Parameter Identification Near Periodic Orbits of Hybrid Dynamical Systems

Sam Burden*, Henrik Ohlsson†, S. Shankar Sastry*

* Department of Electrical Engineering and Computer Sciences
 University of California, Berkeley, CA, USA
† Division of Automatic Control, Department of Electrical Engineering,
 Linköping University, Sweden

July 12, 2012
Hybrid periodic orbits model interesting physical systems

biochemistry: reaction networks
Elowitz and Leibler 2000, Alur et al. 2001

biomechanics: terrestrial locomotion
Holmes et al. 2006, Revzen 2009
Example: vertical hopper
Hybrid dynamical system

\[\dot{x} = F_1(x) \]

\[\dot{x} = F_2(x) \]
Trajectory for a hybrid dynamical system

$\dot{x} = F_1(x)$

$\dot{x} = F_2(x)$
Trajectory for a hybrid dynamical system

\[\dot{x} = F_1(x) \]

\[\phi(t, x_0) \]

\[\dot{x} = F_2(x) \]
Periodic orbit γ for a hybrid dynamical system

\[\dot{x} = F_1(x) \]

\[\dot{x} = F_2(x) \]
Identification of initial conditions

\[Y(\varphi(t, z)) = y(t) \]

\[\eta_i = Y(\varphi(iT, z^*)) + w_i \]

\[w_i \text{ iid random variables} \]

Identification problem

\[\text{arg min}_{z \in D_j} \varepsilon(z, \{\eta_i\}) \]

where

\[\varepsilon(z, \{\eta_i\}) := \sum_i \| Y(\varphi(iT, z)) - \eta_i \|^2 \]
Identification of initial conditions

\[Y(\phi(t, z)) = y(t) \]

\[\eta_i = Y(\phi(iT, z^*)) + w_i, \quad w_i \text{ iid random variables} \]

Identification problem

\[\arg\min_{z \in D} \varepsilon(z, \{\eta_i\}) \]

\[\varepsilon(z, \{\eta_i\}) := \sum_i \|Y(\phi(iT, z)) - \eta_i\|_2 \]
Identification of initial conditions

\[Y(\phi(t, z)) = y(t) \]

\[\eta_i = Y(\phi(iT, z^*)) + w_i, \quad w_i \text{ iid random variables} \]
Identification of initial conditions

$$Y(\phi(t, z)) = y(t)$$

$$\eta_i = Y(\phi(iT, z^*)) + w_i,$$

$$w_i \text{ iid random variables}$$

Identification problem

Solve $$\arg \min_{z \in D_j} \mathcal{E}(z, \{ \eta_i \}),$$ where

$$\mathcal{E}(z, \{ \eta_i \}) := \sum_i \| Y(\phi(iT, z)) - \eta_i \|^2.$$
Identification on hybrid model

Assumption (smooth observations)

\(Y \) is smooth along trajectories, i.e. \(Y(\phi(t,z)) \) is a smooth function of \(t \).
Assumption (smooth observations)

Y is smooth along trajectories, i.e. $Y(\phi(t, z))$ is a smooth function of t.

Identification on $\bigcup_j D_j$

$$\arg\min_{z \in D_j} \varepsilon(z, \{\eta_i\})$$
Identification on hybrid model

Assumption (smooth observations)

\(Y \) is smooth along trajectories, i.e. \(Y(\phi(t, z)) \) is a smooth function of \(t \).

Identification on \(\bigcup_j D_j \)

\[
\arg \min_{z \in D_j} \varepsilon(z, \{ \eta_i \})
\]

- \(\nabla \varepsilon \) undefined on \(G_j \subset D_j \)
- \(R_j \) not generally invertible
Assumption (smooth observations)

\(Y \) is smooth along trajectories, i.e. \(Y(\phi(t, z)) \) is a smooth function of \(t \).

Identification on \(\bigcup_j D_j \)

\[
\arg \min_{z \in D_j} \varepsilon(z, \{\eta_i\})
\]

- \(\nabla \varepsilon \) undefined on \(G_j \subset D_j \)
- \(R_j \) not generally invertible

global optimization needed
Theorem (Hirsch and Smale 1974, Grizzle et al. 2002) The Poincaré map P is smooth in a neighborhood of ξ.

smooth dynamical system

\[\dot{x} = F(x) \]

hybrid dynamical system

\[\dot{x} = F_1(x) \]

\[\dot{x} = F_2(x) \]
The Poincaré map for periodic orbit γ

Smooth Dynamical System
- D
- Σ
- ξ
- $\dot{x} = F(x)$

Hybrid Dynamical System
- $\dot{x} = F_1(x)$
- $\dot{x} = F_2(x)$
- Σ
- γ
- D_1
- D_2
- G_1
- G_2
- R_1
- R_2
Theorem (Hirsch and Smale 1974, Grizzle et al. 2002)

The Poincaré map \mathbf{P} is smooth in a neighborhood of ξ.

smooth dynamical system

$\mathbf{D} \quad \Sigma \quad x_0 \quad \mathbf{\dot{x}} = F(x)$

hybrid dynamical system

$\Sigma \quad x_0 \quad \mathbf{\dot{x}} = F_1(x) \quad \mathbf{\dot{x}} = F_2(x)$
The Poincaré map for periodic orbit γ

Theorem (Hirsch and Smale 1974, Grizzle et al. 2002)

The Poincaré map P is smooth in a neighborhood of ξ.

smooth dynamical system

hybrid dynamical system
The Poincaré map for periodic orbit γ

smooth dynamical system

$\dot{x} = F(x)$

hybrid dynamical system

$\dot{x} = F_1(x)$ and $\dot{x} = F_2(x)$
Theorem (Hirsch and Smale 1974, Grizzle et al. 2002)

The Poincaré map P is smooth in a neighborhood of ξ.

smooth dynamical system

$D \ni x_0 \rightarrow \sum \rightarrow P(x_0) \rightarrow \gamma$

$\dot{x} = F(x)$

hybrid dynamical system

$D_1 \ni x_0 \rightarrow \sum \rightarrow P(x_0) \rightarrow G_1$

$\dot{x} = F_1(x)$

$D_2 \ni x_0 \rightarrow \sum \rightarrow P(x_0) \rightarrow G_2$

$\dot{x} = F_2(x)$

$R_1 \rightarrow R_2$
Rank of the Poincaré map P with fixed point $P(\xi) = \xi$

- **Smooth dynamical system**
 \[\dot{x} = F(x) \]

- **Hybrid dynamical system**
 \[\dot{x} = F_1(x) \]

Hirsch and Smale 1974

Wendel and Ames 2010
Rank of the Poincaré map P with fixed point $P(\xi) = \xi$

smooth dynamical system

\[
\begin{align*}
D & \quad \Sigma \quad \xi \\
\nearrow & \quad \searrow \\
P(x_0) & \quad x_0
\end{align*}
\]

\[\dot{x} = F(x)\]

\[\text{rank } DP(\xi) = \dim D - 1\]

Hirsch and Smale 1974

hybrid dynamical system

\[
\begin{align*}
R_2 & \quad D_1 \quad P(x_0) \\
G_2 & \quad \nearrow \\
R_1 & \quad D_2
\end{align*}
\]

\[\dot{x} = F_1(x)\]

\[\dot{x} = F_2(x)\]
Rank of the Poincaré map P with fixed point $P(\xi) = \xi$

smooth dynamical system

$$\begin{align*}
\text{rank } DP(\xi) &= \dim D - 1 \\
\text{Hirsch and Smale 1974}
\end{align*}$$

hybrid dynamical system

$$\begin{align*}
\text{rank } DP(\xi) &\leq \min_j \dim D_j - 1 \\
\text{Wendel and Ames 2010}
\end{align*}$$
Model reduction near a periodic orbit

Theorem (Burden, Revzen, Sastry CDC 2011)

Let $n = \min_j \dim D_j$. If DP_n has constant rank r near ξ, then after a finite amount of time all trajectories starting near γ collapse to a collection of hybrid invariant $(r+1)$-dimensional submanifolds $M_j \subset D_j$.

S. Burden, H. Ohlsson, S.S. Sastry
Identification Near Hybrid Periodic Orbits
IFAC SysID July 12, 2012 11
Model reduction near a periodic orbit

Theorem (Burden, Revzen, Sastry CDC 2011)

Let $n = \min_j \dim D_j$.

If D_P^n has constant rank r near ξ, then after a finite amount of time all trajectories starting near γ collapse to a collection of hybrid invariant $(r + 1)$-dimensional submanifolds $M_j \subset D_j$.
Model reduction near a periodic orbit

Theorem (Burden, Revzen, Sastry CDC 2011)

Let \(n = \min_j \dim D_j \).

If \(DP^n \) has constant rank \(r \) near \(\xi \), then after a finite amount of time all trajectories starting near \(\gamma \) collapse to a collection of hybrid invariant \((r + 1)\) dimensional submanifolds \(M_j \subset D_j \).
Model reduction near a periodic orbit

\[\dot{x} = F_1(x) \]

\[\dot{x} = F_2(x) \]

Corollary (Burden, Revzen, Sastry CDC 2011)

The submanifolds \(M_j \) determine a hybrid system with periodic orbit \(\gamma \).
Corollary (Burden, Revzen, Sastry CDC 2011)

The submanifolds M_j determine a hybrid system with periodic orbit γ. Each $R_j|_{G_j \cap M_j}$ is a diffeomorphism.
Reduction in the vertical hopper

With parameters

\[m = 1, \mu = 2, k = 10, b = 5, \ell_0 = 2, a = 20, \dot{\sigma} = 2\pi, g = 2 \]
Reduction in the vertical hopper

With parameters

\[m = 1, \mu = 2, k = 10, b = 5, \ell_0 = 2, a = 20, \dot{\sigma} = 2\pi, g = 2 \]

Numerically linearizing Poincaré map \(P \) on ground we find \(DP(\xi) \) has eigenvalues \(\simeq -0.25 \pm 0.70j \)

therefore \(DP^2 \) is constant rank
Reduction in the vertical hopper

With parameters
\[m = 1, \mu = 2, k = 10, b = 5, \ell_0 = 2, a = 20, \dot{\sigma} = 2\pi, g = 2 \]

Numerically linearizing Poincaré map \(P \) on ground we find \(DP(\xi) \) has eigenvalues \(\approx -0.25 \pm 0.70j \)
therefore \(DP^2 \) is constant rank

Theorem \(\implies \) after one cycle, dynamics collapse to 1-DOF hopper
Identification of initial conditions

\[Y(\phi(t, z)) = y(t) \]

\[\eta_i = Y(\phi(iT, z^*)) + w_i, \]

\[w_i \text{ iid random variables} \]

Identification problem

Solve \(\arg \min_{z \in D_j} \varepsilon(z, \{\eta_i\}) \), where \(\varepsilon(z, \{\eta_i\}) := \sum_i \|Y(\phi(iT, z)) - \eta_i\|^2 \).
Identification on reduced hybrid model

Assumption (smooth observations)

\[Y \text{ is smooth along trajectories, i.e. } Y(\phi(t,z)) \text{ is a smooth function of } t. \]

Identification on \(\bigcup_j D_j \)

\[\arg \min_{z \in D_j} \varepsilon(z, \{\eta_i\}) \]

- \(\nabla \varepsilon \) undefined on \(G_j \subset D_j \)
- \(R_j \) not generally invertible

global optimization needed
Identification on reduced hybrid model

Assumption (smooth observations)

\(Y \) is smooth along trajectories, i.e. \(Y(\phi(t,z)) \) is a smooth function of \(t \).

<table>
<thead>
<tr>
<th>Identification on (\bigcup_j D_j)</th>
<th>Identification on (\bigcup_j M_j)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[\arg \min_{z \in D_j} \varepsilon(z, {\eta_i})]</td>
<td>[\arg \min_{z \in M_j} \varepsilon(z, {\eta_i})]</td>
</tr>
</tbody>
</table>

- \(\nabla \varepsilon \) undefined on \(G_j \subset D_j \)
- \(R_j \) not generally invertible

global optimization needed
Identification on reduced hybrid model

Assumption (smooth observations)

\(Y \) is smooth along trajectories, i.e. \(Y(\phi(t, z)) \) is a smooth function of \(t \).

Identification on \(\bigcup_j D_j \)

\[
\arg \min_{z \in D_j} \varepsilon(z, \{\eta_i\})
\]

- \(\nabla \varepsilon \) undefined on \(G_j \subset D_j \)
- \(R_j \) not generally invertible

Global optimization needed

Identification on \(\bigcup_j M_j \)

\[
\arg \min_{z \in M_j} \varepsilon(z, \{\eta_i\})
\]

- \(\nabla \varepsilon \) well-defined on \(G_j \cap M_j \)
- \(R_j \mid_{M_j} \) invertible
Assumption (smooth observations)

Y is smooth along trajectories, i.e. $Y(\phi(t, z))$ is a smooth function of t.

Identification on $\bigcup_j D_j$

$$\arg \min_{z \in D_j} \varepsilon(z, \{\eta_i\})$$

- $\nabla \varepsilon$ undefined on $G_j \subset D_j$
- R_j not generally invertible

global optimization needed

Identification on $\bigcup_j M_j$

$$\arg \min_{z \in M_j} \varepsilon(z, \{\eta_i\})$$

- $\nabla \varepsilon$ well-defined on $G_j \cap M_j$
- $R_j|_{M_j}$ invertible

first-order algorithms applicable
Identifying initial condition for vertical hopper

Observe position of upper mass at 20Hz, additive noise with variance 0.2.

$$\sigma_0, y_0, \dot{y}_0 \approx (8.0, 1.5, 1.1)$$: initial
$$\sigma, y, \dot{y} \approx (4.7, 1.6, 1.0)$$: actual
$$\sigma^*, y^*, \dot{y}^* \approx (4.6, 1.6, 1.1)$$: estimated
Identifying initial condition for vertical hopper

Observe position of upper mass at 20Hz, additive noise with variance 0.2.

\[(\sigma_0, y_0, \dot{y}_0) \approx (8.0, 1.5, 1.1) : \text{initial}\]

\[(\sigma, y, \dot{y}) \approx (4.7, 1.6, 1.0) : \text{actual}\]

\[(\sigma^*, y^*, \dot{y}^*) \approx (4.6, 1.6, 1.1) : \text{estimated}\]
Open Problems

Determine identifiability of parameters on reduced model.

Numerically approximate coordinates for reduced model.

Accommodate aperiodic, open-loop, or stochastic dynamics in reduction.
Open Problem

Determine identifiability of parameters on reduced model.
Open Problems

Open Problem

Determine identifiability of parameters on reduced model.

Open Problem

Numerically approximate coordinates for reduced model.
Open Problems

Open Problem

Determine identifiability of parameters on reduced model.

Open Problem

Numerically approximate coordinates for reduced model.

Open Problem

Accommodate aperiodic, open-loop, or stochastic dynamics in reduction.
Our contribution

We provide a first-order algorithm for parameter identification in hybrid dynamical models of biomechanics & biochemistry.
Appendix
Assumptions on hybrid periodic orbit γ

Assumption (transversality)

Periodic orbit γ passes transversely through each guard G_j

Assumption (dwell time)

$\exists \varepsilon > 0 : \text{periodic orbit } \gamma \text{ spends at least } \varepsilon \text{ time units in each domain } D_j$