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Abstract

An introduction to Biological Physics is provided by three applications of Statistical Mechanics to current problems of

biological interest. They are the possibility of lateral phase separation in the plasma membrane, the design of a vesicle

sensitive to its environment which could be used for drug delivery, and the process of fusion of biological membranes.
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1. Introduction

Once more. Say you are in the country; in some high land of lakes. Take almost any path you please, and ten to

one it carries you down in a dale, and leaves you there by a pool in the stream. There is magic in it. Let the most

absent-minded of men be plunged in his deepest reveries- stand that man on his legs, set his feet a-going, and he

will infallibly lead you to water, if water there be in all that region. Should you ever be athirst in the great

American desert, try this experiment, if your caravan happen to be supplied with a metaphysical professor. Yes,

as every one knows, meditation and water are wedded for ever.

Ch. 1, Moby Dick

Biological Physics has become an enormously diverse, and fruitful, area of study. It has provided the field of

Physics with a host of difficult and intriguing problems, from the motion of individual motor proteins to the

organization of entire cells, while Physics has provided, in its turn, a clarifying, quantitative, and predictive

approach to these problems which has often been lacking. There is no way that I could possibly traverse the

provinces of this discipline. Instead I shall try to give a flavor of this discipline from work that I have carried

out in the last several years.

It is clear to any physicist who has interacted with a biologist that the world view of these two communities

is quite different. I would summarize it as follows; Given a collection of objects, a physicist would ask what is

common to them; a biologist would ask what distinguishes them. Each point of view has its strengths and its

weaknesses. In particular, the physicist, in his desire to cut away what he believes to be unnecessary

complications, has to ask himself whether he is not eliminating the very essence of the problem. This question

is, of course, at the heart of a theoretical physicist’s favorite pastime; model building. Again, I hope that the

tension between simplicity and complexity emerges from these lectures.
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To the students who might read these notes, I will add the personal observation that working in Biological

Physics provides the opportunity to interact with others in many other disciplines, some of whom think like

you, and some who do not. The interactions are often maddening and frustrating, but they are equally likely to

be stimulating and rewarding. I have found the ratio of the latter to the former to be large enough, and the

whole enterprise brings me a great deal of pleasure.

1.1. First lecture: Introduction to the self-organization of amphiphiles

In the first lecture, I shall introduce some of the molecules with which I shall be dealing, namely, various

lipids. After a brief description, I shall turn to their most interesting feature, their ability to assemble

themselves into various structures. The most interesting structure, biologically, is the lipid bilayer. I will then

set a seemingly simple task; to calculate the areal density of lipids in such a bilayer. This will illustrate some of

the difficulties inherent in a description of these systems.

1.1.1. Lipids

Lipids consist of a hydrophilic head group and, usually, two hydrophobic hydrocarbon tails. The two are

connected to a backbone, often the simple three-carbon molecule glycerol, HOCH2CHðOHÞCH2OH. These,

then, are called glycerolipids. So let us start with the head group. We remove one OH group from one of the

carbons at the end of the chain of three in glycerol (we’ll call this position 3) and one H from phosphate,

H2PO4 and put them together, then remove the remaining H from the phosphate and an OH from some

alcohol ROH to make the headgroup RPO4 which is attached at position 3 on the backbone. (see Fig. 1.) One

of the oxygens is ionized and thus is negatively charged. What molecule R is distinguishes the headgroup. Two

of the most common are ethanolamine, CH2CH2N
þH3, and choline, CH2CH2N

þðCH3Þ3 which give these

lipids their names of phosphatidylethanolamine and phosphatidylcholine. I note two things. First, the head

groups, with the negatively charged oxygen and the positively charged nitrogen, have a dipole which interacts

with the dipoles of water. Second, the choline is significantly bigger than the ethanolamine as one has replaced

each of the H attached to the nitrogen by the much larger methyl group, CH3. The effects of this difference in

architecture will appear often.

Now to the tails. We make them from fatty acids of the form CH3ðCH2ÞxCOOH and attach them to the

glycerol backbone at positions 1 and 2 by removing the OHs from the glycerol and the H from the acid. The

chains are distinguished by their number of carbons, and whether they are saturated, as in the formula for the

fatty acid I gave above, or whether they are unsaturated, that is, have any double bonds. Usually, but not
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Fig. 1. A schematic of the lipid DSPC, which has two saturated tails of 18 carbons each attached to the glycerol backbone at positions 1

and 2. The phosphatidylcholine headgroup is attached at position 3.
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always, the chain attached to the central carbon, number 2, has one double bond in it half way down the

chain, while the chain attached to carbon 1 is saturated. A double bond introduces a permanent kink in the

chain which makes it difficult to pack efficiently, another recurring theme. The number of carbons in the tails

of biological lipids is typically, but not always, around 16 or 18, (i.e., x ¼ 14 or 16 above). The length of the

tail is often distinguished in the full name of the lipid by an arcane system which, like the jargon of any

profession, serves mainly to distinguish those who know it, the insiders, from those who do not, the rest of us.

For example, a saturated chain of length 14 is denoted ‘‘Myristoyl’’ (from the tree Myristica Fragrans whose

seed is nutmeg, in which, I presume, this lipid is found) while an unsaturated one of the same length is

‘‘Myristoleoyl’’. A saturated chain of length 16 is denoted Palmitoyl, (you can guess where this is found), while

an unsaturated one is ‘‘Palmitoleoyl’’. A saturated chain of length 18 is ‘‘Stearoyl’’ while an unsaturated one of

the same length is (lest you think you are getting the hang of this) ‘‘Oleoyl’’. So when one sees the moniker

‘‘dipalmitoleoylphospatidylcholine,’’ which, once introduced, is invariably abbreviated DPPC, one knows that

there are two saturated chains of length 16 with a headgroup of phosphatidylcholine, while DOPE stands for

‘‘dioleolyphosphatidylethanolamine,’’ a lipid with two unsaturated chains of length 18 attached to a

phosphatidylethanolamine headgroup. The lipid shown schematically in Fig. 1 would be denoted DSPC.

The tails can sample a large number of configurations. They change their shape due to the flexibility around

the carbon–carbon bonds. While the most energetically favored state is a chain which goes ‘‘straight ahead,’’

(all trans), deviations of 120 degrees clockwise or counterclockwise, (gauche bonds), are not very costly, about

0:8kBT , and so will be thermally excited. These thermally excited kinks are in contrast to the ‘‘quenched’’ kink

of a double bond.

1.1.2. The origin of self assembly

The hydrogen-bonding network of water is responsible for the self assembly of lipids. If you put anything

into water, you disturb this network and reduce its entropy, thus increasing its free energy. If you do not make

up for this by some nice attractive interaction, it will cost you free energy to put the object in water. This is the

case with the hydrocarbon tails. When you put the headgroups in water, they also break up the hydrogen

bonding network. However the favorable interaction of the dipole of the headgroup with the dipoles of water

causes the free energy to decrease. Thus the headgroups are hydrophilic while the tails are hydrophobic. As a

consequence, the molecules self assemble in water so that the headgroups are exposed, while the tails are

sequestered away. There are many possible structures that will accomplish this goal. The most common is the

lipid bilayer, with heads out and tails in. Indeed these bilayers serve as the basis for all biological membranes.

Various proteins are attached to, or are embedded in, these bilayers which are in a fluid state, (confusingly

denoted the liquid crystalline state), so that the diffusion of the proteins is sufficiently rapid that they can go

about their jobs. There does exist a lower temperature phase of the lipids, the gel phase, in which the tails are

more ordered, (i.e., have fewer gauche bonds) as are the headgroups. Presumably the system is hexatic, that is

the headgroups possess long-range orientational order, but no long range positional order. The increased

order of the tails permits the lipids to pack more efficiently, with the consequence that it is far more difficult

for proteins to make their way through them. In other words, the diffusion constant of the proteins decreases.

Because the proteins cannot do their job in a timely fashion, the gel phase is biologically useless. Systems of

lipids with two saturated tails of length about 16 or so are in this useless state at body temperature. A

replacement of one of the saturated chains of a lipid by an unsaturated one causes a permanent kink in that

chain and makes the system difficult to pack. This is reflected in a decrease in the transition temperature from

the high temperature liquid crystalline phase to the gel phase. In fact the transition temperature decreases to

below that of body temperature, so the system remains in the liquid, biologically useful, phase. It is thought

that this is a reason that most biological lipids have one unsaturated, as well as one saturated, chain.

A second structure which lipids can adopt that will keep all parts of their molecules happy is an inverted

hexagonal phase, which consists of cylindrical tubes that are stacked in a hexagonal array. The headgroups

form the inside of the tubes, and the tails the outside. If there is water in the system, it fills the inner part of the

tubes. The inverted hexagonal array is not seen in any biological system of which I am aware, but it is observed

frequently in laboratory studies. In fact it is known that some lipids like DOPE (see above) do not form

lamellar structures at physiological conditions, but rather form inverted hexagonal phases [1]. This is

characteristic of lipids with small headgroups and large tails, as the large tails can sample more configurations
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in such a structure than in a lamellar one. I find intriguing the fact that two of the most common lipids found

in biological membranes, the phosphatidylethanolamines and phosphatidylserines, would by themselves,

prefer to form inverted hexagonal phases. They are trapped in the bilayer by the majority lipids, like the

phosphatidylcholines with larger headgroups, which prefer that configuration. Why would Nature want to use

in a bilayer lipids that do not want to be there? This is a question to which I shall return.

1.1.3. An apparently simple problem

Given that the lipids form a bilayer, and we know a great deal about them, we should be able to calculate

the number of lipids per unit area, i.e., their areal density. This is not as easy as calculating the volume density

of liquid Argon, for example, because the lipids have so many internal degrees of freedom. One could attack

this problem with molecular dynamics [2]. For the purposes of these lectures, however, I want to follow an

alternative approach due to Ben-Shaul et al. [3]. They proceed as follows.

The most difficult part of this problem arises from all of the interactions in the system; the weak, long-range,

van der Waals attraction, and the strong, short-range, hard-core repulsion. Ben-Shaul et al. argue that the

effect of these interactions is to produce an interior of the bilayer which has a constant, uniform, liquid-like

density. Concentrating entirely on the chains for the moment, they replace the Hamiltonian of the system

which contains the interactions between chains by one which has no interaction between chains at all.

However the partition function is to be calculated subject to the constraint that the density of the bilayer

interior is constant. Thus they have converted the original problem into another one, which can be

summarized by the equations

H ¼
X

n

g¼1

X

N

k¼1

hg;k, (1)

P0ex ¼ exp½�bH�=Q0, (2)

Q0 ¼ Tr0 exp½�bH�, (3)

where n is the number of lipid tails, N is the number of segments in each chain, b ¼ 1=kBT , and hg;k is the

Hamiltonian of a single chain, g, which now only contains the energy of gauche bonds at segment k. The prime

superscript indicates that only states which contribute a uniform core density are to be considered. The free

energy is obtained from

F ðT ; n;A;V Þ ¼ Tr0P0ex½H þ b�1 ln P0ex�. (4)

Now this is a difficult problem, but one which we know how to approach. The constraint here is similar to

one in a magnetic system in which one wants to sum over states of definite magnetization. Instead of doing

this, one changes ensemble in which a magnetic field is fixed as opposed to a magnetization. In such an

ensemble one sums over states with any magnetization. The energy of the particular configuration depends

upon the magnetic field, and one then chooses the field so that the average magnetization is the desired one.

We will follow an analogous procedure.

We define a local volume fraction F̂ðzÞ,

F̂ðzÞ ¼
1

A

X

n

g¼1

f̂gðzÞ, (5)

f̂gðzÞ ¼
X

N

k¼1

nkdðz� zg;kÞ, (6)

A

V

Z

dzF̂ðzÞ ¼ 1, (7)

where z is the coordinate normal to the bilayer surface, the nk are the volumes of the kth segment, and the total

volume of the system consists only of the sum of its monomeric volumes V ¼ n
P

nk. Under this
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incompressibility constraint, the free energy of Eq. (4) becomes a function of only two extensive quantities,

F ðT ; n;AÞ.
Now the probability of a configuration in an external field, PðzÞ, can be written as

Pex ¼
1

Q
exp �bH �

A

n0

Z

dzPðzÞF̂ðzÞ

� �

, (8)

Q ¼ Tr exp �bH �
A

n0

Z

dzPðzÞF̂ðzÞ

� �

, (9)

where n0 is any convenient molecular volume which has only been introduced to make the field PðzÞ

dimensionless. The free energy in this ensemble, which is simply the Legendre transform of F ðT ; n;A;fÞ,

GðT ; n;PÞ ¼ F ðT ; n;AÞ þ
A

bn0

Z

PðzÞdz, (10)

is given by

G ¼ Tr Pex H þ
A

bn0

Z

dzPðzÞF̂ðzÞ þ b�1 ln Pex

� �

. (11)

Because the chains are noninteracting, the probability of a given configuration of all chains is simply the

product of the probabilities of each chain to be found in their individual configuration, Pex ¼ cPn
1; where c is

an uninteresting constant, and

P1 ¼
1

Q1

exp �b
X

N

k¼1

hk �
1

n0

Z

dzPðzÞf̂ðzÞ

" #

, (12)

Q1 ¼ Tr exp �b
X

N

k¼1

hk �
1

n0

Z

dzPðzÞf̂ðzÞ

" #

, (13)

and hk contains the energy of the gauche bonds of the single chain. The field PðzÞ is then determined by

requiring that the average density be a prescribed, constant, value at all z

hF̂ðzÞi ¼
bn0

A

dG

dPðzÞ
¼ 1. (14)

One sees from Eq. (13) that Q1 is the partition function of a single chain in the external field PðzÞ. So the

central assumption of Ben-Shaul et al. has reduced the many chain problem to that of calculating the one-

chain partition function in an external field. The calculation of this partition function is the central problem in

this method, and its difficulty depends on how realistic a description of the chains one takes. Ben-Shaul et al.

take Flory’s Rotational Isomeric States Model [4] in which each bond between CH2 groups can take one of

three configurations; gauche-plus, gauche-minus, or trans. For m independent bonds, this is only 3m

configurations. However, one also has to specify the direction of the chain. This leads to many more

configurations. Typically one enumerates on the order of 107 chain configurations. Their contribution to the

partition function is weighted by the field PðzÞ, and from the partition function one calculates the density. The

field PðzÞ is adjusted until the density is uniform inside the core of the bilayer.

One carries out the calculation of the free energy per chain gðT ; aÞ � GðT ; aÞ=n, where a � A=n, the area per

chain. Because the surface tension s ¼ qg=qa, the minimum of gðT ; aÞ occurs at an area per chain at which the

surface tension vanishes, as is expected in experiment. There is a minimum because at large areas per chain, the

chains must have many gauche bonds in order to fill the space, and these gauche bonds cost energy. At small

values of a, the chains must be tightly packed, with the consequence that there are few gauche bonds, and little

entropy. The minimum occurs at the optimum trade off of these two effects. The area per chain one obtains

from this is a bit large compared to experiment, so Ben-Shaul et al. also include the effect of the repulsive

interaction between water and the hydrophobic chains. They take this contribution to the free energy per

chain to be s0a with s0 the usual oil, water interfacial tension. This term shifts the minimum to smaller a and
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one finds the minimum to occur at 0:64 nm2 for a two-chain lipid, which is in satisfactory agreement with

experiment.

Another nice thing about this calculation is that, because one knows about the equilibrium configuration of

the chains, one can calculate their order parameter, which is essentially the angle between CH2 planes and the

bilayer normal. The order parameter can be measured by nuclear magnetic resonance. There is good

agreement between theory and experiment.

There is only one catch to this calculation; there is no gel phase. What happened to it? I shall deal with this is

the next lecture.

2. Second lecture: Afloat on a sea of phospholipids

The theoretical work in this lecture was inspired by the enormous interest in a relatively new view of the

composition of the plasma membrane, the bilayer that surrounds the cell. The canonical view of Singer and

Nicholson [5] was that the lipids and cholesterol of this membrane were distributed relatively homogeneously.

The newer view [6–10] is that the saturated lipids, like sphingomyelin, and cholesterol, aggregate into regions

which float, like rafts, in a sea of the unsaturated lipids, like the phosphatidylcholines. Because the chains of

the saturated lipids are relatively more ordered than those of the unsaturated ones, a tendency which is

enhanced by the association with cholesterol, the two regions have different areal densities. What got people

excited was the observation that various proteins could tell the difference between these regions and would

partition preferentially into one or the other. For example, signaling proteins, instead of being distributed

uniformly across the plasma membrane, seemed to prefer the raft environment. As a consequence, their local

concentration is much larger than it would be if they were uniformly distributed, and this greater local

concentration allows them to perform more efficiently. Hence simple physical organization leads to

organization of function.

I must add that this ‘‘raft’’ hypothesis is still controversial. What is very clear however is the result of many

experiments in vitro on the ternary system of cholesterol, saturated, and unsaturated lipids [11–14]. Many of

them have been carried out by my colleague Sarah Keller and her student Sarah Veatch, and I have been

fortunate to be able to discuss these experiments often with them. The clear result is that phase separation

occurs commonly in such ternary mixtures. In particular, one sees fairly large regions of composition in which

two liquids phase separate. It is extremely tempting to identify this two phase region as one in which rafts

would exist; the raft being the more compact fluid, the sea being the less compact one. That the two regions are

indeed fluid is easily determined from the shape of the minority regions. They are circular. Were one of them in

the gel phase, they would be faceted and irregular. The controversy surrounding the subject of rafts is that

nothing so clear as this phase separation has ever been seen in vivo. If such regions do exist, and there is much

evidence that they do, they must be very small, and the reason for this is unknown.
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Fig. 2. Sphingomyelin, POPC, cholesterol phase diagram at 23�. The circles are experimental points. Figure from Ref. [11].
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The gel phase is also present (in the in vitro systems, for compositions in which the saturated lipid is

dominant, and at a temperature below the main chain transition temperature of that lipid.) A phase diagram is

shown in Fig. 2 for the system of cholesterol, sphingomyelin (PSM), and palmitoyloleoylphophatidylcholine

(POPC) which has one saturated chain of 16 carbons and an unsaturated one of 18 carbons. In that diagram,

the cholesterol-rich liquid phase, in which the mostly saturated lipids have relatively well-ordered chains is

denoted ‘‘lo’’ for liquid-ordered, the cholesterol-poor liquid phase, in which the mostly unsaturated lipids have

less well-ordered chains, is denoted ‘‘ld’’ for liquid-disordered, and the gel phase is denoted ‘‘so’’ for solid-

ordered, notation that originates in an influential theoretical paper [15]. There is a fairly large three-phase

triangle.

I originally thought that understanding the gel phase might be the key to understanding rafts. I reasoned as

follows. I know that the main-chain transition is first order. That means that all of the first derivatives of the

free energy with respect to intensive variables, are discontinuous at the transition. In particular, the densities,

which are first derivatives of the free energy with respect to chemical potentials, will be discontinuous. Thus

the binary system of unsaturated lipid and saturated lipid will show coexistence between an unsaturated lipid-

rich liquid, (the ‘‘ld’’), and the gel. Similarly the binary system of cholesterol and saturated lipid will also show

coexistence between a cholesterol-rich liquid phase, (the ‘‘lo’’) and the gel phase. I thought it not unlikely that,

in the ternary system, these two liquids would have a region of coexistence because the well-ordered tails of the

lipids in the liquid-ordered phase would not pack well with the more disordered tails in the liquid-disordered

phase. Thus understanding the order in the tails, as exemplified by the gel phase, might be key.

This raises the question as to why the calculation of Ben-Shaul et al. misses this phase? The answer is that

the order in the bilayer core is described by these authors entirely in terms of the local density; i.e., they require

only that the local density be constant. Now it is conceivable that chains obeying this constraint might not be

particularly well ordered, for the constraint says nothing about the order of the local bonds between carbons

which, one would expect, should be relatively parallel if only so that the chains do not intersect, which would

be energetically costly. Thus it seems that one needs to describe not only the local density of carbon atoms, but

the local density of bonds between them. The local orientation of the chain is conveniently specified by the

normal to the plane determined by the kth CH2 group,

us;k ¼
rk�1 � rkþ1

jrk�1 � rkþ1j
; k ¼ 1 . . .N � 1. (15)

Next one defines a function, x̂sðzÞ, which tells you how well these local bonds are oriented with respect to the

bilayer normal c,

x̂sðzÞ ¼
X

N�1

k¼1

nsðkÞdðz� zkÞgðus � cÞ, (16)

where

gðus � cÞ � ðmþ
1
2
Þðus � cÞ

2m. (17)

For large m, g � m expð�my2Þ where y is the angle between the two unit vectors. Matching lipid parameters,

one finds m ¼ 18 is reasonable. Note that gðus � cÞ is unity if the bond vector u is aligned with the bilayer, and

falls exponentially with the angle between the two vectors.

To express the fact that it is energetically favorable for bonds which are in the same local region to be

aligned with one another, and with the bilayer normal, one adds a simple interaction

V ðu; u0Þ ¼ �ðJ=n0Þgðu � cÞgðu
0 � cÞ. (18)

Note that this interaction is not rotationally invariant because the environment is not rotationally invariant;

the bilayer is given, so that its normal specifies a preferred direction.

One can now carry out the same sort of program that we did before, and this was done by Richard Elliott

[16]. The difference is that one now finds a nice, first-order, main-chain transition in the system of saturated

lipids. We set the value of the interaction strength, J, so that the transition temperature, Tn, for the saturated

chains of model DPPC agreed with experiment, 42 �C. We then repeated this calculation for a system of a

mono-unsaturated lipid, DOPC. We kept the same interaction strength, because the interaction is between
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bonds in a hydrocarbon chain, irrespective of whether that chain does or does not have a double bond

somewhere in it. The only difference in the calculation is that one uses the ensemble of configurations of a

chain with a single double bond in it. As noted earlier, one knows that the presence of this bond makes

packing more difficult and should lower the transition temperature dramatically. To our great satisfaction, we

found that this is precisely what the calculation tells us; the transition temperature is now less than 0 �C, in

agreement with experiment. Mixtures of these two lipids are easily handled and, at the main-chain transition

of DPPC, a phase separation is encountered between a DPPC-rich gel and a DOPC-rich fluid. This is what we

expect as a consequence of the first-order main chain transition.

We have now brought two of the major players onto the stage. It remains only (only!), to introduce the

third; cholesterol. In order to fulfill the constraint of constant density within the bilayer, we need to know

where all the atoms in cholesterol are, which we do. We also have to keep track of its configurations, just as for

the lipids. This is not as difficult because much of the cholesterol molecule is rigid, so if one know where two of

the atoms are, one knows where they all are. There is a small hydrocarbon chain at one end of the molecule,

and this is treated like the lipid chains. As there are now chains and cholesterol, there are now three

interactions: between lipid chains, as before; between lipid chains and cholesterol; and between cholesterol and

cholesterol. All interactions are taken to be of the form of Eq. (18) with strengths J ll , J lc, and Jcc. As the first

strength is set by the main chain transition temperature of DPPC, we have two interaction strengths at our

disposal.

We first asked what would the system do if the additional two interactions, those involving cholesterol, were

zero; that is, the cholesterol would only affect the system due to its volume through the packing constraint. We

found the phase diagrams of Fig. 3. One sees that the gel separates from the disordered fluid and the

cholesterol rich fluid, but there is no liquid–liquid phase separation anywhere. Recall, that the region of

liquid–liquid phase separation is where the ‘‘rafts’’ would be.

Next, to test my view that the existence of liquid–liquid coexistence in the ternary system was due to the fact

that a relatively well-ordered cholesterol-rich liquid would want to separate from a more disordered

cholesterol-poor liquid, we turned on the lipid-cholesterol interaction so that the cholesterol-rich liquid would

be relatively well-ordered in contrast to the disordered fluid. I believed that these two liquids would phase

separate. To my dismay, they did not. The major effect of an attractive interaction between cholesterol and

lipid is that the gel phase becomes swollen with cholesterol, something which is not observed. So my whole

thinking about this problem was wrong, and had to change. It did. As a result, we looked at the effect of the

attractive interaction between cholesterols. This had the (not unexpected) effect to cause a phase separation

between cholesterol and lipids. In particular, in the binary saturated lipid cholesterol system, there was a

transition to a cholesterol-rich, more-ordered liquid, and a cholesterol poor less-ordered liquid. See Fig. 4.

Such a separation had been observed long ago by Vist and Davis [18]. When one adds the unsaturated lipid,

this region of liquid–liquid coexistence simply extends into the ternary diagram. Again, this liquid–liquid

region is the region of rafts. The interested reader can find further details in the paper where the above was

described [17].
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Fig. 3. Calculated phase diagrams of the three binary mixtures of cholesterol (c), saturated (s), and unsaturated (u) lipids in temperature-

composition space for J llðmþ 1=2Þ2=kBTn ¼ 1:44 and J lc ¼ Jcc ¼ 0:0. These binary diagrams form the sides of the Gibbs prism, a cut

through which at 300K produces the Gibbs triangle shown in Fig. 2(b). Regions of two-phase coexistence are shaded, and some tie lines

are shown. Figure from Ref. [17].
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So the physics behind the liquid–liquid coexistence turns out to be exceedingly simple. It is due to the

preference of the cholesterol and lipids to phase separate, which gives two liquids, one cholesterol-rich, the

other cholesterol-poor. Due to the tendency of the rigid cholesterol molecule to order the lipid chains around

it, the cholesterol-rich liquid is the ‘‘ordered liquid,’’ while the cholesterol-poor liquid is the ‘‘disordered

liquid’’. The gel phase, which occurs at lower temperatures, causes there to be additional regions of coexistence

between gel and liquid-ordered, and gel and liquid-disordered, and a three-phase triangle. But these merely

take up valuable real estate in the three phase triangle. The gel phase has nothing to do with the existence of

the liquid–liquid coexistence region. Our results for the ternary phase diagram at T ¼ 300K are shown in Fig.

4. It looks very much like the experimental one of Fig. 2. So I think that we now understand the ‘‘in vitro’’

experiments. Understanding those ‘‘in vivo’’ may be a little more difficult.

3. Third lecture: Delivering drugs

The problem posed here is how to get a drug to a target within a cell. One method that looked promising

was to make use of a virus, as they have evolved to get into a cell very efficiently. An example is the influenza

virus, a single strand of RNA enveloped in a small vesicle composed of lipid bilayer. The cell takes it in, and

surrounds it with an vesicle of its own called an endosome. If the RNA does not get out of the endosome in

good time, it will be destroyed. To get out of the endosome, the virus’s own vesicle fuses with it, a process

which is triggered by the natural decrease in the pH within an endosome over its lifetime. The pH decreases

from the normal 7.3 to about 5, which is quite acidic.

The basic idea was to alter the virus so that, instead of instructing the cell to reproduce the virus, it would

instruct the cell to make a drug of choice. There are dangers in using a virus, however. It may become virulent,

or trigger an immune reaction, as well as other possibilities. As a consequence, there is a very active line of

research to try to make non-viral drug delivery systems, ones which mimic the viral one, but which are benign.

It is not difficult to encapsulate a drug in a vesicle, have the vesicle taken up by the cell, and be encapsulated

within an endosome. However, it is difficult to get the drug out of the endosome before the drug is destroyed.

Taking a cue from the natural process, one asked whether it were possible to design a vesicle to encapsulate the

drug which would be sensitive to the changing pH of the endosome, and to release it as the pH changed. It was

hoped that in the process, the drug would also escape the endosome.

One can do this. We have already encountered the idea that architecture matters; that lipids with

headgroups and tails of comparable volumes tend to make bilayers, while those with small headgroups and

large tails tend to make inverted hexagonal phases. Phosphatidylserine, (PS), is a lipid whose architecture can

effectively be changed by changing pH. At normal pH, its COOH group is ionized. The resulting negative

charge attracts positive counterions, like Hþ7 O3 and Hþ5 O2, with the consequence that its headgroup is

effectively larger, and the lipid makes bilayers. Thus a vesicle can be made from it. If the pH is reduced to 3.6,

only half of the COOH is ionized. Below this pH, the headgroup is essentially neutral. Without the additional

waters, the headgroup is sufficiently small that the lipid no longer makes bilayers, but makes an inverted

hexagonal phase. Therefore, if one made a vesicle of PS, it would fall apart at a pH of about 3.6 and release its
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Fig. 4. a. Binary phase diagrams for J lc ¼ 0:78J ll and Jcc ¼ 0:73J ll , and J ll as in Fig. 3. The saturated lipid-cholesterol mixture has a triple

point very near the main-chain transition temperature, so that the gel, ld coexistence region is very narrow. Dashed lines are

extrapolations. The ternary mixture at T ¼ 300K is shown in b. Figure from Ref. [17].
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cargo. This is fine, but a pH of 3.6 is of little use biologically. One would like the vesicle to fall apart at a value

of about 5, preferably at a value that can be tuned. Can this be done?

A clever answer was provided by Hafez et al. [19]. They suggested that one combine an ionizable anionic

lipid with a permanently ionized cationic lipid. For the ionizable ionic lipid, they chose cholesteryl

hemisuccinate (CHEMS), instead of PS, and for the permanently ionized cationic lipid chose N,N-dioleoyl-

N,N-dimethylammonium chloride, or DODAC. A bilayer made of CHEMS is unstable for a pH less than 4.2

for the same reason that the PS bilayer is unstable at pH of 3.6. So let us begin with a CHEMS bilayer at some

pH just slightly greater than 4.2. The positive counterions just stabilize the bilayer. What is the effect of adding

a small amount of permanently charged positive lipid? Well, fewer positive counter ions are now needed for

neutrality. But with fewer positive counterions, the bilayer will fall apart. So in order to make it marginally

stable again, one will have to attract more counterions by ionizing more CHEMS; that is, one will have to

increase the pH. Thus the pH at which the bilayer falls apart increases with increasing concentration of

permanently ionized cationic lipid. The vesicle which falls apart at a tunable pH is therefore achievable.

To understand this process better, Xiao-jun Li and I decided to investigate it theoretically using a model we

had proposed earlier [20]. In it, the two-tail lipids are treated as a triblock copolymer of the form BAB. The B

tails are completely flexible, and of course take up volume. The A headgroup has no entropy whatsoever, but

does have a volume. The system is embedded in a solvent of A monomers with their own volume. The

advantage of using block copolymers over the model used in the first two lectures is simple. As noted earlier,

the heart of the method used in the first two lectures is to calculate the partition function of a single lipid in a

given external field. Using the Flory model that we did to describe the relatively short-chain tails, this

calculation was very difficult. We had to generate explicitly on the order of 10 million configurations of the

tails. On the other hand, if one models the tails as completely flexible, the partition function can be calculated

simply by solving a modified diffusion equation for a particle in an external field [21,22].

The only concern we had about the model was whether the completely flexible chains simply had too much

entropy. To check this, we calculated [20] the phase diagram of our model lipid with volume fractions of head

and tail appropriate to that of DOPE in water. The unknowns in the calculation are the local volume fraction

of headgroups, fhðrÞ, the local volume fraction of tails, ftðrÞ, and the local volume fraction of water, fwðrÞ. We

took but a single interaction, a local one between A and B entities, that is, between tails and headgroups, and

between tails and water. To model the hard-core interactions, we imposed an incompressibility constraint

ftðrÞ þ fhðrÞ þ fwðrÞ ¼ 1. (19)
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Fig. 5. Phase diagram of a neutral lipid which models DOPE in water as a function of temperature, T=T0 and solvent fraction, fs=ðfsÞ0,

where T0 and f0 are the temperature and volume fraction of solvent at the azeotrope. Figure from Ref. [20].
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The resulting phase diagram, shown in Fig. 5, is in rather good agreement with experiment [23,24]. They both

show the progression from lamellar to hexagonal to body-centered-cubic with increased temperature, an effect

due to the entropy of the tails. More interestingly, they both show an azeotrope at which the lamellar phase

undergoes a first-order transition to an inverted hexagonal phase with no change in water content. This

agreement allayed any fears that the tails contributed too much entropy.

The system of two charged lipids and solvent is certainly quite complicated, as it is characterized by eight

unknown functions; the local volume fraction of the headgroups of the two anionic lipids, f
ð1Þ
h ðrÞ and f

ð2Þ
h ðrÞ,

the volume fraction of the tails of these two lipids, fð1Þt ðrÞ and f
ð2Þ
2 ðrÞ, the volume fraction of the solvent, fsðrÞ,

and of the counterions, fcðrÞ, the local charge density of the headgroup of the anionic lipid, eP
ð1Þ
h ðrÞ and of the

cationic lipid, eP
ð2Þ
h ðrÞ. The interactions among the elements are of two kinds. Just as in the neutral system,

there are the repulsive local interactions between tail segments and heads, and tail segments and solvent. In

addition, there are now Coulomb interactions between all charges. Finally there is the incompressibility

constraint. Within self-consistent field theory, the problem quickly reduces to solving four self-consistent

equations, one of which is the Poisson–Boltzmann equation.

The results are gratifying [25]. Fig. 6 shows our results for the fractional concentration of the ionizable

anionic lipid, Y, as a function of pH with respect to the pK of the anionic lipid headgroup. The pK is defined

as that value of the pH at which one half of the headgroup is ionized. We have taken the pK of CHEMS to be

5.5, which is reasonable. The solid lines show the coexistence between lamellar and inverted hexagonal phases

we obtain, and the dots are the experimental results [19]. When there is no DODAC in the system, the

transition occurs at some value of the pH which is quite far below the pK of 5.8. However as one adds the

permanently ionized cationic lipid, so that Y decreases, the transition now occurs at larger pH, so the pH of

the transition, the place where the vesicle will fall apart, is tunable as advertised. One also sees that there is a

nice regime where the pH of the transition is extremely sensitive to the concentration of the cationic lipid, a

desirable feature. The dotted line in the figure is a criterion of Hafez et al. which derives from an

understanding of the problem which is different than ours, and is not of interest here.

However, from our own understanding it was clear that the desirable feature of tunability was not limited to

the use of the combination of ionizable, anionic, lipid and permanently charged cationic lipid. One could also

use an ionizable, anionic lipid, and a neutral lipid, like PE, which prefers to make inverted hexagonal phases.

In order to stabilize a lamellar phase, one must add the ionizable anionic lipid. When there is little of the

ionizable lipid in the system, it must be fully charged (producing a large effective head-group) to stabilize the

bilayer vesicle. Thus the pH must be very large. As more of it is added, the headgroups need not be so fully
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Fig. 6. Phase diagram at a fixed temperature of a mixture of ionizable, anionic lipid, and fully ionized cationic lipid. Figure from Ref. [25].
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charged, so the pH of the transition will decrease. This understanding was borne out by our results shown in

Fig. 7. Again the relative concentration of ionizable lipid, Y, is shown as a function of pH–pK. The phase

boundary in this system with a neutral lipid is similar in behavior to that of the system with a permanently

charged lipid, the results of which are reproduced in dotted lines. That one could use a neutral and a charged

lipid holds out the prospect that one could make a tunable vesicle simply from naturally occurring PS and PE

lipids.

One interesting process involved in drug delivery, or in viral infection, which I would like to address is just

how the vesicle which encloses the drug, or the single-stranded RNA, fuses with the endosome that surrounds

it. This is one of the many problems subsumed under the more general problem of membrane fusion, which

will be the topic of my final lecture.

4. Fourth lecture: Membrane fusion

The fusion of biological membranes is an enormously important process for several reasons. Many

molecules that the cell needs are made within the cell itself. In order to send these molecules to the locations at

which they are needed, they are often enclosed in lipid vesicles. Once they arrive, these vesicles must fuse with

other vesicles in order to relay their cargo to the new location. This process, which goes under the rubric of

‘‘trafficking,’’ has attracted for many years the attention of biologists who want to know how the cargo vesicle

recognizes the target vesicle. Another process of great importance is endocytosis, responsible for getting

something made in the cell, serotonin for example, to the outside, like a neural synapse. The serotonin is

enclosed in a lipid vesicle which makes its way to the plasma membrane which encases the cell. The vesicle

must then fuse with the membrane in order to release its cargo to the outside. A third example is the viral entry

which I discussed last lecture.

For all its importance, the physics of membrane fusion is not well understood at all. In fact, what I see as the

central conundrum which fusion presents seems, with notable exceptions [26], not to have been addressed

explicitly. That conundrum is the following. In order for any vesicle to be useful, it must be relatively stable. In

particular, its enclosing membrane must be stable to the occurrence of long-lived holes which are thermally

activated. Yet in order to undergo fusion, just such long-lived holes must occur at some point along the fusion
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Fig. 7. Phase diagram at a fixed temperature of a mixture of ionizable, anionic lipid, and neutral lipid. Solid lines show the coexistence

from the calculation. For comparison, the dashed lines show the calculated coexistence for the ionizable anionic and fully ionized cationic

lipid system shown previously in Fig. 6. Figure from Ref. [25].
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pathway. It would seem that vesicles could either be stable, or they could undergo fusion, but not both. How

they actually manage to exhibit these two conflicting properties is the conundrum. Because of recent work on

this problem, [27,28], I believe the resolution of this puzzle can be understood.

I shall briefly review the situation. We begin with two membranes, each consisting of two layers of

amphiphiles, or lipids. In general the head groups of the lipids like to be surrounded by water. To bring the

membranes sufficiently close together so that fusion can occur, the interposed water must be removed, at least

in some region between the membranes. To remove this water takes energy which, presumably, is provided in

vivo, by fusion proteins. Due to the loss of water between membranes, the free energy per unit area, or surface

tension, of the membranes increases. One possible response of the system to this increase is to undergo fusion

because this process, by making holes in the membranes, decreases the membrane area and thus the free

energy. The canonical way this has been thought to occur (see [26] and references therein) was first suggested

by Kozlov and Markin [29], and is illustrated in Fig. 8.

In panel (a) we see two bilayers under zero tension, They are composed of amphiphiles, block copolymers in

this case, which contain a fraction f ¼ 0:35 of the hydrophilic component. Only the majority component is

shown at each point: solvent segments are white, hydrophilic and hydrophobic segments of the amphiphile are

dark and light correspondingly. Distances are measured in units of the polymer radius of gyration, Rg, which

is the same for both the amphiphiles and for the homopolymer solvent. In (b), tails of some amphiphiles in a

small region have turned over, attempting to form an axially-symmetric ‘‘stalk’’. This panel shows the

transition state to the formation of the stalk, and panel (c) shows the metastable stalk itself. After the stalk

forms, the layers pinch down and expand, pass through a second intermediate, shown in (d), and arrive at a

hemifusion diaphragm, (e). A hole then forms in this diaphragm, which completes formation of the fusion

pore. Note that the conundrum is not addressed explicitly by this scenario. However, one can observe that this

mechanism requires a hole to form only in the one hemifusion diaphragm rather than in the two bilayers

separately.

Sometime ago, Marcus Müller, Kirill Katsov, and I decided to watch, via Monte Carlo simulation, the

fusion process unfold in a system of bilayers formed by block copolymers in homopolymer solvent [30]. Our

choice of this system of non-biological amphiphiles was motivated by the fact that we had experience in

simulating such amphiphilic copolymers, and our belief, as physicists, that the fusion process was probably

universal. The time and energy scales would vary from system to system, but not the pathway of the process

itself. Furthermore vesicles of block copolymer form a novel family which is currently being investigated for

its technological possibilities [31]. Details of the simulation can be found in [30,32], but the results can be

summarized as follows. Upon putting the bilayers under tension and in close apposition, we did see the

formation of an axially symmetric stalk. We expected to see the stalk expand radially, but it did not. Instead, it

expanded asymmetrically, forming a worm-like structure which moved about. We also observed that once the

stalk formed, the rate of hole formation in either bilayer rose dramatically. This is shown in Fig. 9 where, in

the lower panel, the rate of hole formation in each bilayer, one in black, the other in gray, is seen to rise

dramatically after about 200 time steps when we know, independently, that a stalk had formed. The rate of

hole formation in a single bilayer is shown in the upper panel for comparison.

Furthermore, we could determine that the stalk and the newly-created holes were correlated; that is, for the

most part, the holes formed very near to the stalk. Once a hole formed in one bilayer next to the stalk, the

latter, which we had observed to be quite mobile, proceeded to walk around the hole, thereby forming

something like a hemifusion diaphragm. After a second hole pierced this diaphragm, the fusion pore was

complete. In a slightly different scenario, we saw a hole form in one bilayer, and the stalk begin to walk

around it. Before it completely surrounded the first hole, a second one appeared in the other bilayer near the

stalk. The stalk then had to corral the two holes, walking around them both, to complete the fusion pore. The

fusion intermediate in this latter scenario is shown in Fig. 10. One sees in (a) the two aligned holes. To the right

in the figure, one sees that the holes have occurred in the two bilayers separately, while to the left one sees the

stalk moving around the perimeters of the holes and sewing them together to form the fusion pore. The

analogous picture in the former scenario differs in that there is a hole only in one bilayer, while the other is still

intact. The stalk would be seen surrounding the one hole to form the hemifusion diaphragm.

It is clear that in the mechanism we saw, the formation of a fusion pore is closely correlated, in space and

time, with hole creation. This correlation is seen in Fig. 11; the formation of pores closely follows in time the
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onset of hole formation triggered somehow by stalk formation. There is a clear experimental differentiation

between this new mechanism, and the standard hemifusion mechanism discussed earlier. This consequence,

transient leakage, can be understood from Fig. 12 which shows that for a certain period of time, there is a hole
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Fig. 8. Density profiles of structures from bilayers in apposition, (a), passing through a metastable stalk (c), to a hemifusion diaphragm

(e). Figures are shown in the r; z plane of cylindrical coordinates. Figure from Ref. [27].
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from at least one of the vesicles to the outside during the fusion process. How much leakage there is depends

on what molecule one is observing, as each will have its own characteristic time to diffuse through the hole. If

this time is significantly greater than the time for the stalk to surround the hole and seal it up, there will be

little, if any, observable leakage. However if the time to diffuse to the hole is much less than the sealing time,

there will be. Just such leakage, correlated with fusion in the manner of Fig. 11, was recently observed in an

elegant experiment [33].

How do we understand the behavior we have seen in our model, and by others [34] in a more simplified

model? We had an idea as to what was going on, and to verify it, we embarked on a series of self-consistent

field calculations [27,28] on the same system as had been simulated, from which various free energies could be

calculated explicitly.
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Fig. 10. The fusion intermediate in one of the scenarios of the new fusion mechanism. (a) Schematic sketch of the intermediate. Only

hydrophobic portions are shown. (b) Top view of a fusion pore through two membranes. Only hydrophobic portions are shown. (c) Top

view of the layer between the two membranes. Hydrophilic segments are dark gray, hydrophobic segments are light gray. (d) Side view of

the snapshot. Figure from Ref. [30].
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Fig. 9. Area of holes vs. time in the system of two apposed bilayers, bottom, and in an isolated bilayer, top. Figure from Ref. [32].
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We began with the standard pathway to fusion; a stalk which expands radially to form a hemifusion

diaphragm which is then pierced by a hole to form a pore. Our results for the stalk to hemifusion diaphragm

part of this path is shown in Fig. 13. The upper panel shows the results for the free energy, in units of kbT , of

the stalk as it expands into a hemifusion diaphragm, as shown in Fig. 8. The radius of this axial symmetric

object is R, and is measured in units of the radius of gyration, Rg of the polymer. The bilayer is under zero

tension. Curves are shown for bilayers comprised of amphiphiles of different architecture, f, the fraction of

hydrophilic segments in the amphiphile. An f ¼ 0:5 corresponds to an amphiphile with equal volume fraction

of hydrophilic and hydrophobic parts, one which certainly will make lamellae. As f decreases, the amphiphiles,

though still lamellar forming, approach a stability limit at which inverted hexagonal phases are most stable.

The stalk forms at an r=Rg between 1 and 2, as shown in the inset. One sees that its energy of formation is low.

One also sees that there is a local minimum for this stalk if the architecture is near f � 0:35. If the amphiphiles

have too large an f, that is, are too lamellar forming, this local minimum disappears and the stalk would not be

metastable. On the other hand, if the amphiphiles are characterized by too small an f, so that they are too

inverted-hexagonal forming, then the stalk’s free energy is negative, less than that of the unperturbed bilayers,

with the consequence that an inverted hexagonal phase will be stable, and the bilayer unstable. Clearly for

fusion to be initiated by a stalk, the architecture has to be adjusted within a relatively narrow range.
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Fig. 12. A schematic diagram which makes plausible that the line tension of a hole which forms near a stalk, as in path B, is less than if it

forms far from a stalk, as in A.
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As the stalk expands into a hemifusion diaphragm, the free energy increases. If the bilayer is under zero

tension, the fact that the hemifusion diaphragm has eliminated bilayer area does not decrease the free energy

which continues to rise due to the increased circumference of the diaphragm which costs free energy 2pRlhd

due to the line tension, lhd of this circumference. However if the bilayer is placed under tension, g, the free

energy eventually decreases like �gpR2 and the free energy displays a maximum, as seen in the lower panel of

Fig. 13. We found that the hole forms when the diaphragm has expanded beyond this barrier, so that this

barrier to hemifusion expansion is the largest barrier along this path to fusion. One sees from this figure that

the barrier to fusion along this pathway decreases with increasing tension, as one would expect.

The architectures for which successful fusion is possible, as discussed above for membranes under zero

tension, depends somewhat on tension, and is shown in Fig. 14. This architectural constraint on successful
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Fig. 13. (a) The free energy, F, of the stalk-like structure connecting bilayers of fixed tension, zero, is shown for several different values of

the amphiphile’s hydrophilic fraction f. In the inset we identify the metastable stalk, S1, the transition state, S0, between the system with no

stalk at all and with this metastable stalk, and the transition state, S2, between the metastable stalk and a hemifusion diaphragm. The

architectural parameter is f ¼ 0:30 for this inset. No stable stalk solutions were found for f ¼ 0:45 in the region shown with dashed lines.

They were unstable to pore formation. (b) The free energy of the expanding stalk-like structure connecting bilayers of amphiphiles with

fixed architectural parameter f ¼ 0:35 is shown for several different bilayer tensions. These tensions, g=gint, are shown next to each curve.

Figure from Ref. [27].
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fusion applies to any fusion mechanism which begins with a stalk. In particular it applies to the alternate

mechanism proposed above which also begins with a stalk.

To calculate the fusion barriers in the new mechanism is more difficult than to calculate them in the old.

This is because the intermediates in the new mechanism do not possess axial symmetry, a symmetry which can

be exploited to reduce the difficulty of the calculation. Nonetheless Kirill Katsov was able to surmount these

difficulties and did obtain the barriers in the new mechanism. The barriers in the new and old pathways are

shown in Fig. 15(a) and (b), respectively. One notes that the free energy barriers in the new mechanism are

lower than in the old, though not by a large amount. The new mechanism becomes increasingly favorable as

the amphiphiles making up the bilayer become more hexagonal-forming, that is, as f decreases.

Why should the new mechanism be more favorable, free energetically, than the old? We observe that in

order for this new mechanism to be favorable, two conditions must be met. The first is that it must not cost too

much free energy for the stalk to elongate in a worm-like fashion, in the manner that it does before the hole

appears. That this can be the case is clear from the fact that at the transition to an inverted hexagonal phase,

the line tension of linear stalks is small. Thus as the architecture is varied such that the system approaches this

transition, it must be inexpensive for the stalk to elongate and wander. That this is correct can be seen from the

calculated line tension, lES, of the elongated linear stalk shown in Fig. 16. It is essentially independent of

tension, g. We see that this line tension decreases with decreasing f as expected, which decreases the cost of

elongating a stalk. The second condition is that the free energy of the hole which is created must not be too

large. As noted earlier, the high cost of an isolated hole is due to the line tension of its periphery. If this is

reduced by causing the hole to form next to the elongated stalk, as in Fig. 12 , the cost of the hole in the stalk-

hole complex will also be reduced. To determine whether this is so, we have calculated the line tension of an

isolated hole in a bilayer, lH , and also the line tension of a hole created next to an elongated stalk, lSH . These

results, again essentially independent of the membrane tension, are shown in Fig. 16, as a function of

architecture. It is seen that in the region of f in which successful fusion is possible, 0:29ofo0:37, (see Fig. 14),
the line tension of the hole is reduced by about a factor of two. Let us now show that even such a relatively

small change can have a very large effect on the rate of fusion.

Consider the simple estimate of the free energy of a hole,

FH ¼ 2plHR� pgR2. (20)
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Fig. 14. A ‘‘phase diagram’’ of the hemifusion process in the hydrophilic fraction-tension, (f ; g), plane. Circles show points at which

previous, independent, simulations were performed by us. Successful fusion can occur within the unshaded region. As the tension, g,

decreases to zero, the barrier to expansion of the pore increases without limit as does the time for fusion. As the right-hand boundary is

approached, the stalk loses its metastability causing fusion to be extremely slow. As the left-hand boundary is approached, the boundaries

to fusion are reduced, as is the time for fusion, but the process is eventually pre-empted due to the stability either of radial stalks, forming

the stalk phase, or linear stalks, forming the inverted hexagonal phase. Figure from Ref. [27].
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The height of the barrier to stable hole formation corresponds to the maximum of this function. We ignore

any R-dependence of lH and g and immediately obtain the radius of the hole corresponding to the barrier to

be R� ¼ lH=g, and the height of the barrier to be F� ¼ pl2H=g. The rate of formation of an isolated hole in a

bilayer is proportional to the Boltzmann factor

PH ¼ expf�½F� � kBT lnðAH=‘
2Þ�=kBTg ð21Þ

¼
AH

‘2
expð�pl2H=gkBTÞ, ð22Þ

ARTICLE IN PRESS

0.29 0.31 0.33 0.35
0

0.1

0.2

0.3

0.4

0.5

f

γ/
γ 0

6

4

2

2

0

0

0

2

2

2

2

4

4

4

4

6

6

6

6

8

8

8

1
0

10
10

12

12

14

0.29 0.31 0.33 0.35
0

0.1

0.2

0.3

0.4

0.5

f

γ/
γ 0

2

2

4

4

4

6

6

6

6

8

8

8

8

10

10

10

10

12

12

12

14

14

16

18

(a)

(b)

Fig. 15. Free energy barriers measured relative to the initial metastable stalk, in units of kBT , in (a) the new stalk-hole complex

mechanism, and (b) the standard hemifusion mechanism. Figure from Ref. [28].
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where the entropy associated with the formation of a hole in an available area AH is �kB lnðAH=‘
2Þ with ‘ a

characteristic length on the order of the bilayer width. If PH51, then the bilayer is stable to hole formation by

thermal excitation.

The formation of the stalk-hole complex reduces the line tension of that part of the hole near the stalk from

lH to lSH . This can be described by introducing the effective average line tension

lH ! l̄a � alSH þ ð1� aÞlH . (23)

Then the corresponding rate of stalk-hole complex formation becomes

PSH ¼
NSaS

‘2
expð�pl̄

2

a=gkBTÞ, (24)

where NS is the number of stalks formed in the system and aS is the area around each stalk in which hole

nucleation can take place. For the small reduction lSH=lH ¼
1
2
, the above becomes

PSH

PH

¼
NSaS

AH

exp
pl2H
gkBT

a 1�
a

4

� �h i

� �

ð25Þ

¼
NSaS

AH

AH

‘2PH

� �að1�a=4Þ

. ð26Þ

This shows explicitly that if the isolated membrane is stable to hole formation, (i.e., PH51), then even a small

reduction in the line tension ensures that formation of the stalk/hole complex causes the rate of hole formation

in the apposed bilayers, and therefore fusion, to increase greatly.

We illustrate this with two examples. We first consider the copolymer membranes which we simulated

previously [30,32]. In that case the exponent in the Boltzmann factor

�
pl2H
gkBT

¼ �p
lHRg

kBT

� �2
g0
g

� �

kBT

g0R
2
g

 !

, (27)

where g0 is the tension of an interface between bulk hydrophilic and hydrophobic homopolymer phases. The

various factors in the simulated system are lHRg=kBT ¼ 2:6 at f ¼ 0:35, and g0=g ¼
4
3
, kBT=g0R

2
g ¼ 0:31,

AH=‘
2 ¼ 39 [30,32]. Note that in the simulations multiple stalks have occasionally been observed. From this

we obtain PH � 6� 10�3, so that isolated bilayers should have been stable to hole formation, as was indeed

the case. However in the presence of a stalk, the Boltzmann factor will be increased according to Eq. (26). If

we assume that the elongated stalk enclosed one half of the perimeter of the hole when it appeared, (i.e., a ¼ 1
2
),

and that NSaS=AH	0:3 (consistent with the simultaneous observation of multiple stalks in a small simulation
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Fig. 16. Line tensions of a linear, extended, stalk, lES, of a bare hole in a membrane, lH , and of a hole which forms next to a stalk, lSH .

All line tensions are in units of kBT=Rg. Figure from Ref. [28].
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cell [30]), we find that PSH=PH	14 so that the rate of hole formation should have increased appreciably as

observed in the simulations. This increase is expected to be more dramatic in biological membranes. In that

case we estimate the exponent of the Boltzmann factor, �pl2H=gkBT , as follows. We take the line tension to be

that measured in a stearoyloleoylphosphatidylcholine and cholesterol bilayer, lH � 2:6� 10�6 erg=cm [35,36].

For the surface tension, we take an estimate of the energy released by the conformational change of four of

perhaps six hemagglutinin trimers arranged around an area of radius 4 nm, each trimer giving out about

60kBT [37]. This yields an energy per unit area g � 20 erg=cm2. Thus PH ¼ 1:7� 10�11ðAH=‘
2Þ, which

indicates that even subject to this large, local, energy per unit area, the membrane is quite stable to hole

formation for vesicles of any reasonable size. However if we assume again that the line tension of the hole is

reduced by a factor of two by being nucleated next to the elongated stalk, that the stalk extends halfway

around the circumference of the hole, and the density of stalks is such that NSaS=AH ¼ 0:3, then the rate of

hole formation is increased by

PSH

PH

¼ 0:3
1

1:7� 10�11

� �7=16

	1� 104, ð28Þ

i.e., an increase of more than four orders of magnitude.

One should note the implications of this simple argument. Because the probability to form a stable hole

depends exponentially on the square of the line tension, an isolated bilayer is guaranteed to be stable against

hole formation for normal line tensions. However, it is precisely this same dependence which also ensures that

the bilayer will be destabilized by hole formation due to any mechanism which even modestly reduces that line

tension. From here it is only a short step to successful fusion.
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