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ABSTRACT: We compare two theoretical approaches to diblock copolymer melts in an external electric field.
The first is a relatively simple analytic expansion in the copolymer composition and includes the full electrostatic
contribution consistent with that expansion. It is valid close to the order-disorder transition point, the weak
segregation limit. The second employs self-consistent-field (SCF) theory and includes the full electrostatic
contribution to the free energy at any copolymer segregation. It is more accurate but computationally more intensive.
Motivated by recent experiments, we explore a section of the phase diagram in the three-dimensional parameter
space of the block architecture, the interaction parameter, and the external electric field. The relative stability of
the lamellar, hexagonal, and distorted body-centered-cubic (bcc) phases is compared within the two models. As
function of an increasing electric field, the distorted bcc region in the phase diagram shrinks and disappears
above a triple point, at which the lamellar, hexagonal, and distorted bcc phases coexist. We examine the deformation
of the bcc phase under the influence of the external field. While the elongation of the spheres is larger in the
one-mode expansion than that predicted by the full SCF theory, the general features of the schemes are in
satisfactory agreement. This indicates the general utility of the simple theory for exploratory calculations.

I. Introduction

Block copolymers (BCP) consist of several chemically distinct
subchains. They are interesting not only as a model system for
self-assembly but also for their chemical versatility and afford-
ability which have enabled their use in applications such as
photonic waveguides,1 tough plastics,2,3 ordered arrays of
nanowires,4 etc. At a given chemical architecture and temper-
ature, there is one thermodynamically stable mesophase, with
typical length scales comparable to the chain size (∼10-500
nm). However, the material is rarely perfectly ordered, but rather
is composed of many randomly oriented grains of size ∼1 µm.
This has an adverse effect on nanotechnological applications.

A useful way to achieve improved long-range order is to
subject the BCP sample above its glass transition to an external
electric field E0. Because of the coupling between the field and
the spatially varying dielectric constant κ(r), there is a preferred
orientation of the grains with respect to the field.5-14 It has been
shown by Amundson et al.5,6 that the electrostatic free energy
penalty associated with dielectric interfaces which are not
parallel to the electric field direction is the driving force for
structures to reorient so that their interfaces are parallel to the
field (∇κ(r) perpendicular to E0). While the free energy penalty
can be eliminated by this reorientation of lamellae and cylinders,
it cannot be eliminated in the body-centered-cubic (bcc) phase
but only reduced by distorting the bcc spheres. Thus, the free
energy of this distorted bcc phase, whose symmetry is reduced
to R3hm, increases with respect to the full disordered liquid (dis),
lamellar (lam), and hexagonal (hex) phases,12 a circumstance

which can bring about a phase transition. The effect of the
electric field on the BCP morphology has been substantially
accounted for recently15 by incorporating the electrostatic
Maxwell equations in the full set of self-consistent-field (SCF)
equations, which permits calculation of the phase diagram at
arbitrary degrees of segregation.

In this paper we compare two theoretical approaches to such
a system: the aforementioned SCF study and a simple analytical
approximation consisting of a Ginzburg-Landau expansion of
the free energy,16 valid only close to the order-disorder temper-
ature (ODT). It is assumed that the polymers under consideration
here are ion-free, so the effect of mobile dissociated ions, which
can be dramatic in some systems,12-14 can be ignored.

The paper is organized as follows. In section 2 we present
the free energy model which includes the electrostatic energy
of the BCP in the field. In section 3 we calculate the way in
which an initial mesophase deforms under the influence of the
field and also find the relative stability of the competing phases.
A comparison is made with the results of the SCF model.
Section 4 contains a brief conclusion.

II. Model

Although the effect we consider here is generic to any
multiblock BCP melts, we will restrict the discussion in this
paper to the simplest A/B diblock copolymer, where a spatial
variation of the relative A/B monomer concentration yields a
spatial dependence of the dielectric constant and, hence, of the
response to an external electric field.

We also assume for simplicity that the A monomeric volume
is equal to the B one. Then the volume fraction of the A* Corresponding author. E-mail: tsori@bgu.ac.il.
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monomers, f (0 e f e 1), is equal to its molar fraction. The
order parameter φ(r) is defined as the local deviation of the
A-monomer fraction φA(r) from its average value: φ(r) )
φA(r) - f. From an incompressibility condition of the melt we
also have at each point r, φB(r) ) 1 - φA(r). In the absence of
any external electric fields, the bulk BCP free energy per
polymer chain, Fb, in units of kBT, can be written as a func-
tional of the order parameter, φ(r). One way of generating a
simple analytical expansion in the order parameter relies on a
Ginzburg-Landau-like free energy, which can be justified close
to the order-disorder point (ODT)16-18 and is repeated here
without further justifications:

where Ω is the system volume and

b is the Kuhn length, Rg is the radius of gyration, ø is the Flory
parameter, N ) NA + NB is the total chain polymerization index,
Nøs is the spinodal value16 of øN, c is a constant of order 1,
and λ and u are functions of f as in refs 16-18. The phase
diagram in the (f,øN) plane, as derived from the free energy, eq
1, is symmetric with respect to exchange of f and 1 - f. For
small values of ø ∼ 1/T, the melt is disordered: φ(r) ) 0 is
constant. For øN larger than the ODT value of =10.5 and for
nearly symmetric BCP composition (f ≈ 1/2), the lamellar phase
is the most stable. As |f - 1/2| increases, the stable phases are
doubly connected gyroid, hexagonal, and bcc phases.16,17,19

Let us now consider a BCP slab placed in an external electric
field, E0. The free energy per polymer chain, again in units of
kBT, is Ftot ) Fb + Fes, where the electrostatic energy
contribution Fes is given by the integral over the square of the
local electric field E(r) ) -∇ψ

Here ε0 is the vacuum permittivity, κ(r) is the local dielectric
constant, Vp is the volume per chain, and ψ is the electrostatic
potential obeying the proper boundary conditions on the elec-
trodes. We note that the variation of Fes with respect to ψ yields

which is the usual Maxwell equation ∇‚D ) 0 for the
displacement field D ) ε0κE. We consider a simple geometry
of a BCP slab filling the gap between two parallel and flat
electrodes separated by a distance d and potential difference V.
Even when a nonhomogeneous dielectric material like a BCP
fills the gap between the two electrodes, the spatially averaged
electric field in between the electrodes 〈E〉 is constrained to be
E0 ) V/d. The local field E(r) differs from its average due to
the nonuniformity of the dielectric constant, since κ ) κ(φ)
depends on the local concentration φ(r) through a constitutive
equation. In this paper we assume for simplicity a linear
constitutive relation

where throughout this paper we use κA ) 6.0 and κB ) 2.5,

thus modeling an A/B diblock copolymer in which the A block
is poly(methyl methacrylate) (PMMA) and the B block is
polystyrene (PS) at a temperature of about 170 °C, as has been
used in several experiments. Other constitutive relations can
be considered.20

When a field is applied on a melt in the lamellar or hexagonal
phases, it exerts torque which causes sample rotation. The torque
is zero, and the energy lowest, when the lamellae or cylinders
are oriented parallel to the field. In such states, as well as the
disordered phase, the electrostatic energy, eq 3, of the system
is equal to a reference energy, given below. The bcc array of
spheres, on the other hand, always has dielectric interfaces that
are not parallel to the field, and its electrostatic energy is higher
than the reference value. Hence, the spheres elongate in the
applied field direction, to an extent which is a balance between
electrostatic and elastic forces, as calculated below.

The reference energy per polymer chain, in units of kBT, is
simply -1/2〈κ〉Ê0

2, where Ê0 is the dimensionless applied field,
the physical field expressed in natural unit (kBT/ε0Vp)1/2

Let us estimate the value of the actual applied field corre-
sponding to Ê0 ) 1. At 100 °C and using typical polymer
volume per chain in the range Vp = 50-250 nm3, we find E0 =

47-107 V/µm. This is a relatively large field that can cause
dielectric breakdown in some BCP films. Therefore, the
experimentally interesting regime is usually Ê0 j 1.

The free energy Ftot as formulated above is valid close to the
ODT point (weak segregation limit), where the concentration
variations are small, φ(r) , 1, and therefore the analysis can
be carried out within the so-called one-mode approximation.
Motivated by recent experiments,12,14 we concentrate on the
transition from distorted spheres to cylinders or disordered melt
in the presence of an applied electric field. Taking E0 to be in
the (1,1,1) direction, we write the order parameter φ as a linear
superposition of six components

where

The q’s and k’s are wavevectors given by

and all have the same magnitude q0. The three linearly dependent
qi are orthogonal to the (1,1,1) direction and describe a
hexagonal phase with axis along that direction. The three ki

have equal and nonzero projections on the (1,1,1) axis. The six
wavevectors transform into one another under the symmetry
operations of the bcc phase. In the absence of an external field,
each of these wavevectors would contribute equally in the order
parameter expansion,19 so that g and w would be equal. These
wavevectors characterize the first mode in such an expansion.
Hence the name of the approximation.
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Ê0 ) (ε0Vp

kBT)1/2

E0 (6)

φ ) wφ1 + gφ2 (7)

φ1 ) ∑
i)1

3

cos(qi‚r), φ2 ) ∑
i)1

3

cos(ki‚r) (8)

q1 )
q0

x2
(-1,0,1), q2 )

q0

x2
(1,-1,0), q3 )

q0

x2
(0,1,-1)

k1 )
q0

x2
(1,0,1), k2 )

q0

x2
(1,1,0), k3 )

q0

x2
(0,1,1) (9)

290 Tsori et al. Macromolecules, Vol. 39, No. 1, 2006



The amplitudes w(E0) and g(E0) depend on the magnitude of
the average external field E0. Depending on the values of the
two amplitudes, g and w, we can represent the order parameter
of all phases of interest in the form of eq 7: w ) g * 0
represents an undistorted bcc, while an R3hm (distorted bcc)
phase oriented along the (1,1,1) direction is represented by two
nonzero amplitudes w * g. A hexagonal phase of cylinders
whose long axis is in the (1,1,1) direction has w * 0 and g )
0. And finally, g ) w ) 0 represents the disordered melt. As
was mentioned above, the spatially averaged electric field is
simply the magnitude of the external field, E0. However, local
changes in φ(r) give rise to local changes in κ(r). Consequently,
the electric field can be written as follows:

where δψ is the deviation of the potential from the average.
With this representation of the field, the Maxwell equation, eq
4, becomes

It is clear that a necessary condition for a solution of this
equation is that the behavior under any symmetry operations
of the third term on the left-hand side must be the same as the
behavior of the right-hand side; i.e., the symmetry of ∇ 2δψ(r)
must be the same as that of E0‚∇φ(r). As the symmetry of the
order parameter is known in any ordered phase, the symmetry
of the potential is therefore determined. In particular, with E0

in the (1,1,1) direction and with the order parameter in the
distorted bcc phase given in the one-mode approximation by
eqs 7 and 8, one finds immediately that δψ(r) must take the
form

where â is to be determined. We now insert the E-field
expression of eq 10 into the electrostatic free energy, eq 3. Using
the definitions of eqs 7-9 and the properties

and

we can perform the rather straightforward spatial averages of
the various terms in the free energy, eq 3, and obtain

The last term is simply the reference energy which is common
to all phases.

For a given state of φ (a given BCP morphology), which is
determined by a given value of w and g, the value of â(w,g) is
determined by the Maxwell equation, eq 11. This is equivalent
to obtaining it by taking the variation of Fes with respect to â.
One obtains â ) x2/3g∆κ/(〈κ〉 + 1/2w∆κ), so that Fes is given
by

It is instructive to compare this result with the perturbation
expression used by Amundson, Helfand, and co-workers5,6

a result which agrees only with the terms of order zero of the
power series expansion in w∆κ/(2〈κ〉) of our expression. For
the dielectric constants of interest to us, w∆κ/(2〈κ〉) ≈ 0.5w.
As the magnitude of the parameter w reflects the degree of
segregation, as shown by eq 7, one sees that the perturbation
result becomes poorer as the segregation increases.

The origin of the difference between eqs 16 and 17 is clearly
seen from the Maxwell equation, eq 11. The perturbation
scheme takes the potential δψ and the order parameter φ to be
small and therefore, in lowest order, ignores the contribution
of the first two terms on the left-hand side compared to the
third. This implies that ∆κφ/〈κ〉 , 1 or, equivalently from eq
5, (κ - 〈κ〉)/〈κ〉 , 1. Thus, the assumption is essentially that
the fractional variation in the dielectric constant due to the
ordering is small. Furthermore, these ignored terms are precisely
the ones which couple the electric field created by the polariza-
tion charge of the system to its own order parameter. In contrast,
we keep all terms in the Maxwell equation so that the free
energy contains the effects of the deformation of the order
parameter due to the field the sample itself produces. Another
consequence of the use of lowest order perturbation theory is
that it yields a free energy which is symmetric under the inter-
change of monomers A and B. It misses the breaking of this
symmetry due to the application of the electric field which coup-
les differently to the A and B blocks. This effect is manifest
only when the free energy contains the contribution arising from
the change in the order parameter due to the field produced by
the sample itself. It would occur in higher order of perturbation
theory.

We now employ the single-mode Ansatz φ ) wφ1 + gφ2 in
eq 1 and finally obtain for the total free energy per polymer
chain in units of kBT the result

In the next section we minimize this energy with respect to
w and g at a given dimensionless external field Ê0 and polymer
architecture f, calculate the elongation the spheres of the bcc
phase, and obtain the phase diagram.

III. Results

As noted above, the functional form φ ) wφ1 + gφ2 allows
us to describe a bcc array of spheres (for which w ) g * 0), a
distorted bcc phase (w * g * 0), a hexagonal array of cylinders
(w * 0, but g ) 0), and a disordered phase (w ) g ) 0). We
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are able, therefore, to obtain the full phase diagram by
minimizing eq 18 with respect to the amplitudes w and g.

Before presenting the phase diagram, let us consider a point
in the (f, Nø) plane for which the stable phase at zero E field
has a bcc symmetry. For presentation purposes, in Figure 1 we
have subtracted from the free energy the reference electrostatic
energy, -〈κ〉Ê0

2/2, common to all phases, also subtracted the
total free energy of the bcc phase in zero field, Ftot

bcc(0), and
normalized the resulting free energy by that of the hex phase
in zero field; that is, we have plotted

In the figure we show how the free energy fn changes with Ê0

for f ) 0.3 and Nø ) 14.4. At Ê0 ) 0 the bcc is the stable
phase, and its free energy increases with increasing field Ê0,
until it equals the free energy of the hex phase at a transition
field Ê0 = 0.43. At larger fields the stable structure is a hex
phase of cylinders oriented along the external field E0. The solid
line in Figure 1 is the result obtained from the one-mode
approximation given above, while the dashed line is obtained
from the SCF theory (as in ref 15). It has a lower free energy.
Consequently, the transition field in the SCF framework is
higher and occurs at about Ê0 = 0.49.

Figure 2 is a plot of the amplitudes w(Ê0) and g(Ê0),
normalized by their zero-field value w(Ê0)0) ) g(Ê0)0). Both
amplitudes start at their common value in the undistorted bcc
phase. As the field increases, w increases while g decreases.
The spheres elongate in the direction of the field as a result of
competition between electrostatic and elastic forces. At the
transition field, there is a sharp, discontinuous transition in the
order parameter. Above this field, w attains a fixed value while
g drops abruptly to zero. In this state the BCP morphology is
that of cylinders oriented parallel to the external field. The
dashed lines correspond to the values obtained from the SCF
theory. Clearly, in the one-mode approximation, the spheres’
deformation and eccentricity are larger than in the SCF theory.

The above calculation can be repeated for any (f, Nø) and Ê0

field values and allows the construction of the full three-
dimensional phase diagram in the (f, Nø, Ê0) parameter space.
In Figure 3 we present a cut of the phase diagram at fixed f )
0.3. The region of a stable R3hm phase (distorted bcc) is bound
by two lines of phase transitions: one between this phase and
the disordered phase and the other between it and the hex phase.
These two lines meet at the triple point (øt, Et). In Figure 3, the
different triple point values obtained from the two calculations
are used to rescale both axes: ø/øt and Ê0/Et. At fields larger
than Et, the R3hm is not stable at any value of ø. The solid lines
in the figure are the one-mode prediction, while the dashed lines
are obtained with the SCF calculation. The values of Et are 0.49
and 0.67 for the two theories, respectively. Were this phase
diagram to be measured in a polymorphic system composed of
grains of various orientations, the first-order transitions would
not take place at a single temperature for a given field, but those
in grains of different orientations would occur at different

Figure 1. Normalized free energy per polymer chain fn, defined in eq
19, of the distorted bcc phase (R3hm) as a function of dimensionless
field Ê0. The system is characterized by f ) 0.3 and øN ) 14.4. We
compare the one-mode calculation (solid line) as obtained from
minimization of eq 18 with a SCF calculation (dashed line). The R3hm
phase in the SCF calculation has a lower free energy that the solid line
(one mode) and crosses the hex energy at higher value of Ê0 of about
0.49, while the one-mode approximation crosses at Ê0 ≈ 0.43 (both
marked with arrows). In this figure and following ones we used κA )
6 and κB ) 2.5, modeling a PMMA-PS copolymer.

fn ≡
Ftot(Ê0) + 〈κ〉Ê0

2/2 - Ftot
bcc(0)

Ftot
hex(0)

(19)

Figure 2. Amplitudes w and g normalized by their common value at
zero E field, g(0) ) w(0), as a function of dimensionless external field
Ê0. Solid line: one-mode approximation. The amplitudes have a
discontinuous jump at Ê0 = 0.43, where the structure contains cylinders
oriented along the field (g ) 0). Dashed lines: the same, but taken
from a multimode SCF calculation (ref 15) with a jump at higher E
values of Ê0 = 0.49. All parameters as in Figure 1.

Figure 3. Phase diagram in the (ø/øt, Ê0/Et) rescaled plane for a fixed
value of BCP asymmetry, f ) 0.3. The distorted bcc (R3hm) region is
confined between two transition lines which terminate at a triple point
(øt,Et). The other two phases are the disordered one (dis) and the
hexagonal one (hex). The solid lines are the prediction of the one-
mode approximation, with axes scaled by the appropriate øt = 14.3/N
and Et = 0.49. Dashed lines are the SCF calculation scaled by the
appropriate SCF values of øt = 14.11/N and Et = 0.668.
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temperatures, causing a blurring of the phase boundaries. In
addition, because of long characteristic times associated with
reorientation of grains, what is seen at the transition would
depend on the observation time and sample history.

For an additional comparison between the theories, we have
examined the case in which, at a fixed value of f ) 0.3, the
dielectric constants of the majority and minority components
are interchanged (i.e., κA ) 6.0T κB ) 2.5, hence, ∆κf-∆κ).
In both theories we find an increase in the value of the external
field needed to bring about a transition from the distorted bcc
phase to the hex phase. Thus, this subtle effect, which is not
captured by the perturbation result of eq 17, is obtained in the
simple one-mode approximation, eq 16.

IV. Conclusions

A simple theory for a nonhomogeneous diblock copolymer
(BCP) melt in an external electric field is presented and
compared with a more accurate, but more computationally
intensive, self-consistent-field (SCF) one. The differences
between the two theories in zero external field are well-known.
In particular, the accuracy of the phase boundaries produced
by the one-mode approximation deteriorates outside the vicinity
of the ODT point (weak segregation) as compared to the SCF
theory.19 However, as in the zero field case, the qualitative
behavior of the system in the presence of a field is described
surprisingly well. The simple one-mode approximation captures
the elongation of the spheres of a bcc phase when placed under
an external field. The elongation is in the direction of the applied
E0 field. The two amplitudes describing this elongation, w and
g, are shown in Figure 2. At a threshold value of the electric
field, a first-order transition to a hexagonal phase occurs and
the amplitudes jump discontinuously.

As shown in Figure 3, the simple, analytic, one-mode
approximation also captures the essence of the phase diagram:
the reduction in the phase space occupied by the distorted bcc
phase as the field increases and its eventual disappearance at a
triple point.

The full electrostatic free energy contribution is included
consistent within the one-mode approximation, eq 16, in contrast
to previous analytical studies,5,6,12,14 in which only quadratic
terms in the electrostatic potential were retained. As a conse-
quence, the theory captures the subtle interplay between structure
and electrostatic response as evidenced by its prediction of a
different critical field for phase transitions when the dielectric

constants of the constituents are interchanged, a prediction in
agreement with the more accurate theory.15

Given its ability to capture all of the above effects and given
its extreme simplicity, such a theory could serve for useful
exploratory studies in other problems concerning the effect of
electric fields on block copolymers.

Acknowledgment. We have benefited from discussions with
L. Leibler, T. Russell, F. Tournilhac and T. Xu. Support from
the U.S.-Israel Binational Science Foundation (B.S.F.) under
Grant 287/02, the Israel Science Foundation under Grant 160/
05, and the National Science Foundation under Grants 0140500
and 0503752 is gratefully acknowledged.

References and Notes

(1) Hart, S. D.; Maskaly, G. R.; Temelkuran, B.; Prideaux, P. H.;
Joannopoulos, J. D.; Fink, Y. Science 2002, 296, 510.

(2) Pernot, H.; Baumet, M.; Court, F.; Leibler, L. Nat. Mater. 2002, 1,
54.

(3) Ruzette, A. V.; Leibler, L. Nat. Mater. 2005, 4, 19.
(4) Thurn-Albrecht, T.; Schotter, J.; Kästle, G. A.; Emley, N.; Shibauchi,
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