the displacement field,
D;ke0E, is continuous as follows from Eq. s2d. The poten-
tial is now completely specified as a functional of the un-

known charge density,

Vsrd = Vfr−srdg . s6d

Within mean-field theory, the relation between the

ensemble-averaged charge density and potential satisfies the

Boltzmann distribution:

r−srd = r+V
expfbeVsrdg

eAdr expfbeVsrdg
r in A, s7d

with b;1 /kBT, kB is the Boltzmann constant, T is the abso-

lute temperature, and the integral is taken over all the A

lamellae.

Equations s4d, s5d, and s7d constitute the self-consistent,
Poisson–Boltzmann, equations which must be solved subject

to the boundary conditions given above. Once the solutions

for the charge density and potential are determined, the free

energy of the system can be obtained. It is convenient to

display explicitly the contribution to it from the surface fields

and to write the total free energy as

FtotsT,V,V0,N+,SA,SBd = Fel + gASA + gBSB, s8d

where SA is the total area of the two plates in contact with

the A region and similarly for SB; gA and gB are the interfa-

cial free energies per unit area between the plates and A and

B regions, respectively; SA+SB=2Splate.
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For convenience, we remind the reader in Appendix A of

the result for the electrostatic energy of the system when the

plates are held at a fixed potential difference. With the energy

in hand, the mean-field expression for the electrostatic part

of the free energy can be derived in various ways
19–22

with

the result

FelsT,V,V0,N+,Splated

= −
1

2
e0E ksrds¹Vsrdd2dr + eE

A

Vsrdsr+ − r−srdddr

+ kBTE
A

r−srdlnsr−srd/r+ddr . s9d

The free energy is proportional to the area of each plate,

so it is convenient to consider the free energy per unit area.

We choose to measure the free energy per area in units of

2e0kA /b2le2. Hence we introduce dimensionless free ener-

gies per unit area,

f totsT,r+,V0,SA/Splated ;
b2le2

2e0kA

Ftot

Splate

, s10d

felsT,r+,V0d ;
b2le2

2e0kA

Fel

Splate

, s11d

with Fel given by Eq. s9d, so that within mean-field theory,

Eq. s8d becomes

f tot = fel + Sb2le2

2e0kA

DS SA

Splate

gA +
SB

Splate

gBD . s12d

To determine the orientation of the lamellae in the pres-

ence of the external field, we determine the free energy for

the two orientations: lamellae that are perpendicular to the

substrate and those that are parallel to it. In the latter case,

we approximate the situation expected if the system were an

unstrained A/B diblock copolymer film. As the substrate pre-

fers one of the two blocks, the lamellae next to the two plates

consist of the preferred block sassumed here to be the B

blockd and will have a thickness of l /4, while all other A and

B lamellae are of thickness l /2.

We consider two different constraints on the location of

the mobile counterions. In the first, we assume that the coun-

terions are not free to move between A lamellae. Their dis-

tribution is such that each A lamella is electrically neutral.

We refer to this as local neutrality. The other possibility we

consider is that the counterions, while found only in the A

lamellae as before, are distributed among them subject only

to the weaker constraint that the system is overall neutral.

We refer to this as global neutrality. The free energy of the

system in which the lamellae are oriented parallel to the

plates is affected significantly by the difference between

these two constraints, while the system of perpendicular

lamellae is not affected at all.

Before discussing the solution of the equations, we note

that there are a few dimensionless ratios which parametrize

them. The simplest of these is a dimensionless applied po-

tential, v

v ; ebV0. s13d

As typical potentials across the film are a few volts to a few

dozens volts, this parameter is large, on the order of 102 for

experiments at room temperature. A dimensionless measure,

r, of the ionic number density r+ is readily defined

r ; Sbe2r+d
2

kAe0
D1/2

, s14d

and is easily seen to be the ratio of the system thickness d to

the Debye length, lD

r =
d

lD

, s15d

where

lD = F kAe0

be2r+
G1/2

. s16d

Thus, small values of r imply weak screening of the electric

field by the counterions, while large values of r imply strong

screening. The temperature-independent ratio

r2

v

=
er+d

2

kAe0V0

,
r+

V0

, s17d

depends only on the ratio r+ /V0, which indicates that the

behavior in the limit of large externally applied potential is

the same as for small ionic charge density.

It is convenient to write the Poisson–Boltzmann equa-

tion in dimensionless form. To this end we measure all dis-

tances in units of d, the distance between the two bounding

electrodes, r̃;r /d, and define the dimensionless potential

Wsx̃ , ỹ , z̃d;beVsx ,y ,zd so that Wsx̃ , ỹ ,0d=0 and Wsx̃ , ỹ ,1d
=v. Then the Poisson–Boltzmann equation takes the form

¹̃2Wsx̃, ỹ, z̃d = − r2s1 − ueWsz̃dd in lamellae A, s18d

u =
r−sW = 0d

r+
, s19d

and, of course, Laplace’s equation

¹̃2Wsx̃, ỹ, z̃d = 0 in lamellae B. s20d

We obtain estimates of the parameter r, and therefore the

density of free ions from experiments on polystyrene-

polymethylmethacrylate sPS-PMMAd diblock copolymers

where lithium salts are infused in the MMA blocks. It is

known that Li+ ions are associated with the carbonyl groups

of the MMA sdielectric constant kA=6.3d. The number den-
sity of the MMA monomers is about 731027 m−3. What is

known less well is the number density of Li+ ions solubilized

in the MMA blocks. Wang et al.
16
estimate that the largest

fraction of Li+ is about 0.27, which would correspond to a

number density r+.231027 m−3. If all this charge were

mobile, it would yield a nominal Debye length lD

=0.067 nm at T=298 K. A film thickness of 300 nm, as in

Xu et al.,
14
would imply a large value of r<4500. However,

such a subatomic value for lD would indicate that continuum

theories, such as ours, would be inapplicable. In other ex-

periments, the fraction of ions is clearly much smaller. For
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example, Kohn et al.
23
quote a Debye length, lD=2.3 nm

which, for a film of the same thickness, would yield r

<130. Further Tsori et al.
13
estimate the fraction of residual

Li+ ions to MMA to be much smaller than in the work of

Wang et al.,
16

about 3310−5. This means that r+<2

31023 m−3, corresponding to a Debye length of 6.7 nm.

With the same film thickness of 300 nm, r<45. For films

only a few lamellae in thickness, r would be even smaller.

Thus the parameter r is expected to vary between values

greater than, but of order of unity to those as large as the

order of 103. For the smaller values in this interval, one

expects the effect of the free ions to be but a perturbation on

the ion-free results, while this is certainly not expected to be

the case for the larger values. Thus, experiments span a range

over which the effect of the ions is expected to vary from

negligible to important.

III. RESULTS

A. The parallel orientation

We first consider the case in which the lamellae are par-

allel to the plates. The total amounts of A and B material are

equal, and the B layers have no charges. Were there also no

charges in the A layers, the electric fields would be EA

=2V0 / fs1+kddg and EB=kEA with k;kA /kB. The potential

would increase linearly across the lamellae. The magnitudes

of the dimensionless electric fields, −W8sz̃d would be WA8

=2v / s1+kd and WB8 =kWA8 . We consider here v=10, and k
=2. sFor PMMA, kA=6.3 and for PS, kB.2.52, so that k
=2.5.d Therefore, the magnitude of the dimensionless electric
fields would be WA8 =20 /3 and WB8 =40 /3. Given a system in

which there are free ions, we must solve the Poisson–

Boltzmann and Laplace equations, Eqs. s18d and s20d. This is
done numerically by means of a procedure described in Ap-

pendix B. The solution yields the potential, electric field, and

charge density as a function of position z̃.

1. Local neutrality

Consider the case in which each A lamella is electrically

neutral. It is clear that in this case a dipole moment scaling

with the distance between plates can only be obtained when

the lamellae are oriented perpendicular to the plates. Thus,

the applied field will favor this orientation, and we expect the

critical field needed to bring it about will be reduced by the

presence of the free ions.

We examine a system in which the wavelength of the

lamellar structure is l=d /4 because the effect of the ions is

more easily seen in thin films. There are four layers of A,

each of thickness d /8, three layers of B, each of thickness

d /8 and two layers of B next to the two plates, each of

thickness d /16. Were there no ions, the dimensionless poten-

tial W would be as shown in Fig. 1. The presence of free ions

does not noticeably affect the potential, even for values of

the charge density corresponding to r2=100. Presumably this

is because the charge separation can never exceed l /2 and so

is never macroscopic. The effect on the electric field ,W8, is

small, but is discernible for a large charge density r2=100,

and is shown in Fig. 2. The nonzero charge density, ,W9,

can also be discerned, and is shown in Fig. 3. One sees that

the variation in the charge density across each A lamella is

essentially linear for small charge densities, being positive

on one side of the lamellae and negative on the other. This is

a result of the imposed charge neutrality of each lamella. For

large charge densities, deviation from this linear behavior is

expected.

2. Global neutrality

Next consider the case in which the A layers are not

constrained to be locally neutral; the system is only subject

0.0 0.5 1.0

5

10

W

z�d

FIG. 1. Parallel case, no ions sr2=0d. The dimensionless applied potential is
v=10, and k=kA /kB=2. The sample thickness and wavelength are related

by d=4l. The dimensionless potential, W;beV is plotted vs the dimen-

sionless coordinate z /d. A-type regions are shown in white, B regions in

gray.

0.0 0.5 1.0

0

-10-W'

z�d

FIG. 2. Parallel case, local neutrality. The dimensionless applied potential is

v=10, and k=kA /kB=2. The sample thickness and wavelength are related

by d=4l. The dimensionless electric field, −W8, is plotted vs the dimen-

sionless coordinate z /d. A-type regions are shown in white, B regions in

gray. The case for no ions, r2=0 is shown with solid lines, while r2=100 is

shown with a dotted line.

0.0 0.5 1.0

-40

0

40

-W''

z�d

FIG. 3. Parallel case, local neutrality. The dimensionless total charge den-

sity, −W9, is plotted for v=10 and k=2. The sample thickness and wave-

length are related by d=4l. Solid line, r2=50; dashed line, r2=100.
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to the weaker constraint that the system be globally neutral.

While the perpendicular orientation of lamellae is unaffected

by the difference between these constraints, the parallel ori-

entation is greatly affected. Each A lamella will now exhibit

a nonzero charge density profile that is a function of the

distance to the plates. Thus, there will be a dipole moment

that scales with system size in the parallel orientation as well

as in the perpendicular orientation. As a consequence, the

latter has no obvious advantage over the former, and it is

unclear whether there will be any reduction in the field

needed to bring about a reorientation of lamellae.

Results for the potential, electric field and charge density

in the parallel orientation are shown in Figs. 4–6, respec-

tively, for various charge densities. For the small density of

charges, r2=0.01, the potential is imperceptibly perturbed

from the case of no ions, shown in Fig. 1, and the electric

field hardly differs from the values 20/3 and 40/3 which

would be obtained were there no ions. We also note that the

electric field when r2=100 is not symmetric about the mid-

point of the sample, z /d=0.5, because there is no symmetry

on interchange of positive ions, which are fixed, and negative

counterions, which are free to move.

As the density of free ions is increased, the charges are

free to migrate toward the bounding electrodes and to con-

centrate at the surfaces of the lamellae. The charge densities

are much larger than in the locally neutral case. sCompare
the scales of the charge density in Fig. 6 with those in the

locally neutral case, Fig. 3.d One notes from Fig. 6 that, for

large charge densities, r2, the mobile negative charges are

essentially depleted from the lamellae close to the negatively

charged plate leaving behind a positive charge density with

dimensionless value equal to r2. The charge separation is of

order of the entire film thickness, d. As a consequence, the

electric field becomes increasingly screened, an effect most

pronounced deep in the interior of the system and which

spreads toward the two electrodes with increasing charge

density. This is not difficult to understand. If one groups the

layers of opposite charge in nesting pairs, with the outermost

pair being at z /d=0 and 1, then the system resembles a set of

nested capacitors, of alternating polarity, in series. As each

capacitor contributes almost no field outside of its plates, the

electric field can only be large near the two bounding sur-

faces of the entire system. In the limit of very large densities,

it is clear that the charge is concentrated in the A lamella

nearest the plates, and the field and associated potential drop

is only significant in the B layers adjacent to the plates.

B. The perpendicular orientation

For the case in which the lamellae are perpendicular to

the plates, we must solve the Poisson–Boltzmann equations

in two dimensions. Because of periodicity and symmetry, it

0.0 0.5 1.0

-40

-20

0

-W'

z�d

FIG. 5. Parallel case, global neutrality. The dimensionless electric field,

−W8, is plotted for v=10, k=2, and with r2 varied. Solid line, r2=0.01;

dashed line, r2=100. The sample thickness and wavelength are related by

d=4l.

0.0 0.5 1.0

-300

-200

-100

0

100

-W''

z�d

FIG. 6. Parallel case, global neutrality. The dimensionless charge density,

−W9, is plotted for v=10, k=2, and with r2 varied. Solid line, r2=50; dotted

line, r2=100. The sample thickness and wavelength are related by d=4l.

0 0.1250.0625

0.0

0.2

0.4

0.6

0.8

1.0

z�d

x�d

FIG. 7. Perpendicular case. Contours of constant dimensionless potential,

W, at intervals of 1.0 are plotted in the x /d ,z /d plane for v=10 and r2

=100. As l=d /4, we need only plot x /d from 0.0 to l /2d=0.125. The

interface between A and B lamellae is at x /d=0.0625 with the A region to

the left and B to the right of it. Areas between equipotentials are filled with

different shades of gray for clarity.

0.0 0.5 1.0

5

10

W

z�d

FIG. 4. Parallel case, global neutrality. The dimensionless potential W for

v=10, k=2, and with r2 varied. Solid line, r2=0.01; dashed line, r2=50;

dotted line, r2=100. The sample thickness and wavelength are related by

d=4l.

164903-5 Orienting dielectric lamellae J. Chem. Phys. 132, 164903 ~2010!

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



is sufficient to solve them only in an area of length d in the

z direction and of length l /2 in the x direction, from the

middle of one A lamella to the middle of the adjoining B.

Equipotential contours are shown in Fig. 7 for an applied

potential v=10 and with a charge density r2=100. The

boundary between A and B regions runs vertically through

the center of the figure with the A region to the left, the B to

the right. One sees immediately that there is little variation in

the electric field from A to B regions. This is due to the fact

that the lamellae are quite narrow compared to their height.

But one also notices that the equipotentials are very different

from the equally spaced ones which would characterize the

potential in the absence of ions. Because the top, positive

potential, plate attracts the negative mobile counterions, the

electric field is screened effectively near it and the potential

changes slowly; most of the change in potential occurs near

the bottom plate.

As the density of free ions is increased, the A lamellae

act more and more like conductors, screening their interiors

from the external electric field, just as in the parallel orien-

tation. But in the perpendicular orientation, they provide a

direct path between capacitor plates with the consequences

that the external voltage source must place an increasing

amount of charge on the plates in order to establish the req-

uisite potential difference, and must expend ever more en-

ergy in order to do so.

C. The transition between orientations

With the solution of the Poisson–Boltzmann equations in

hand for the two configurations, the corresponding free en-

ergies can be evaluated for any given external voltage, and in

particular for voltages at which the perpendicular orientation

of lamellae becomes of lower free energy than the parallel

configuration. We calculate the free energies per unit area fel
'

and fel
i
for these two configurations and define

Df ; fel
' − fel

i
. s21d

Further, we note that in the perpendicular configuration SA

=SB=Splate because we have assumed that the A and B

lamellae are of equal thickness. We assume that the surface

fields cause the plates to prefer the less-polar polymer com-

prising the B lamellae, as in the experiments of Xu et al.,
14

so that in the parallel configuration SA=0 and SB=2Splate.

From a comparison of the total free energies of Eq. s12d for
the two orientations, it follows that the perpendicular con-

figuration is favored when

Df # − Sb2le2

2e0kA

DsgA − gBd . s22d

In Fig. 8 a plot of Df versus the dimensionless applied volt-

age v is presented for the case in which the A lamellae are

locally neutral. The lamellar periodicity l and film thickness

d are taken to be l=d /10, which corresponds to the system

of Xu et al.,
14

Results for four different values of r2, the

dimensionless density of the mobile ions, are shown.

The critical value of the external voltage needed to align

the lamellae is simply determined by the value of v at which

a horizontal line drawn at the value Df =−sb2le2 /2e0kAd

3sgA−gBd intersects the curve Dfsvd. In particular, consider
the experiments of Xu et al.

24
for which A is PMMA, B is

PS, and gA−gB<0.5310−3 J m−2. With an absolute tem-

perature T=430 K, a periodicity l<30 nm and kA=6.3, the

characteristic surface energy 2e0kA /b2le2 is 5.1

310−6 J m−2 leading to a dimensionless surface energy dif-

ference of Df =−97. A horizontal line at that value is shown

in Fig. 8. We see that the dimensionless voltage needed to

bring about alignment is reduced from the value without ions

of about v=200, corresponding to V0.7.5 V, to about v

=60, or V0.2.2 V, when the density of ions corresponds to

r2=100. sFor a film thickness d=300 nm, the unit of number

density, kAe0 /be2d2=1.431020 m−3 so r2=100 corresponds

to r+=1.431022 m−3d.
This reduction in critical voltage comes from the fact

that the counterions do little to lower the electrostatic energy

of the system when the lamellae are parallel to the substrate

as well as locally neutral. In this case, there is no separation

of charge on the order of the film thickness. But the ions do

a great deal to lower the free energy when the lamellae are

perpendicular to the plates so that there is a separation of

charge on the order of the film thickness. Of course, this

separation of charge decreases the entropy and is therefore

opposed by thermal effects. In order to determine whether a

reorientation will result from the two competing effects, one

must carry out the calculation explicitly, as we have done,

taking into account both the decrease in the free energy due

to the reduction in electrostatic energy and the increase in

free energy due to the decrease in counterion entropy. As the

charge density increases without limit, the free energy of the

perpendicular orientation at any nonzero voltage decreases

without limit so that the curves of free energy difference

approach the ordinate of Fig. 8, and the voltage needed to

bring about reorientation approaches zero.

We next consider the less restrictive case when the sys-

tem is globally neutral. The free energy difference between

perpendicular and parallel orientations is shown in Fig. 9.

Again there is a reduction in the voltage needed to reorient

the lamellae, from v<200 sr2=0, or no ionsd to v<160 for

r2=100. This is a much smaller reduction than in the locally

neutral case for which the reorienting potential was driven

down to v<60 for r2=100. The reason that there is any

reduction in the reorienting voltage in the globally neutral

-200

-150

-100

-50

0 100 200 300

Df

v

FIG. 8. The difference between the dimensionless electrostatic free energies

per unit area swithout surface fieldsd of the perpendicular orientation and the
locally neutral parallel orientation is shown as a function of dimensionless

applied voltage v for four values of ion number density; r2=0.01 ssolid
lined, 50 sdashed lined, 100 sdotted lined, and 1000 sdotted-dashed lined. The
sample thickness and wavelength are related by d=10l. The horizontal line

is at the value Df=−97 ssee textd.
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case is subtle for there is a macroscopic separation of charge

in both orientations. However, while the charge in the per-

pendicular alignment can be separated by a distance d, in the

parallel alignment it can only be separated by a smaller dis-

tance d−l /2 when the B layer is next to the plates. Hence,

the ions lower the free energy of the perpendicular configu-

ration more than that of the parallel one with a consequent

reduction in critical voltage. Because the difference between

charge separations of d and d−l /2 is relatively larger the

smaller the value of d, we expect that the relative reduction

in the potential needed to reorient the film is greater for

thinner films. We have verified this conclusion by calculating

results for films in which d was reduced to 4l. Whereas in

the d=10l film there is a reduction in the reorientation po-

tential of about 17% when the dimensionless surface field is

equal to 100 and the density of ions is r2=100, in the thinner

film the reduction for the same surface field and ion density

is about 32%.

Were the A material preferentially adsorbed to the plates,

there would be a macroscopic separation of charge of order d

in both orientations. In fact, the polarization would be some-

what larger in the parallel orientation in which the free

charges could coat the plates entirely as contrasted with the

perpendicular configuration in which they could coat only

half the area of the plates. Thus we would expect that the

addition of ions actually enhances the parallel orientation

with respect to the perpendicular and would cause the critical

voltage to increase rather than decrease. We have verified

that this is indeed the case, although the increase in critical

voltage is not large. We also expect the effective surface

tension of the A block with the substrate to be reduced by an

amount e0kAV0
2
/lD. This expression is identical to the reduc-

tion in the liquid-solid interfacial tension of polar liquids in

external potentials selectrowettingd.25

IV. CONCLUSIONS

We have considered a system composed of lamellae with

two different dielectric constants and in which one kind, the

A lamellae, contain mobile negative ions in a smeared con-

tinuum background of positive ones. We calculated the effect

of these ions on the free energy when the lamellae are ori-

ented in the direction of the applied field and compared it to

that when the lamellae are oriented parallel to the two exter-

nal electrodes, which is the orientation favored by surface

interactions. We have assumed that the system is in thermal

equilibrium so that the comparison of these free energies

determines the magnitude of the applied voltage necessary to

bring about the reorientation of the lamellae.

The effect of the ions can be quite significant, but we

have shown that it depends on several factors. The ions have

their largest effect if the system is locally neutral, i.e., they

neutralize the background charge of each of the A lamellae of

the film. In that case, a macroscopic separation of charge,

with its concomitant lowering of energy, can only be brought

about if the lamellae undergo the desired reorientation. We

find that for the surface interactions commonly encountered,

the voltage needed to bring about the reorientation could be

reduced by more than half. These results are in fine qualita-

tive agreement with the experiments of Kohn et al.
23
whose

system was one of local neutrality. By applying alternating

electric fields at various frequencies, they could explicity de-

termine the effect of the free ions as contrasted with those

originating from the different dielectric constants. They in-

deed found that at lower frequencies at which the effects of

the free ions become important, the orienting effect of the

electric field was enhanced.
23,26

For systems in which the mobile ions can move from

one A lamella to another so that it is only restricted to be

globally neutral, the effect of the ions is predicted to be

smaller than in the locally neutral case, and to depend on

other factors as well. In particular, if the system is globally

neutral, we predict that the effect is greater if the surface

interactions prefer the B sno ionsd lamellae, for then the

separation of charge in the perpendicular orientation is larger

than that in the parallel one. The relative reduction in the

reorienting potential should be the greater the thinner the

film. If the surface interactions prefer the A layers, then the

presence of ions can actually increase the voltage needed to

bring about the reorientation.

Insight into the question of whether the lamellae of a

particular system are locally or globally neutral can be ob-

tained by altering the plates so that they prefer A in one

experiment and B in another. A locally neutral system will be

relatively unaffected by such a change, while a globally neu-

tral one would be significantly changed. An alternative is to

solubilize a known amount of ions in the pure polymers.

Integration of the current that passes through the polymer at

a given external potential allows one to infer the fraction of

immobile ions and the solubilization energy.

We have noted that separation of charge which occurs on

the scale of the film thickness decreases the entropy making

reorientation more difficult. Hence a reduction in tempera-

ture certainly makes it easier to bring about the reorientation.

In our calculation, this is reflected in the definition of the

dimensionless measure r, Eq. s14d, which shows that a de-

crease in temperature is equivalent to an increase in ionic

charge density.

At constant temperature, all properties of the system de-

pend upon the ratio of the ion density to the applied poten-

tial, r+ /V0, as seen, from Eq. s17d. Hence for a system with

a given ion density at a fixed temperature, any “effective”
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FIG. 9. The difference between the dimensionless electrostatic free energies

per unit area swithout surface fieldsd of the perpendicular orientation and the
globally neutral parallel orientation is shown as a function of dimensionless

applied voltage v for four values of ion number density; r2=0.01, ssolid
lined 50 sdashed lined, 100 sdotted lined, and 1000 sdotted-dashed lined. The
sample thickness and wavelength are related by d=10l. The horizontal line

is at the value Df=−97 ssee textd.
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dielectric constant must depend upon the applied voltage it-

self, and is therefore not a particularly useful concept.

Finally the effects of the ions in our system cannot be

attributed to a change in the strength of the interaction be-

tween components, so whatever role such an effect may play

in diblock copolymer systems,
16
it is supplementary to the

equilibrium effects considered here.

In summary, we have calculated the change in the align-

ing potential that can be expected upon the introduction of

ions into a patterned system of different dielectric material
13

such as block copolymer, and have highlighted some of the

issues to be addressed in order to exploit such systems for

further applications.
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APPENDIX A: DERIVATION OF THE ELECTROSTATIC
ENERGY

To obtain the partition function of the system, one must

first obtain the energy of a given configuration of charges.

The electric energy is specified by the number density of the

N− mobile negative charges

r̂−srd = o
i=1

N−

dsr − rid , sA1d

where ri is the position vector of the ith charge. The energy

is obtained in the standard way and leads to the usual result

for a linear dielectric

U =
1

2
e0E ksrdf¹Vsrdg2dr . sA2d

where the potential, Vfr̂−g, is a functional of the number

density via the Poisson equation

¹2Vsrd = −
1

4pksrde0
r̂−srd . sA3d

This energy, however, does not include the work that the

external electric power source, which is part of the system,

must do in order to keep constant the potential difference

between the two electrodes.
27
We include this contribution to

the energy and denote the result for the total energy of the

system Utot. Using the fact that one plate is at potential zero,

and the other at potential V0, the decrease in total energy can

be written

Utot − U = −E V0ssriddri , sA4d

=E VsridDzsriddri , sA5d

=E ¹ · fVsrdDsrdgdr , sA6d

=E f¹Vsrdg · Dsrddr +E Vsrd¹ · Dsrddr , sA7d

=−E e0ksrdf¹Vsrdg2dr

+ E
A

Vsrdefr+ − r̂−srdgdr . sA8d

In Eq. sA4d above, the charge density of the upper plate is

denoted as ssrid with ri the position vector in the plane of

the plate. The Maxwell equation ¹ ·D=erfree has been used

to express this charge density in terms of the z component of

the displacement field just outside the plate, Dz, which ap-

pears in Eq. sA5d, and again to relate the divergence of the

displacement field in the bulk dielectric, Eq. sA7d, to the free

charge there, Eq. sA8d. The second integral in that equation

is over the regions of A lamellae which contain the charges.

Combining the expressions of Eqs. sA2d and sA8d we obtain
for the energy of the system the expression

Utotfr̂−g = −
1

2
E e0ksrdf¹Vsrdg2dr

+ E
A

Vsrdefr+ − r̂−srdgdr , sA9d

which, like the potential Vfr̂−g, is a functional of the charge

density r̂−srd. The partition function in the canonical en-

semble is

ZsT,V,V0,N+,Splated =
1

N−!lB
3N−
E P j=1

N− dr j

3expf− bUtotfr̂−gg , sA10d

where lB is the de Broglie wavelength of the negative

charges.

There are many methods to obtain from the exact parti-

tion function the mean-field approximation to the free en-

ergy, such as that pioneered by Edwards
19

and used com-

monly since.
20–22

They all lead to the result

FelsT,V,V0,N+,Splated = Utotfr−srdg − TS , sA11d

=−
1

2
e0E ksrdf¹Vsrdg2dr + eE

A

Vsrdfr+ − r−srdgdr

+ kBTE
A

r−srdlnfr−srd/r+gdr , sA12d

where r−srd, in contrast to r̂−srd of Eq. sA1d, is an ensemble-

average density
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r−srd = r+V
expfbeVsrdg

eAdr expfbeVsrdg
r in A, sA13d

and is the source of the potential via the Poisson equation

¹2Vsrd = −
1

4pksrde0
r−srd . sA14d

The mean-field free energy, Eq. sA12d, is seen to be simply
the total electrostatic energy, Eq. sA9d, but as a function of

this average charge density, supplemented by the contribu-

tion to the entropy of the mobile counterions.

APPENDIX B: NUMERICAL SOLUTIONS

The rescaled electrostatic free energy fel defined in Eq.

s11d can be written in terms of the rescaled potential W by

using the relation r−srd=r+u expsWsrdd to eliminate the ex-
plicit dependence on r−srd in Eq. s9d. The result, after chang-
ing to rescaled variables and neglecting a constant which

contributes equally to the parallel and perpendicular configu-

rations, is

fel,global = −
1

2
E

x̃=0

l/2d E
z̃=0

1 ksx̃, z̃d

kA

f¹Wsx̃, z̃dg2dx̃dz̃

+ r2E E
A

Wsx̃, z̃ddx̃dz̃ +
1

2
r2S l

2d
Dln u . sB1d

This expression is valid for both the globally neutral parallel

configuration and the perpendicular configuration. In the

case of locally neutral parallel lamellae, each lamella labeled

by i has its own constant ui and the rescaled free energy is

fel,local = −
1

2
E

x̃=0

l/2d E
z̃=0

1 ksx̃, z̃d

kA

f¹Wsx̃, z̃dg2dx̃dz̃

+ r2E E
A

Wsx̃, z̃ddx̃dz̃ + r2S l

2d
Do

i

SVA,i

V
Dln ui,

sB2d

where VA,i is the volume taken up by the ith lamella within

the integration region V. These rescaled free energies can be

calculated once the rescaled potential W and the constant u
sor constants ui in the case of locally neutral lamellaed have
been determined by numerically solving discretized versions

of the equations

¹̃2Wsx̃, z̃d = − r2s1 − uie
Wsx̃,z̃dd in lamella Ai,

¹̃2Wsx̃, z̃d = 0 in B regions, sB3d

subject to appropriate boundary conditions. In the case of

parallel lamellae where W is a function of z̃ only, the follow-

ing boundary conditions hold in both the locally and globally

neutral cases:

Ws0d = 0, sB4d

Ws1d = v , sB5d

k−W8sz̃iduleft = k+W8sz̃iduright, sB6d

Wsz̃iduleft = Wsz̃iduright, sB7d

where the AB interfaces are indexed by i and k− and k+ are

the relative dielectric constants on the two sides of the inter-

face at z̃i. In the case of globally neutral lamellae, the un-

known u is determined by the boundary condition

W8s0d = W8s1d . sB8d

In the case of locally neutral lamellae, each unknown ui is

determined by a boundary condition describing the neutrality

of the ith A lamella:

W8said = W8sbid, 1 # i # n , sB9d

where n is the number of A lamellae and ai and bi are the

scaled positions of the edges of the ith such lamella. For the

perpendicular configuration, the boundary conditions are

Wsx̃,0d = 0, sB10d

Wsx̃,1d = v , sB11d

UkA

]W

] x̃
U

x̃=l/4d−

= kBU ]W

] x̃
U

x̃=l/4d+

, 0 # z̃ # 1, sB12d

U ]W

] x̃
U

x̃=0

= 0, 0 # z̃ # 1, sB13d

U ]W

] x̃
U

x̃=l/2d

= 0, 0 # z̃ # 1, sB14d

Wsl/4d, z̃duleft = Wsl/4d, z̃duright, 0 # z̃ # 1, sB15d

kAE
0

l/4d SU ]W

] z̃
U

z̃=1

− U ]W

] z̃
U

z̃=0
Ddx̃

+ kBE
l/4d

l/2d SU ]W

] z̃
U

z̃=1

− U ]W

] z̃
U

z̃=0
Ddx̃ = 0, sB16d

where x̃=0 is in the middle of an A lamella, so that x̃

=l /4d is the location of the AB interface. Equations sB13d
and sB14d enforce the symmetry of the system with respect

to reflection about the center of each A or B lamella, respec-

tively. Equation sB16d determines the value of u by enforc-

ing the neutrality of the system.
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