Reduction and Identification for Models of Locomotion: an Emerging Systems Theory for Neuromechanics

Sam Burden

Department of Electrical Engineering and Computer Sciences University of California, Berkeley, CA, USA

February 18, 2014

Google

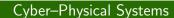
Google

Intuitive

Autonomous machines will pervade our world

Neuromechanics

Gaits & Grasps



Dynamic Gaits & Dexterous Grasps

Dynamic Locomotion

- speeds measured in bodylengths/sec
- scales ranging from cm to m

Boston Dynamics, Inc.

Dexterous Manipulation

- high-precision pick-and-place, repetitive assembly
- fold towels; wash dishes

Koditschek et al.

Fearing et al.

Future direction

• co-robots in factory & home

Willow

Motivation 1. Reduction 2. Identification

Neuro-Mechanical Systems

Fundamentals of sensorimotor control

- mechanosensory feedback
- passive self-stabilization

Sponberg & Full

Design of Assistive Devices

- prosthesis, exoskeleton
- Brain-Machine Interface

Future direction

personalized healthcare

Ossur

Cyber–Physical Systems (CPS)

Automated Healthcare

- teleoperated surgery
- remote diagnosis

Intuitive

Brewer et al.

Human-in-the-Loop

- (semi–)autonomous vehicles
- energy demand response
- social cyber–physical systems

Google

PG&E

Future direction

• co-design *cyber*-and-*physical* systems

Fundamental engineering challenges

Neuromechanics

Future direction:

• automated & personalized healthcare

Gaits & Grasps

Future direction:

co-robots in factory & home

Cyber-Physical Systems

Future direction:

• co-design cyber & physical

Fundamental engineering challenges

Neuromechanics

Future direction:

• automated & personalized healthcare

Gaits & Grasps

Future direction:

co–robots in factory & home

Challenges:

- sensitive to environment
- relies on careful calibration

Cyber–Physical Systems

Future direction:

• co-design cyber & physical

Fundamental engineering challenges

Neuromechanics

Future direction:

• automated & personalized healthcare

Gaits & Grasps

Future direction:

co-robots in factory & home

Challenges:

- sensitive to environment
- relies on careful calibration

Cyber–Physical Systems

Future direction:

• co-design cyber & physical

Challenges:

- distributed, multi-agent
- large scale, multi-physical

Fundamental engineering challenges

Neuromechanics

Future direction:

• automated & personalized healthcare

Challenges:

- generalization across task/environment
- translation across scale, material, & morphology

Gaits & Grasps

Future direction:

co-robots in factory & home

Challenges:

- sensitive to environment
- relies on careful calibration

Cyber-Physical Systems

Future direction:

• co-design cyber & physical

Challenges:

- distributed, multi-agent
- large scale, multi-physical

Fundamental engineering challenges

Neuromechanics

Future direction:

• automated & personalized healthcare

Challenges:

- generalization across task/environment
- translation across scale, material, & morphology

Gaits & Grasps

Future direction:

co-robots in factory & home

Challenges:

- sensitive to environment
- relies on careful calibration

Cyber-Physical Systems

Future direction:

• co-design cyber & physical

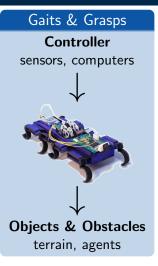
Challenges:

- distributed, multi-agent
- large scale, multi-physical

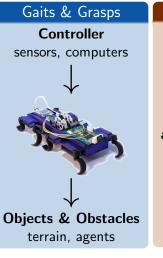
Common engineering challenge

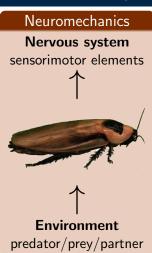
Dynamic interaction between computational & mechanical components

Dynamic interaction between computation & mechanics

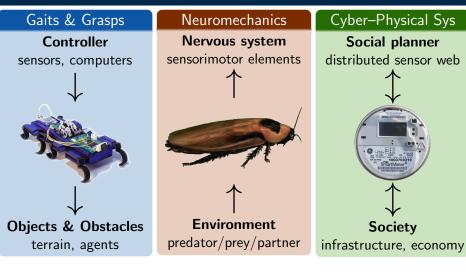


Dynamic interaction between computation & mechanics

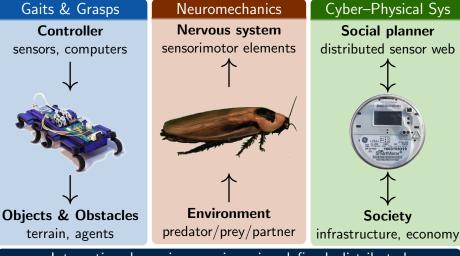




Dynamic interaction between computation & mechanics



Dynamic interaction between computation & mechanics



Interaction dynamics are piecewise-defined, distributed

Need new framework for modeling and control

Analytical, computational, & experimental framework

Neuromechanics

nervous system ↔ environment

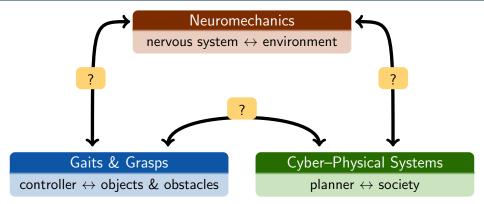
Gaits & Grasps controller ↔ objects & obstacles

Cyber–Physical Systems

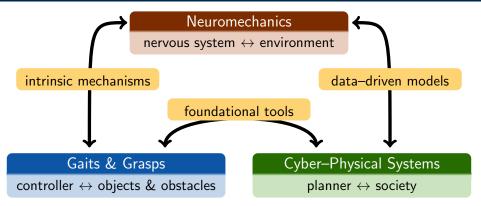
planner \leftrightarrow society

Motivation Overview 1. Reduction 2. Identification 3. Simulation

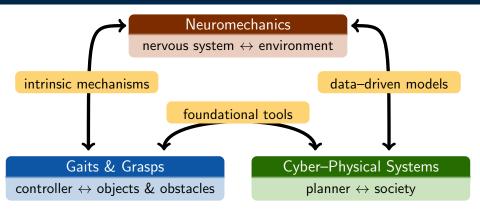
Analytical, computational, & experimental framework



Analytical, computational, & experimental framework



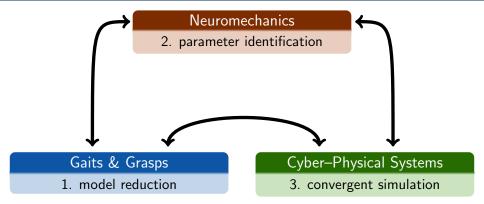
Analytical, computational, & experimental framework



Seek a unified framework

Engineer dynamic interactions between computation & mechanics

Today's theme: framework for studying locomotion



Overview of today's talk

Locomotion

animals are adept at dynamic locomotion

1. Reduction

models for periodic gaits generically reduce dimensionality

2. Identification

reduction enables scalable algorithm for parameter estimation

3. Simulation

convergent numerical simulation for piecewise-defined dynamics

Future Directions

robust gaits, maneuver synthesis, and inverse modeling

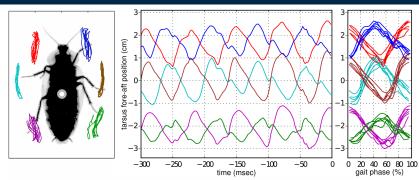
Locomotion 1. Reduction 2. Identification

Animals are extremely adept at dynamic locomotion

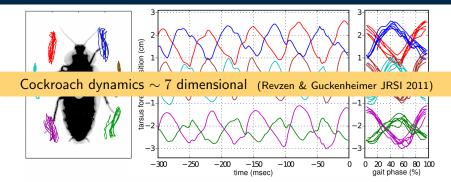
optimized gait

Sandbot RHex robot; Li et al. PNAS 2009

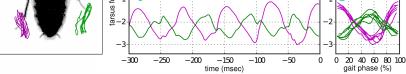
Empirically, animals use few degrees-of-freedom



Empirically, animals use few degrees-of-freedom



Empirically, animals use few degrees-of-freedom

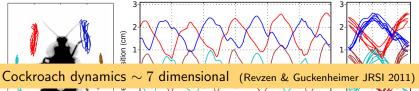


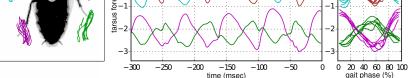
Mechanisms for reduction in neural or environmental models

Neural synchronization Cohen et al. J. Math. Bio 1982 Physiological symmetry Golubitsky et al. Nature 1999

Muscle activation synergy Ting & Macpherson J. Neurosci. 2005 Granular media solidification Li et al. Science 2013

Empirically, animals use few degrees-of-freedom





Mechanisms for reduction in neural or environmental models

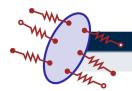
Neural synchronization Cohen et al. I. Math. Bio 1982 Physiological symmetry Golubitsky et al. Nature 1999

Muscle activation synergy Ting & Macpherson J. Neurosci. 2005 Granular media solidification Li et al. Science 2013

Need reduction tool for interaction between body and environment

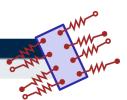
Use simple models to study animal and robot gaits

physical system animal, robot



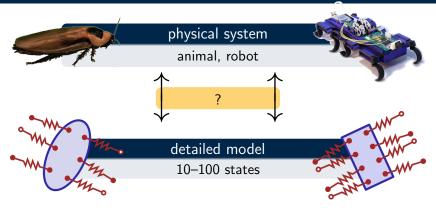
detailed model

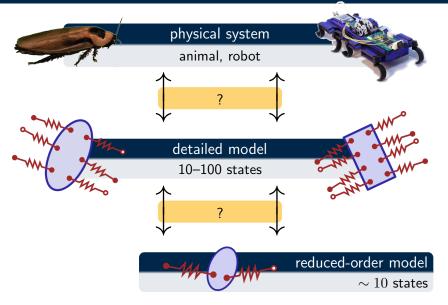
10-100 states

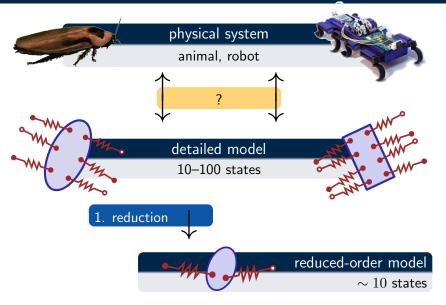


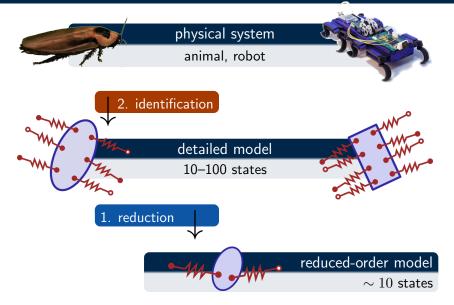
reduced-order model

 ~ 10 states

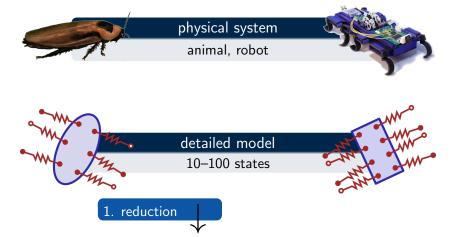








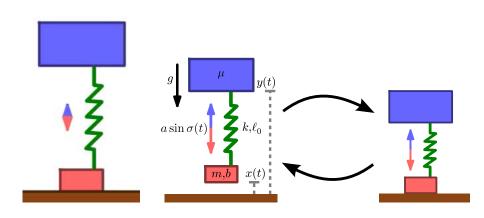
Model Reduction



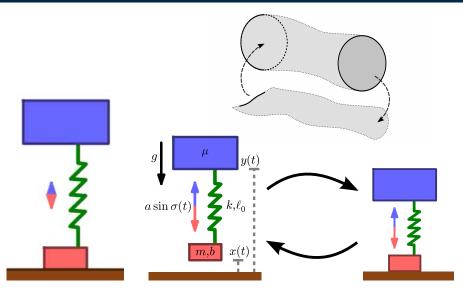
reduced-order model

< 10 states

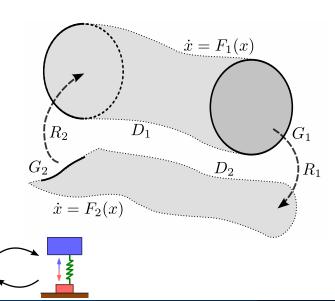
Dimension loss in vertical hopper



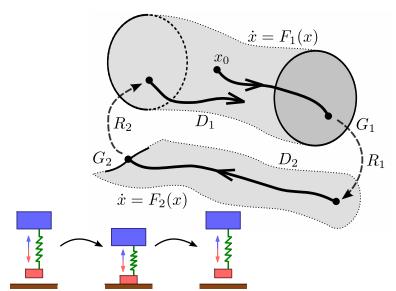
Dimension loss in vertical hopper



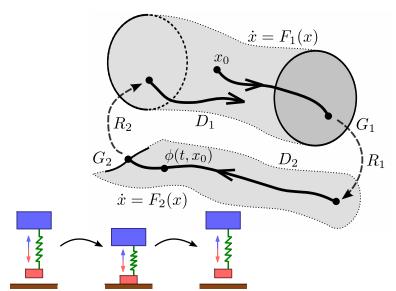
Hybrid dynamical system



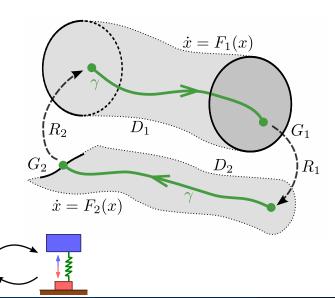
Trajectory for a hybrid dynamical system

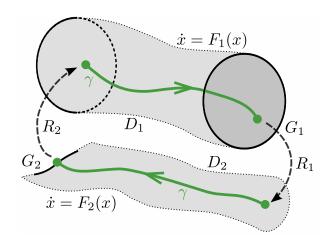


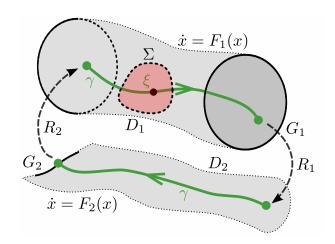
Trajectory for a hybrid dynamical system

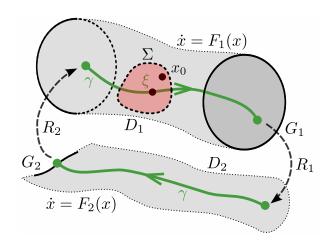


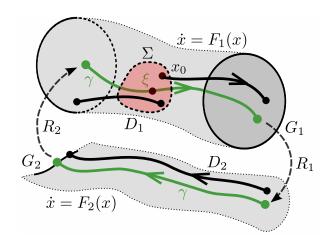
Periodic orbit γ for a hybrid dynamical system

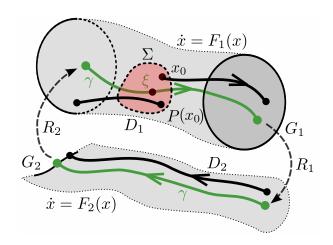




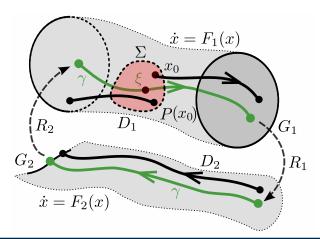








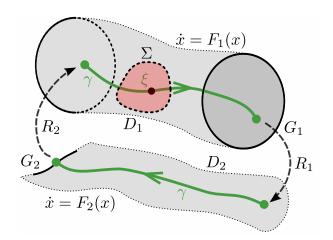
Poincaré map for periodic orbit γ



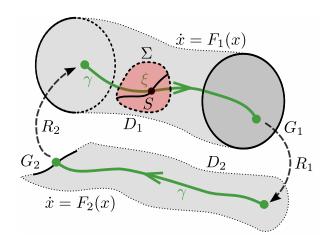
Theorem (Aizerman & Gantmacher JMAM 1958)

The Poincaré map P is smooth in a neighborhood of ξ .

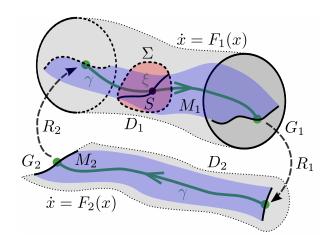
Model reduction near hybrid periodic orbit γ



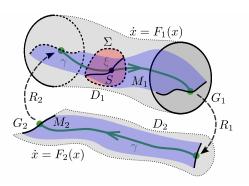
Model reduction near hybrid periodic orbit γ



Model reduction near hybrid periodic orbit γ



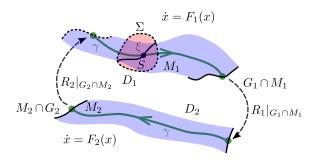
Model reduction near hybrid periodic orbit γ



Theorem (Burden, Revzen, Sastry (arXiv:1308.4158))

Let $n = \min_j \dim D_j - 1$. If rank $DP^n = r$ near ξ , then trajectories starting near γ contract to a collection of hybrid-invariant (r+1)-dimensional submanifolds $M_j \subset D_j$ in finite time.

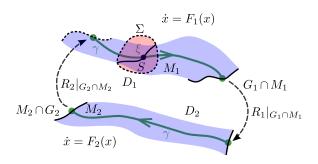
Model reduction near hybrid periodic orbit γ



Corollary (Burden, Revzen, Sastry (arXiv:1308.4158))

The submanifolds M_i determine a hybrid system with periodic orbit γ .

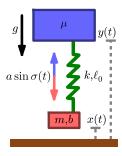
Model reduction near hybrid periodic orbit γ



Corollary (Burden, Revzen, Sastry (arXiv:1308.4158))

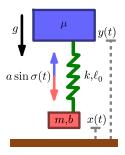
The submanifolds M_j determine a hybrid system with periodic orbit γ . γ is asymptotically stable in the original hybrid system $\iff \gamma$ is asymptotically stable in the reduced hybrid system.

Spontaneous reduction in vertical hopper



Numerically linearizing Poincaré map P on ground, we find $DP(\xi)$ has eigenvalue $\simeq 0.57$, therefore DP^2 is constant rank near ξ .

Spontaneous reduction in vertical hopper

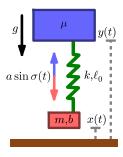


Numerically linearizing Poincaré map P on ground, we find $DP(\xi)$ has eigenvalue $\simeq 0.57$, therefore DP^2 is constant rank near ξ .

Corollary (Burden, Revzen, Sastry (arXiv:1308.4158))

hopper reduces one degree-of-freedom after a single "hop".

Spontaneous reduction in vertical hopper



Numerically linearizing Poincaré map P on ground, we find $DP(\xi)$ has eigenvalue $\simeq 0.57$, therefore DP^2 is constant rank near ξ .

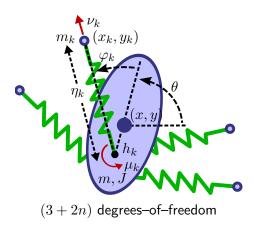
Corollary (Burden, Revzen, Sastry (arXiv:1308.4158))

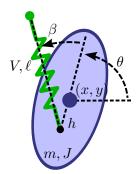
hopper reduces one degree-of-freedom after a single "hop".

Interpretation

Holonomic ground contact constraint persists after liftoff.

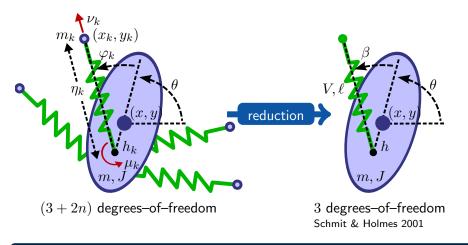
Model with n legs reduces to Lateral Leg–Spring





3 degrees-of-freedom Schmit & Holmes 2001

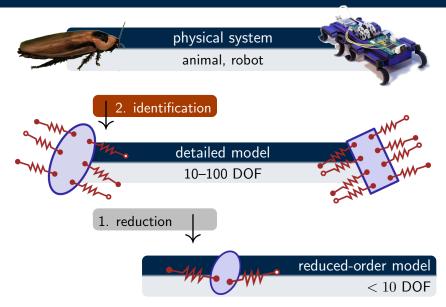
Model with n legs reduces to Lateral Leg–Spring



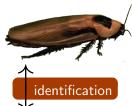
Controller (Burden, Revzen, Sastry (arXiv:1308.4158))

Smooth feedback law reduces 2n degrees-of-freedom after one stride.

Parameter Identification



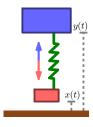
Parametric identification for models of rhythmic behavior

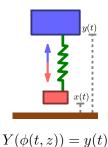


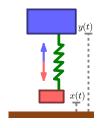
Periplaneta americana (Poly-PEDAL Lab, http://polypedal.berkeley.edu/)

DynaROACH robot (Olin Robotics Lab, http://orb.olin.edu)

Identification of initial conditions

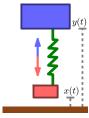






$$Y(\phi(t,z)) = y(t)$$

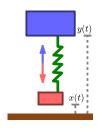
$$Y(\phi(t,z)) = y(t)$$
 $\eta_i = Y(\phi(iT,z^*)) + w_i$, w_i iid random variables

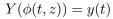


$$Y(\phi(t,z)) = y(t)$$
 $\eta_i = Y(\phi(iT,z^*)) + w_i$,
 w_i iid random variables

Identification problem

Solve $\arg\min_{z\in D_i} \varepsilon(z, \{\eta_i\})$, where $\varepsilon(z, \{\eta_i\}) := \sum_i \|Y(\phi(iT, z)) - \eta_i\|^2$.





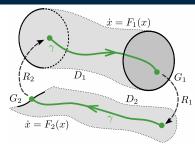
$$Y(\phi(t,z)) = y(t)$$
 $\eta_i = Y(\phi(iT,z^*)) + w_i$, w_i iid random variables

Identification problem

Solve $\arg\min_{z\in D_i} \varepsilon(z, \{\eta_i\})$, where $\varepsilon(z, \{\eta_i\}) := \sum_i \|Y(\phi(iT, z)) - \eta_i\|^2$.

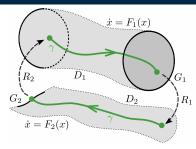
Assumption (smooth observations)

Y is smooth along trajectories, i.e. $Y(\phi(t,z))$ is a smooth function of t.



Identification on $\bigcup_j D_j$

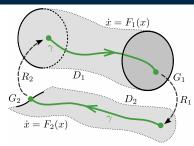
 $\arg\min_{z\in D_{j}}\varepsilon\left(z,\left\{ \eta_{i}\right\} \right)$



Identification on $\bigcup_{j} D_{j}$

 $\arg\min_{z\in D_{j}}\varepsilon\left(z,\left\{ \eta_{i}\right\} \right)$

 $\nabla \varepsilon$ undefined on $G_j \subset D_j$ R_j not generally invertible



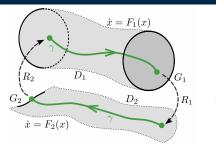
Identification on $\bigcup_{j} D_{j}$

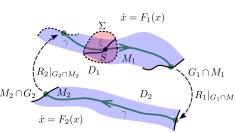
$$\arg\min_{z\in D_{j}}\varepsilon\left(z,\left\{ \eta_{i}\right\} \right)$$

 $\nabla \varepsilon$ undefined on $G_j \subset D_j$ R_i not generally invertible

global optimization needed

Identification on original hybrid model vs. reduced model





Identification on $\bigcup_{i} D_{j}$

 $\arg\min_{z\in D_{i}}\varepsilon\left(z,\left\{\eta_{i}\right\}\right)$

Identification on $\bigcup_{i} M_{j}$

 $\arg\min_{z\in M_{j}}\varepsilon\left(z,\left\{ \eta_{i}\right\} \right)$

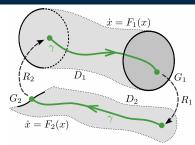
 $\nabla \varepsilon$ undefined on $G_j \subset D_j$ R_j not generally invertible

global optimization needed

Burden, Ohlsson, Sastry SysID 2012

Motivation Overview 1. Reduction 2. Identification 3. Simulation

Identification on original hybrid model vs. reduced model





Identification on $\bigcup_i D_i$

 $\arg\min_{z\in D_i}\varepsilon\left(z,\left\{\eta_i\right\}\right)$

 $\nabla \varepsilon$ undefined on $G_i \subset D_i$ R_i not generally invertible

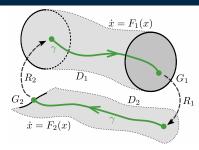
global optimization needed

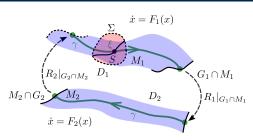
Identification on $\bigcup_i M_i$

 $\arg\min_{z\in M_{i}}\varepsilon\left(z,\left\{ \eta_{i}\right\} \right)$

 $\nabla \varepsilon$ well-defined on $G_i \cap M_i$ $R_i|_{M_i}$ invertible

Burden, Ohlsson, Sastry SysID 2012





Identification on $\bigcup_i D_i$

 $\arg\min_{z\in D_{i}}\varepsilon\left(z,\left\{\eta_{i}\right\}\right)$

 $\nabla \varepsilon$ undefined on $G_i \subset D_i$ R_i not generally invertible

global optimization needed

Identification on $\bigcup_i M_i$

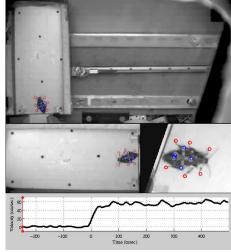
 $\arg\min_{z\in M_i}\varepsilon\left(z,\left\{\eta_i\right\}\right)$

 $\nabla \varepsilon$ well-defined on $G_i \cap M_i$ $R_i|_{M_i}$ invertible

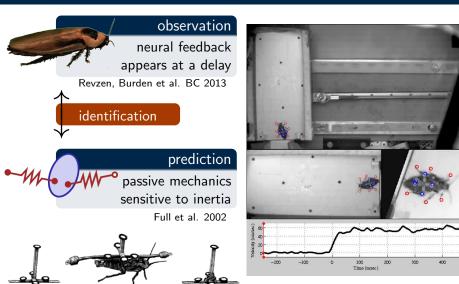
first-order algorithms applicable

Burden, Ohlsson, Sastry SysID 2012

Novel quantitative predictions for biomechanics

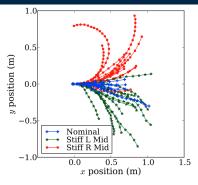


Novel quantitative predictions for biomechanics

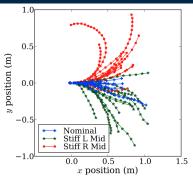


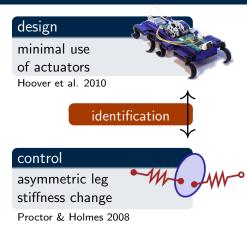
Burden, Revzen, Moore, Sastry, Full SICB 2013

Model-based design and control of dynamic robots



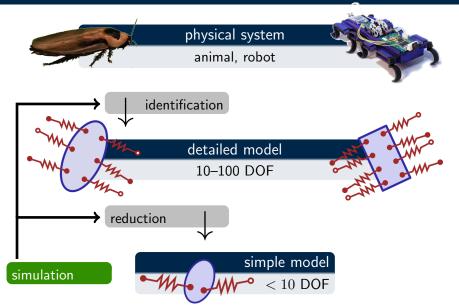
Model-based design and control of dynamic robots





Hoover, Burden, Fu, Sastry, Fearing BIOROB 2010

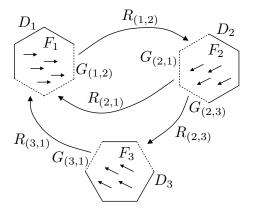
Convergent Simulation



State space metric

Hybrid control systems comprised of distinct operating "modes"

- Digital controller state ("on" or "off")
- Physical/dynamical regime ("reach" or "grasp")

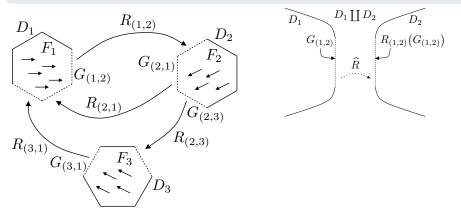


Burden, Gonzalez, Vasudevan, Bajcsy, Sastry (arXiv:1302.4402)

State space metric

Hybrid control systems comprised of distinct operating "modes"

- Digital controller state ("on" or "off")
- Physical/dynamical regime ("reach" or "grasp")

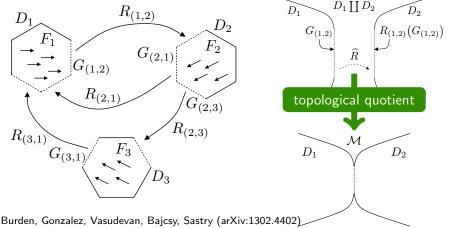


Burden, Gonzalez, Vasudevan, Bajcsy, Sastry (arXiv:1302.4402)

State space metric

Hybrid control systems comprised of distinct operating "modes"

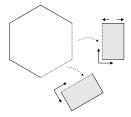
- Digital controller state ("on" or "off")
- Physical/dynamical regime ("reach" or "grasp")



Convergent numerical simulation

Transition between discrete modes occurs autonomously

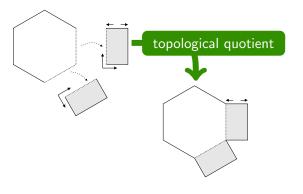
• simulation algorithm must control error introduced by "event detection"



Convergent numerical simulation

Transition between discrete modes occurs autonomously

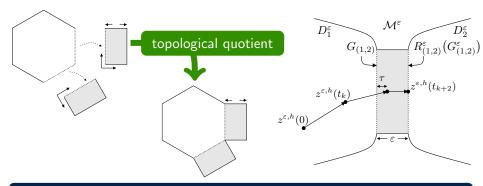
simulation algorithm must control error introduced by "event detection"



Convergent numerical simulation

Transition between discrete modes occurs autonomously

simulation algorithm must control error introduced by "event detection"

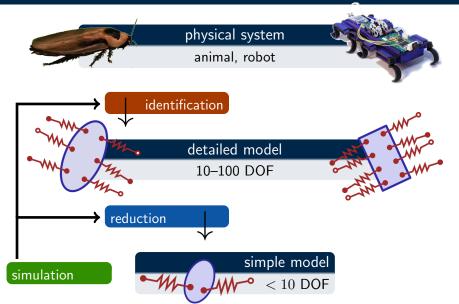


State space metric enables proof of convergence for "Forward Euler"

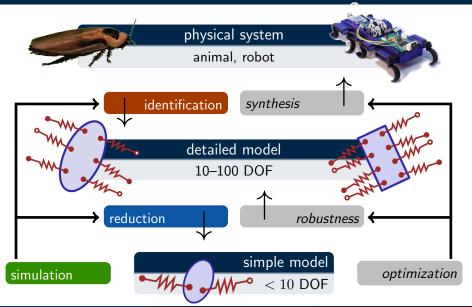
• Linear convergence rate for any orbitally stable execution

Burden, Gonzalez, Vasudevan, Bajcsy, Sastry (arXiv:1302.4402)

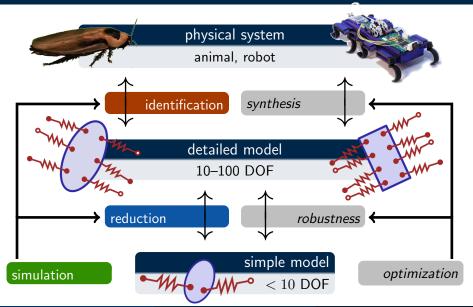
Models enable translation across scale and morphology

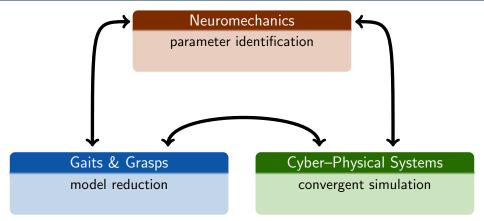


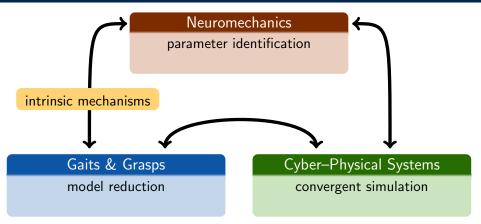
Models enable translation across scale and morphology

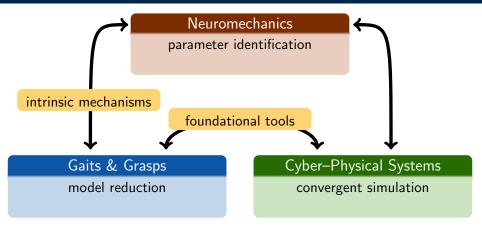


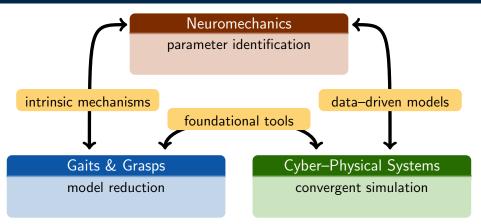
Models enable translation across scale and morphology

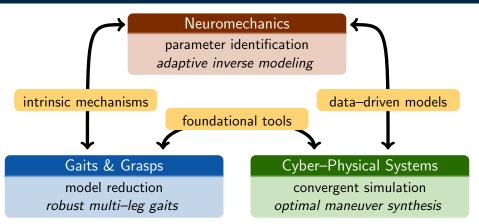








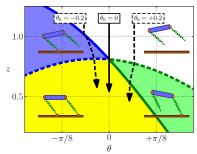




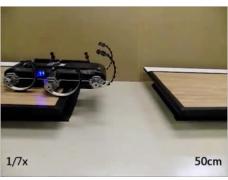
Robust multi-legged gaits

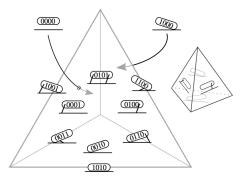
U. Minnesota Equine Center

www.naturhov.dk



Optimal maneuver synthesis





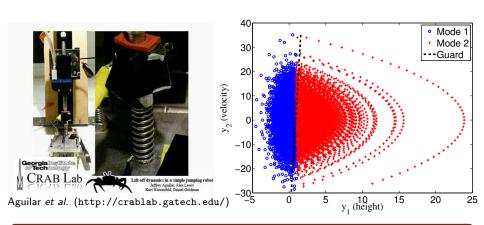
X-RHex Lite (http://kodlab.seas.upenn.edu)

Johnson & Koditschek ICRA 2013

Reformulate combinatorial problem

Control yields footfall sequence; can search over continuous inputs.

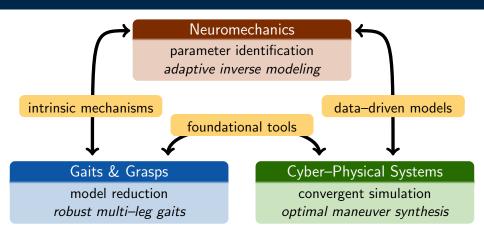
Adaptive inverse modeling

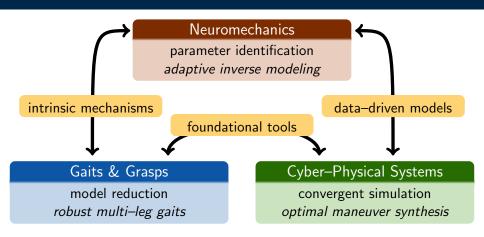


Estimate piecewise-affine model from empirical data

Use predictive model for controller synthesis

Elhamifar, Burden, Sastry (submitted)





An emerging Systems Theory for Neuromechanics

Engineer dynamic interactions between computation & mechanics

Discussion & Questions — Thanks for your time!

Reduction

Reduced-order model emerges from intermittent contact.

Simulation

Convergent numerical simulation for hybrid control systems.

Identification

Scalable parameter identification for models of locomotion.

Collaborators

- Shankar Sastry (UCB)
- Robert Full (UCB)
- Dan Koditschek (UPenn)
- Shai Revzen (UMich)
- Aaron Hoover (Olin)
- Henrik Ohlsson (Linköping)

Funding

- NSF Fellowship
- ARL MAST CTA (W911NF-08-2-0004)

