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ABSTRACT We address questions posed by experiments that show small-chain alcohols reduce the miscibility transition tem-
perature when added to giant plasma membrane vesicles (GPMVs), but increase that temperature when added to giant unila-
mellar vesicles. In giant unilamellar vesicles the change in temperature displays a definite minimum, between decanol and
tetradecanol, as a function of alcohol chain length; in GPMVs there is no such minimum. To emphasize the competition between
internal entropies of the components and the interactions between them, we model the system as consisting of three different
linear polymers. Two of them are the constituents of a liquid, one that can undergo a miscibility transition. To this liquid is added
the third polymer component, which represents the short-chain alcohol. We show that, within Flory-Huggins theory, the addition
of alcohol causes an increase or decrease of the miscibility transition temperature depending upon the competition of two ef-
fects. The first is the dilution of the interactions between the two components of the liquid caused by the introduction of the
alcohol. This tends to lower the transition temperature. The second effect is the preferential partitioning of the alcohol into
one phase of the liquid or the other. This tends to raise the transition temperature irrespective of which phase the alcohol prefers.
This second effect is the smallest, and the decrease in transition temperature the largest, when the alcohol partitions equally
between the two phases. Such equal partitioning occurs when the effect of the entropic excluded volume interactions (which
cause the alcohol to prefer one phase) just balances the effect of the direct interactions, which cause it to prefer the other. These
results allow us to make several predictions, and to propose an explanation for the different behavior of the transition temper-
ature in GPMVs and giant unilamellar vesicles that results from the addition of alcohols.
INTRODUCTION
A long-accepted means of interrogating the properties of a
bilayer membrane is to add to it a molecule whose properties
are well understood. In this spirit, a series of experiments
were carried out in which n-alcohols, with chain length
2 % n % 16, were introduced into giant plasma membrane
vesicles (GPMVs) (1,2). These cell-derived vesicles consist
of a large number of different lipid components as well as
proteins. They undergo a miscibility transition (3) into
two distinct liquid phases: one phase of larger areal density
and rich in well-ordered, saturated lipids, the liquid-ordered
(lo) phase; and the other of smaller areal density and rich in
less-ordered, unsaturated lipids, the liquid-disordered (ld)
phase. The addition of alcohols with n%10 caused a
decrease in the miscibility transition temperature, as shown
in Fig. 1.
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However, when these same alcohols were introduced into
giant unilamellar vesicles (GUVs) composed of only three
components, the unsaturated lipid dioleoylphosphatidylcho-
line (DOPC), the saturated lipid dipalmitoylphosphatidyl-
choline (DPPC), and cholesterol, the transition
temperature increased (4,5) for all of them except n ¼ 10
and 14, as shown in Fig. 2. Furthermore, in the GUVs, the
dependence of the transition temperature on alcohol chain
length showed a definite minimum between decanol, n ¼
10, and tetradecanol, n ¼ 14. In the GPMVs no such mini-
mum occurs on increasing the alcohol chain length. In both
systems, the longest chain alcohol, hexadecanol n ¼ 16,
caused the transition temperature to increase. We would
like to understand the difference in behavior between the
two systems. Following the nomenclature of Landau and
Lifshitz (6), we shall refer to the alcohol as a ‘‘solute,’’
and the multicomponent fluid membrane to which it is
added as the ‘‘solvent.’’

It is a rather old problem to predict the effects of an addi-
tional component on a system that can, by itself, undergo a
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FIGURE 1 Change in transition temperature upon the addition of n-

alcohol to GPMVs. Concentrations of solute are all equal to a fiducial given

in Pringle et al. (23). Figure is from Cornell et al. (4).
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miscibility transition. Over 50 years ago, Prigogine and De-
fay devoted a chapter to it in their volume ‘‘Chemical Ther-
modynamics’’ (7). By examining a regular solution of two
components without any internal structure to which a third
structureless component was added, they concluded the
following: 1) ‘‘Hence the introduction of a third component
which is equally soluble in the first two components will
lower the critical solution temperature.’’ and 2) ‘‘Hence
the addition of a third component which is much less soluble
in one of the first two components than in the other, will al-
ways raise the critical solution temperature..’’

Two schematic phase diagrams illustrating the two
possible behaviors of the transition temperature upon the
addition of a solute, its increase or decrease, are shown in
Fig. 3, a and b. Here the solvent consists of two components,
A and B, and a solute S is added to it. In the absence of the
solute, the solvent undergoes a miscibility transition which
is everywhere of first order except at the critical point at
temperature Tc. The addition of solute causes the critical
point to be drawn out into a line of critical transitions in
which the critical temperature depends upon the amount
FIGURE 2 Change in transition temperature upon the addition of n-

alcohol to a GUV composed of mol fractions 35:35:30 DOPC/DPPC/

cholesterol. Concentrations of solute are all three times a fiducial given

in Pringle et al. (23). Figure is from Cornell et al. (4).
of solute. Fig. 3 a depicts the case in which the initial addi-
tion of solute causes the transition temperatures to increase,
and Fig. 3 b the case in which the transition temperature
decreases.

The statements of Prigogine and Defay (7) were recently
made more quantitative by the simulation of a simple Ising,
or lattice-fluid, model of a liquid (8). It was composed of
two components without internal structure, a liquid display-
ing a miscibility transition. To this two-component solvent
was added a solute, a third structureless component.
Because of the simplicity of the Ising lattice-fluid model,
the behavior of the transition temperature depended upon
a single parameter, the relative strength of the difference
of the interactions between solute and solvent components
compared to the interaction between solvent components
themselves. Because of the symmetry of the lattice-fluid
model, the entropies of the two coexisting phases are equal.
The lack of internal entropy of the components, and the
equality of the entropies of the coexisting phases, are not
characteristic of biological lipid components nor of their
phases (9,10). In particular, the ld phase, rich in unsaturated
lipids, is more disordered than the lo phase, and therefore
has a larger entropy per particle (10) That the difference
in entropy of the coexisting phases is of importance was
noted by one of us (11). It was observed that in a one-
component system, it is well known (6) that the temperature
of a transition, such as between gel and fluid, is decreased if
a solute partitions preferentially into the phase with greater
entropy. The behavior of this transition temperature upon
the entropy difference of the two phases is in marked
contrast to that of the miscibility transition temperature of
the lattice fluid. The behavior of that transition temperature
depends only on whether the solute interactions prefer one
phase or the other, but not on which phase it prefers.

Note that the simplicity of a lattice-fluid model does not
permit it to address the effects of the internal entropy of
components of the system. Likewise, the simplicity of a
transition in a model system of a one-component solvent
does not permit it to address the effects of the difference
of interactions between solute and different components of
a solvent.

It is the purpose of this article to illuminate the combined
effects of the internal entropies of all components, mem-
brane and solute, and of their mutual interactions on the
behavior of a miscibility transition temperature of a multi-
component solvent as solute is added. We do this by consid-
ering the undiluted membrane as composed of two
components. Component A represents the unsaturated lipids
and those constituents of the experimental systems that pre-
fer the ld phase, whereas component B represents the satu-
rated lipids and constituents that prefer the lo phase. We
treat components A and B as linear polymer chains with
polymerization indices NA and NB. The solute is considered
as a third component of the diluted membrane and is treated
as a polymer chain of index NS. The physical interpretation
Biophysical Journal 113, 1814–1821, October 17, 2017 1815



FIGURE 3 Schematic phase diagram in the

space of temperature, T, and compositions of the

solvent component A and solute S. (a) Given here

is an illustration of the case in which addition of so-

lute raises the miscibility transition temperature.

One is looking in the direction of increasing solute

concentration. The line of critical points is shown

with short dashes. The nearest plane to the viewer

is the plane of zero solute fraction. The longer

dashed lines indicate a plane at some nonzero so-

lute concentration. (b) The case in which addition

of solute lowers the transition temperature is

shown. One is looking in the direction of

decreasing solute concentration. The vertical plane

is that of zero solute concentration.
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of the parameters NA, NB, and NS is that they each represent
the hydrophobic volume of an average molecule of the
respective component. Note that these parameters involve
a variety of factors including the lengths of the chains of
the lipids, the degree of order of the acyl chains of the lipids,
and an average over all the molecular species that the
component represents. We do not attempt to refine the
model by developing formulae relating these factors to
the polymerization indices, but rather treat them as empir-
ical parameters. To be definite, we shall take NA > NB.
We show in Appendix I: Relative Entropies of the Coexist-
ing Phases that, as a consequence, near the critical transition
temperature, the A-rich phase II has a greater entropy per
volume than the B-rich phase I. Therefore, the A-rich phase
can be thought of as representing the experimental ld phase,
and the B-rich as the lo phase.

To illuminate the behavior of the temperature of the gen-
eral miscibility transition, we consider the behavior of the
critical temperature, which is calculated within mean-field
theory as a function of the solute volume fraction. For small
volume fractions, comparable to those in the experiments
noted above, we find that the behavior of the miscibility
transition temperature as a function of solute volume frac-
tion results from a competition between two tendencies.
The first is simply that the introduction of any solute reduces
the number of solvent-solvent interactions, and therefore
lowers the transition temperature. The second tendency is
essentially that noted by Prigogine and Defay (7): if the so-
lute prefers one phase to the other, that preference will tend
to increase the transition temperature. However, the magni-
tude of this increase depends not only upon the difference in
the direct interactions between the solute and the solvent
components, but also upon the intrinsic entropies of the
membrane components and of the solute—that is, on
excluded volume interactions. This tendency to increase
the transition temperature is minimal, in general, when the
solute partitions equally between the two coexisting phases.
This occurs when the solute interactions favoring one phase
just balance the entropic, or the excluded volume interac-
tions, which favor the other. With the aid of our results,
1816 Biophysical Journal 113, 1814–1821, October 17, 2017
we are able to propose an explanation for the difference in
the behavior of the transition temperature in GPMVs and
GUVs. Further, by combining them with previous results
for the partitioning of single, saturated, chains in lo and ld
phases (12), we are able to provide an explanation for the
pronounced minimum in the miscibility transition tempera-
ture of the GUVs as a function of alcohol chain length.
METHODS

The model

We consider an incompressible membrane at temperature T composed of nA
molecules of component A and nB molecules of component B. We treat the

components as linear polymers with polymerization indices NA and NB. To

this membrane, we add nS molecules of a solute, also treated as a linear

polymer with polymerization index NS. Because the system is incompress-

ible, its volume, U, is not a thermodynamically independent variable, but is

related to the number of molecules of the components according to

UðnA; nB; nSÞ ¼ v0ðnANA þ nBNB þ nSNSÞ; (1)

where v0 is the monomer volume of A, B, or S chains, volumes that are

assumed to be equal.

In mean-field, or Flory-Huggins, approximation (13), the Helmholtz free

energy of the system, F, can be written

FðT; nA; nB; nSÞ ¼ VAB nANA

nBNBv0
U

þ VAS nANA

nSNSv0
U

þ VBS nBNB

nSNSv0
U

þ kBT

�
nAln

�
nANAv0

U

�

þ nBln

�
nBNBv0

U

�
þ nSln

�
nSNSv0
U

��
;

(2)

where kB is Boltzmann’s constant. The energy VAB is related to the interac-

tion energy between pairs of A monomers, ~VAA, pairs of B monomers, ~VBB,

and AB pairs, ~VAB, according to

VAB ¼ ~VAB � 1

2

�
~VAA þ ~VBB

�
; (3)
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and similarly for VAS and VBS. From the free energy, the chemical potentials

of the three components are obtained:

ma ¼ vFðT; nA; nB; nSÞ
vna

; a ¼ A;B; S: (4)

The chemical potentials are functions of temperature and two other inten-

sive quantities. It is convenient to take them to be the volume fractions of

the A and S components

FAh
nANA

nANA þ nBNN þ nSNS

;

FSh
nSNS

nANA þ nBNN þ nSNS

: (5)

The volume fraction of the B component is then FB ¼ 1 � FA � FS.
Solution of the model

Given a net repulsive interaction, VAB> 0, between the solvent components,

there will be a transition from one uniform phase to two coexisting phases, I

and II, below some critical temperature. The equations that determine the

volume fractions of the components in the coexisting phases are

mA

�
T;FI

A;F
I
S

� ¼ mA

�
T;FII

A ;F
II
S

�
;

mB

�
T;FI

A;F
I
S

� ¼ mB

�
T;FII

A ;F
II
S

�
;

mS

�
T;FI

A;F
I
S

� ¼ mS

�
T;FII

A ;F
II
S

�
:

(6)

These three equations in five unknowns determine the surface of coexis-

tence T(FA,
I FS), FA

II(FA,
I FS

I), and FS
II(FA,

I FS
I). From this surface,

we obtain the slope of the tie lines

Mh
FII

S � FI
S

FII
A � FI

A

; (7)

which gives the partitioning of the solute into the coexisting phases normal-

ized by the difference in volume fraction of component A in the two phases.

As a purely notational choice, we arbitrarily let phase II be such thatFA
IIR

FA
I, i.e., phase II is the A-rich phase.

Having obtained the surface of coexistence, we have arrived, in principle,

at the answer to our question of how the addition of a solute affects the

miscibility transition of a multicomponent membrane. But it is certainly

clearer, and more informative, to consider not the entire surface of coexis-

tence, at which the transitions are generally of first order, but rather to focus

on the critical line in this surface at which the transitions become contin-

uous (see Fig. 3, a and b). The locus of the critical line is a function of

the temperature and solute volume fraction: Tc(FS) and FA,c(FS). Although

experimental paths do not, in general, pass through the critical line, and do

so only if great care is taken to that end (14), nevertheless the behavior of

the critical line with solute fraction illustrates the general behavior of the

coexistence surface on the addition of solute. Furthermore, the causes of

its behavior are far more transparent.

The critical volume fractions,FA,c(FS), the values at which the difference

in the properties of the two coexisting phases just vanish, are obtained from

the nontrivial solution of the two homogeneous equations in two unknowns:

lim
FI
A
/FA;c ;F

I
S
/FS

FII
A

�
FI

A;F
I
S

�� FI
A ¼ 0; (8)

lim FII
�
FI ;FI

�� FI ¼ 0: (9)

FI
A
/FA;c ;F

I
S
/FS

S A S S
From this line of critical volume fractions, the critical temperature is ob-

tained as a function of solute volume fraction, Tc(FS) ¼ T(FA,c(FS) FS).

To obtain the properties of the critical line, we expand Eq. 6 in the small

parametersFA
II� FA

I and FS
II �FS

I. If we keep only terms in linear order,

the resulting equations are not independent, but yield the two linear homo-

geneous equations, Eqs. 8 and 9, noted above. Setting the determinant of

these equations to zero, we obtain the following expression for the critical

temperature in terms of the unknown critical volume fraction, FA,c, and the

given solute volume fraction FS,

kBTc ¼ VAB

bþ �
b2 þ 4ag

�1=2
2a

; where

ah
1

NAFA;c

�
1þ NSFS

NBð1� FSÞ
�
þ 1

NBð1� FA;c � FSÞ

�
�
1þ NSFS

NAð1� FSÞ
�
;

bh2

�
1þ NSFSVBS

NAFA;cVAB

þ NSFSVAS

NBð1� FA;c � FSÞVAB

�
;

ghNSFS

"
1� 2

ðVAS þ VBSÞ
VAB

þ
�
VAS � VBS

VAB

�2
#
:

(10)

We also obtain from the nontrivial solution of the homogeneous equations

the limiting slope,Mc, of the tie line at the critical point. It, too, is expressed

in terms of the unknown critical volume fraction, FA,c and the given solute

volume fraction FS:

Mc ¼� NSFS

� kBTc � NBð1� FA;c � FSÞðVAB þ VBS � VASÞ
½kBTc � 2NSFSVBS�NBð1� FA;c � FSÞ þ kBTcNSFS

:

(11)

Finally, if we include in our expansion of Eq. 6 the terms of third order in

the small expansion parameters, we recover a third independent equation,

0 ¼ 1

NAF
2
A;c

� ð1þMcÞ3
NBð1� FA;c � FSÞ2

þ M3
c

NSF
2
S

: (12)

Equations 10–12 determine FA,c(FS) and Mc(FS), and Tc(FS).
RESULTS

We first consider the critical concentration, FA,c(0) and crit-
ical temperature, Tc(0), in the limit of no solute, FS / 0.
Clearly, Mc(0) ¼ 0. Following the above procedure, we
obtain for the critical concentration of the A component,
the result (13)

FA;cð0Þ ¼
ffiffiffiffiffiffi
NB

pffiffiffiffiffiffi
NA

p þ ffiffiffiffiffiffi
NB

p ; (13)

and find the critical temperature to be given by

2
VAB

kBTcð0Þ ¼
�

1ffiffiffiffiffiffi
NA

p þ 1ffiffiffiffiffiffi
NB

p
�2

: (14)
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In the symmetric case for which NA ¼ NB h N, these results
reduce to FA ¼ FB ¼ 1/2 and NVAB/kBTc(0) ¼ 2. (In the
polymer literature, VAB/kBT is denoted c so that this relation
is written ccN ¼ 2, a well-known result (13).)

Now let the solute be introduced. With the interactions
between solute and the solvent components being nonzero,
we find it convenient to characterize them by the average
interaction, normalized by VAB and the difference in the in-
teractions, again normalized:

rh
VAS þ VBS

2VAB

;

drh
VAS � VBS

VAB

:

(15)

We also introduce

dnh

ffiffiffiffiffiffi
NA

p � ffiffiffiffiffiffi
NB

pffiffiffiffiffiffi
NA

p þ ffiffiffiffiffiffi
NB

p : (16)

We now solve the equations for the critical temperature in a
power series in the solute volume fraction and obtain

Mc ¼ � NSVAB

kBTcð0Þ ðdnþ drÞFS þ O
�
F2

S

�
; (17)

FA;cðFSÞ � FA;cð0Þ
	

NS

�
1 1

�

FA;cð0Þ ¼ � 1�

4 NB

þ ffiffiffiffiffiffiffiffiffiffiffi
NANB

p

� ðdnþ drÞ
�
3� NSVAB

2kBTcð0Þ
� ðdnþ drÞ2

�

Fs þ O

�
F2

S

�
;

(18)

TcðFSÞ � Tcð0Þ � �

Tcð0Þ ¼ c1FS þ c2F

2
S þ O F3

S ;

c1 ¼ �1þ NSVAB

2kBTcð0Þðdnþ drÞ2;

c2 ¼ �N2
s

4

�
VAB

kBTcð0Þ
�2

ðdnþ drÞ2
(�

1� 4r þ ðdrÞ2�

þ1� ðdnÞ2
4

c21

)
:

(19)

These three equations present the shift, on the addition of
solute, of three observable quantities at criticality: the slope
of the tie line, the volume fraction of the A component, and
the transition temperature. From the result of Eq. 17 for the
first of these quantities, we see that if dn þ dr is positive,
then Mc will be negative. But M, from its definition in
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Eq. 7, gives the partitioning of the solute. In particular, we
see that if M is negative, the solute partitions preferentially
into phase I, the B-rich phase. It is clear that if dn is positive,
as we have taken it to be, then the excluded volume interac-
tions favor the solute to leave the A-rich phase of greater en-
tropy and favor the B-rich phase where there are fewer
excluded volume interactions. The combination dn þ dr ap-
pears in our calculation as a natural extension of the differ-
ence in direct interactions to a difference in direct and
excluded volume interactions:

dnþ dr ¼
ffiffiffiffiffiffi
NA

p � ffiffiffiffiffiffi
NB

pffiffiffiffiffiffi
NA

p þ ffiffiffiffiffiffi
NB

p þ dr

¼
� ffiffiffiffiffiffi

NA

p � ffiffiffiffiffi
NS

p �� � ffiffiffiffiffiffi
NB

p � ffiffiffiffiffi
NS

p �
ffiffiffiffiffiffi
NA

p þ ffiffiffiffiffiffi
NB

p þ VAS � VBS

VAB

:

(20)

The change in FA,c, the volume fraction of component A at

criticality, is a result of two effects. The first term in Eq. 3 is
simply the effect of dilution; that is, as a volume fraction of
solute is introduced, the volume fraction of the other compo-
nents must decrease. The second term shows that if the so-
lute prefers the B-rich phase, this will tend to increase the
volume fraction of the A component at the critical point.

For the shift in the critical temperature due to the addition
of solute, which is the principal result of this article, we note
that for the concentrations employed in the experiments of
interest, estimated on the order of 0.06 mol fraction (4), it
is sufficient to keep in Eq. 3 only the term linear in FS,

TcðFSÞ � Tcð0Þ
Tcð0Þ ¼

�
� 1þ NSVAB

2kBTcð0Þðdnþ drÞ2
�
FS: (21)

From this expression, one sees that the effect of the solute on

the temperature at criticality, just as on the concentration of
component A at criticality, results from a competition be-
tween two terms. The first, �FS, is simply the reduction
in the transition temperature due to the dilution of the num-
ber of AB interactions resulting from the introduction of the
solute. This effect would be present no matter the nature of
the solute. The second term, being positive, always tends to
increase the transition temperature. It reflects, but modifies,
the dictum of Prigogine and Defay (7) that ‘‘.the addition
of a third component which is much less soluble in one of
the first two components than in the other, will always raise
the critical solution temperature..’’ Indeed if dnþ dr is suf-
ficiently large in magnitude, and of either sign, then this
term will cause an increase of the transition temperature.
It is interesting that this effect depends on the magnitude
of the difference, dr, between the solute interactions, but
is independent of the strength of these interactions, encapsu-
lated in the parameter r.

We note that the largest reduction of the critical transition
temperature occurs when

dr þ dn ¼ 0; (22)



Solutes and Transition Temperatures
that is, when the total interactions, direct and excluded vol-
ume, between solute and solvent components are equal in
magnitude but opposite in sign. In other words, the entropic,
excluded-volume, preference of the solute for one phase is
just balanced by an energetic preference of the solute for
the other. Furthermore, a comparison of this equation with
Eq. 17 shows, as one expects, that when the total interac-
tions of the solute, direct and excluded volume, is the
samewith the two components of the solvent, then the solute
partitions equally between the coexisting phases. As a
consequence, we conclude that the largest reduction in tran-
sition temperature occurs when the solute partitions equally
between the coexisting phases. This is an extension of the
result of Prigogine and Defay (7) obtained for structureless
components.

In sum, we have shown that as a result of the addition of a
small amount of solute into a two-component solvent, one
which undergoes a miscibility transition, the effect of the so-
lute on the critical transition temperature is the result of a
competition between two tendencies. The first is that the
addition of the solute simply dilutes the number of sol-
vent-solvent interactions, and this tends to lower the transi-
tion temperature. The second arises from an unequal
partitioning of the solute between the coexisting phases.
Any such preference of the solute for one phase or the other
tends to increase the transition temperature. Irrespective of
whether the net result of the two effects is to increase or
decrease the transition temperature, we have shown that
the critical transition temperature depends quadratically
upon the partitioning of the solute, attaining its minimum
value when the solute partitions equally between the two
phases. This equal partitioning occurs when the effect of
the excluded volume interactions that favor the phase of
lesser entropy is just balanced by the direct interactions fa-
voring the other phase. Although our results have been
directed to the critical transition temperature for clarity,
we expect its behavior to also be exhibited by the tempera-
ture of the more commonly encountered first-order
transitions.
DISCUSSION

Utilizing our results, we address the two questions raised by
the experiments discussed earlier. 1) Why is the shift in tem-
perature more often negative in the GPMVs and more often
positive in the GUVs? 2) What is the reason for the pro-
nounced minimum in the shift of transition temperature
with alcohol chain length in the model-membrane GUVs
of three components (Fig. 2), and why is there no such min-
imum in the cell-derived GPMVs of many lipid components
(Fig. 1)?

Consider the first question. Our theory states that the ten-
dency of the transition temperature to increase clearly de-
pends upon the degree of preferential partitioning of the
alcohol into one of the coexisting phases. Thus we interpret
the experimental data as indicating that the difference in the
partitioning of the alcohol between phases is small in the
cell-derived GPMVs. This in turn indicates that the differ-
ence between the coexisting phases in GPMVs is smaller
than in GUVs. This agrees with what we know about the
composition of the plasma membrane as compared to that
of the model membranes. The inner leaf of the plasma mem-
brane differs significantly in composition from the outer
leaf, having only a small fraction of saturated sphingomye-
lin (15,16). Bilayers whose two leaves mimic those of the
inner leaf of the plasma membrane do not undergo phase
separation (17). Hence the compositions of the inner leaves
of the coexisting phases in GPMVs are expected to differ
only slightly. As the alcohol, with its small headgroup is ex-
pected to undergo rapid flip-flop between leaves just as
cholesterol does (18), this lack of differentiation between
the composition of the inner leaves will affect the preferen-
tial partitioning of alcohol between phases, reducing it from
the value observed in model membranes with identical inner
and outer leaves.

We now consider the second question, concerning the
dependence of the transition temperature shift on alcohol
chain length. There is a clear prediction from the theory
that follows from Eqs. 17 and 21. If the shift in transition
temperature were measured at the same solute concentration
for a series of n-alcohols, then that shift would depend
quadratically on the partitioning of the solute into the coex-
isting phases. Specifically, denoting the relative shift in tran-
sition temperature by DT h [Tc(Fs) – Tc(0)]/Tc(0), then a
plot of [1 þ (DT/Fs)]

1/2 versus the partitioning, M, would
be linear. As DT, FS, and the relative partitioning, M, are
all measurable quantities, this prediction can be verified or
falsified. In the cited experiments, however, the partitioning
of the different alcohols was not measured. Nevertheless,
the partitioning has been calculated for a closely related sys-
tem, a series of acyl chains in a membrane composed of
DPPC, DOPC, and cholesterol (10). The chains were
described in detail by the rotational isomeric states model
(19), but the headgroups were generic, not detailed. Thus
the calculation does not describe n-alcohols specifically,
but the results should indicate the effect on the partitioning
of the differing chain lengths. The results for saturated
chains, as well as for various unsaturated chains, are shown
in Fig. 4. Here, if we neglect the difference between mol
fractions and volume fractions, M must be proportional to
1 – Xlo/Xld.

From Fig. 4, we see that short, saturated, acyl chains with
n < 14, partition preferentially into the ld phase. The parti-
tioning,M, from its definition, Eq. 7, is positive when the so-
lute partitions preferentially into the A-rich phase II,
identified with the ld phase. As M is positive, we infer
from Eq. 17 that dn þ dr must be negative. Because dn is
positive, dr must be negative and of a sufficient magnitude,
i.e., �dr > dn. That dr is negative means direct solute-sol-
vent interactions cause the solute to prefer the phase with
Biophysical Journal 113, 1814–1821, October 17, 2017 1819
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greater entropy, i.e., the A-rich phase II. Presumably this
preference for the ld phase is due to the larger area per lipid
headgroup in that phase providing more room for the added
acyl chain.

As the length of the chain increases from 8 to 12, the
partitioning into the lo phase decreases slightly, and in-
creases slightly into the ld phase. It is plausible that this
is due to the increasing disorder down the chains of the
ld phase allowing additional room for the added acyl chain.
For these values of n for which there is a definite prefer-
ence of the acyl chain for the ld phase, we expect dn þ
dr to be large and negative, i.e., �dr >> dn. With
increasing n, the excluded volume interactions between
the added acyl chain and the DOPC chain increases due
to the double bond of the latter. The favorable energy of
interaction with the ordered chains of the DPPC also in-
creases, so dr increases, i.e., becomes less negative. Inser-
tion of the additional acyl chain into the lo phase is
opposed, however, by the cholesterol, as some of the
cholesterol would be displaced by the alcohol acyl chain
(20,21). As a consequence of these various factors, there
will be a range of n for which the alcohol partitions
roughly equally into the two phases. In this range, dn þ
dr is small. Eventually for sufficiently large n, on the order
of 18, the added acyl chain partitions predominantly into
the lo phase. For such values of n, dn þ dr is once again
large, but now is positive.

Combining the results shown in Fig. 4 with those of our
theory, we would expect that, for a given small amount of
n-alcohol, the miscibility transition temperature would
attain its minimum value as a function of n near 16. At
the minimum value, we would predict that the alcohol de-
creases the transition temperature. The temperature will in-
crease from that minimum for n either larger or smaller than
16. This behavior is qualitatively correct for GUVs as shown
in Fig. 2. At the minimum, the shift in transition temperature
1820 Biophysical Journal 113, 1814–1821, October 17, 2017
is indeed negative. The minimum occurs near n ¼ 16. Even
the small maximum in the GUV transition temperatures for
values of n between 2 and 8 is reflected in the small mini-
mum of the partitioning of acyl chains at n of 11 in Fig. 4.
(Recall that the change in transition temperature is propor-
tional to the square of the relative partitioning, so that the
minimum in partitioning leads to a maximum in temperature
shift.) Again, the reason for the shift in partitioning of the
alcohol from ld to lo phase with increasing alcohol chain
length is the increasing repulsive interaction between the
alcohol and unsaturated chains. This is the reasonable expla-
nation proposed by Cornell and colleagues (4). Our results
support it.

Why is this minimum in temperature shift with chain
length not observed in GPMVs? As just noted, the largest
decrease in transition temperature for a given solute concen-
tration occurs when the solute partitions equally into the co-
existing phases. This occurs in our theory when �dr ¼ dn.
For there to be a minimum in the temperature shift as a func-
tion of chain length, there must be short chains for which the
solute partitions preferentially into the ld phase, i.e., dr þ
dn < 0, or �dr > dn. But dr is a measure of the difference
between the interactions of solute with the constituents of
the lo phase and those of the ld phase. As we observed
above, the composition of the inner leaves in the lo and ld
phases must be very similar in the GPMVs. The magnitude
of dr is therefore expected to be much smaller in GMVs than
in GUVs. Hence, it is plausible that the condition �dr > dn

is not satisfied for any chain length, and the shift in transi-
tion temperature simply varies monotonically with chain
length.

We note again that our proposed explanations for the
experimental results could be confirmed, or not, if the parti-
tioning of the alcohols into the coexisting phases exhibited
by the GPMVs and GUVs were to be measured.
CONCLUSIONS

Based on our analysis encapsulated in Eq. 21, we can make
several predictions concerning the effect of an additional
component on the miscibility transition temperature of a
multicomponent membrane. For example, we would predict
that the addition of a given amount of any solute at all, in-
dependent of its nature, that partitions equally into the coex-
isting phases will reduce the miscibility transition
temperature by the same fraction. We would predict, from
Fig. 4, that acyl chains with double bonds would be much
less effective in reducing the transition temperature than
are n-alcohols as their preference for the ld phase is so
much greater. Of course, any molecule that strongly prefers
one phase to the other will tend to increase the transition
temperature. There are many peptides that do this (22). If
their partitioning were known, the same quadratic depen-
dence of the transition temperature on that partitioning
should be observed.
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APPENDIX I: RELATIVE ENTROPIES OF THE
COEXISTING PHASES

Let NA > NB. We note that, from Eqs. 1 and 2, in the absence of solute, the

entropy per unit volume, S/U, is given by

Sv0
UkB

¼ �
�
FA

NA

lnðFAÞ þ ð1� FAÞ
NB

lnð1� FAÞ
�
: (23)

The volume fraction FA in the A-rich phase, phase II, can be written FA ¼
FA,c þ dFAwith dFA > 0 and FA,c given by Eq. 13. Near the critical point,

dFA/FA,c is small, so the above can be expanded in this parameter. We

obtain

ðSII � SIÞv0
UkB

z� 2

�
lnðFA;cÞ þ 1

NA

� lnð1� FA;cÞ þ 1

NB

�
dFA:

(24)

Finally setting NA ¼ Nþ d N, NB ¼ N� d N with dN> 0, and expanding in

dN/N, we obtain

ðSII � SIÞv0
UkB

z2ð3� 2ln2Þ dN
N2

dFAz3
dN

N2
dFA; (25)

which is positive.
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