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Motivation

Dynamic Gaits & Dexterous Grasps

Dynamic Locomotion

e speeds measured in
bodylengths/sec
e scales ranging from cm to m

Dexterous Manipulation

e high—precision pick—and—place,

repetitive assembly Koditschek et al. Fearing et al.
e fold towels; wash dishes =

Future direction =

e co—robots in factory & home &

Willow
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Motivation

Neuro—Mechanical Systems

Fundamentals of sensorimotor control

e mechanosensory feedback
e passive self—stabilization

[

Design of Assistive Devices

e prosthesis, exoskeleton
e Brain—Machine Interface

Future direction

e personalized healthcare
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Motivation

Cyber—Physical Systems (CPS

Automated Healthcare i ~ ¢

e teleoperated surgery

e remote diagnosis ‘ l

Intuitive Brewer et al.

»

Human-in-the-Loop

e (semi—)autonomous vehicles
e energy demand response
e social cyber—physical systems

Future direction

e co—design cyber-and—physical systems

Google
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Motivation Overviev Locomotion 1. Reduction 2. ldentification 3. Simulation Future

Fundamental engineering challenges

Neuromechanics

Future direction:
e automated & personalized healthcare

Gaits & Grasps Cyber—Physical Systems

Future direction: Future direction:
e co—robots in factory & home e co—design cyber & physical
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Challenges:
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e translation across scale, material, & morphology

Gaits & Grasps Cyber—Physical Systems

Future direction: Future direction:

e co—robots in factory & home e co—design cyber & physical
Challenges: Challenges:

e sensitive to environment o distributed, multi-agent

e relies on careful calibration e large scale, multi—physical

Sam Burden http://purl.org/sburden Systems Theory for Neuromechanics February 18, 2014 6


http://purl.org/sburden

Motivation Overview Locomotion 1. Reduction 2. ldentification 3. Simulation Future

Fundamental engineering challenges

Neuromechanics

Future direction:

e automated & personalized healthcare
Challenges:

e generalization across task/environment

e translation across scale, material, & morphology

Gaits & Grasps Cyber—Physical Systems

Future direction: Future direction:

e co—robots in factory & home e co—design cyber & physical
Challenges: Challenges:

e sensitive to environment o distributed, multi-agent

e relies on careful calibration e large scale, multi—physical

Common engineering challenge

Dynamic interaction between computational & mechanical components
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Motivation

Dynamic interaction between computation & mechanics

Controller
sensors, computers

Objects & Obstacles
terrain, agents
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Motivation Overviev Locomotion 1. Reduction 2. ldentification

3. Simulation Future

Dynamic interaction between computation & mechanics

Gaits & Grasps

Controller Nervous system
sensors, computers sensorimotor elements

T

T

Objects & Obstacles Environment
terrain, agents predator/prey/partner
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Motivation Overview Locomotion 1. Reduction 2. ldentification 3. Simulation Future

Dynamic interaction between computation & mechanics

Gaits & Grasps Cyber—Physical Sys

Controller Nervous system Social planner
sensors, computers sensorimotor elements  distributed sensor web

s

I

Objects & Obstacles Environment Society
terrain, agents predator/prey/partner infrastructure, economy
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Motivation Overview Locomotion 1. Reduction 2. ldentification 3. Simulation Future

Dynamic interaction between computation & mechanics

Gaits & Grasps Cyber—Physical Sys

Controller Nervous system Social planner
sensors, computers sensorimotor elements  distributed sensor web

I

Q(T ‘-
¢

I

Objects & Obstacles Environment Society
terrain, agents predator/prey/partner infrastructure, economy

Interaction dynamics are piecewise—defined, distributed

Need new framework for modeling and control
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Overview

Analytical, computational, & experimental framework

Neuromechanics

nervous system <+ environment

Cyber-Physical Systems

controller <+ objects & obstacles planner <> society
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Overview

Analytical, computational, & experimental framework

Neuromechanics

nervous system <+ environment

intrinsic mechanisms data—driven models

foundational tools

Cyber-Physical Systems

controller <+ objects & obstacles planner <> society

Seek a unified framework

Engineer dynamic interactions between computation & mechanics
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Overview

Today's theme: framework for studying locomotion

r-)(-\

2. parameter identification

Cyber—Physical Systems

1. model reduction 3. convergent simulation
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Overview

Overview of today's talk

Locomotion
animals are adept at dynamic locomotion

1. Reduction
models for periodic gaits generically reduce dimensionality

2. ldentification
reduction enables scalable algorithm for parameter estimation

3. Simulation
convergent numerical simulation for piecewise—defined dynamics

Future Directions
robust gaits, maneuver synthesis, and inverse modeling
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Locomotion

Animals are extremely adept at dynamic locomotion

flat—terrain gait optimized gait

Lateral view Slowed 20x

ad
zebra—tailed lizard; Li et al. JEB 2012
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Locomotion

Empirically, animals use few degrees-of-freedom

|
= o = N w

tarsus fore-aft position (cm)

-300 -0 -200 -150 -100 -50 0 0 20 40 60 80 100
time (msec) gait phase (%)
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Locomotion

Empirically, animals use few degrees-of-freedom

&

Cockroach dynamic
-300 -250 —200 -150 —100 =50 0 0 20 40 60 80 100

| \%" i
time (msec) gait phase (%)

Mechanisms for reduction in neural or environmental models

N w
w

o

sition (cm)

n
2

114

tarsus fore

{21

1 -3

Neural synchronization Muscle activation synergy

Cohen et al. J. Math. Bio 1982 Ting & Macpherson J. Neurosci. 2005
Physiological symmetry Granular media solidification
Golubitsky et al. Nature 1999 Li et al. Science 2013
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Motivation Overviev Locomotion Re 2. Identification 3. Simulation Future

Empirically, animals use few degrees-of-freedom

sition (cm)

i

Cockroach dynamic

n

: Vs 1.1
@
5
@

% :@ | _27
’ . 434N
-30 -250 -20 -150 -100 -50 0 0 20 40 60 & 100
time (msec) gait phase (%)

Mechanisms for reduction in neural or environmental models

Neural synchronization Muscle activation synergy

Cohen et al. J. Math. Bio 1982 Ting & Macpherson J. Neurosci. 2005
Physiological symmetry Granular media solidification
Golubitsky et al. Nature 1999 Li et al. Science 2013

Need reduction tool for interaction between body and environment
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Locomotion

Use simple models to study animal and robot gaits

physical system

animal, robot

detailed model
10-100 states

’ . reduced-order model
, el
~ 10 states

Full & Koditschek JEB 1999
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1. Reduction

Model Reduction

physical system

animal, robot

detailed model
10-100 states

reduced-order model
< 10 states
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1. Reduction

Dimension loss in vertical hopper

y(t)
D
asino(t) k.t E I
HUHI
N
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1. Reduction

Hybrid dynamical system

e

I
Sam Burden http://purl.org/sburden Systems Theory for Neuromechanics February 18, 2014 16


http://purl.org/sburden

1. Reduction

Trajectory for a hybrid dynamical system
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1. Reduction

Periodic orbit v for a hybrid dynamical system
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1. Reduction

Poincaré map for periodic orbit ~
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1. Reduction

Poincaré map for periodic orbit ~

Theorem (Aizerman & Gantmacher JMAM 1958)

The Poincaré map P is smooth in a neighborhood of &.
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1. Reduction

Model reduction near hybrid periodic orbit ~
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Overviev Locomotion 1. Reduction 2. ldentification 3. Simulation Future

Model reduction near hybrid periodic orbit ~

Theorem (Burden, Revzen, Sastry (arXiv:1308.4158))

Let n = min; dim D; — 1. If rank DP™ = r near &, then trajectories
starting near -y contract to a collection of hybrid-invariant
(r + 1)—dimensional submanifolds M; C D; in finite time.
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1. Reduction

Model reduction near hybrid periodic orbit ~

________

{‘Rz\czmuz D, NGinM;
\

\
IRi|Gyn,

Corollary (Burden, Revzen, Sastry (arXiv:1308.4158))
The submanifolds M; determine a hybrid system with periodic orbit .
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1. Reduction

Model reduction near hybrid periodic orbit ~

.......

{‘Rz\czmuz D, NGinM;
\

\
IRi|Gyn,

Corollary (Burden, Revzen, Sastry (arXiv:1308.4158))

The submanifolds M; determine a hybrid system with periodic orbit .
v Iis asymptotically stable in the original hybrid system
<= 1~ is asymptotically stable in the reduced hybrid system.
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1. Reduction

Spontaneous reduction in vertical hopper

Numerically linearizing Poincaré map P on ground,
we find DP(§) has eigenvalue ~ 0.57,
therefore DP? is constant rank near ¢&.
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1. Reduction

Spontaneous reduction in vertical hopper

y(t)

gl 0

asino(t)

Numerically linearizing Poincaré map P on ground,
we find DP(§) has eigenvalue ~ 0.57,
therefore DP? is constant rank near ¢&.

Corollary (Burden, Revzen, Sastry (arXiv:1308.4158))

hopper reduces one degree—of—freedom after a single “hop”.
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1. Reduction

Spontaneous reduction in vertical hopper

<

—
~

=

|

asino(t)

Numerically linearizing Poincaré map P on ground,
we find DP(§) has eigenvalue ~ 0.57,
therefore DP? is constant rank near ¢&.

kS
N
By |

Corollary (Burden, Revzen, Sastry (arXiv:1308.4158))

hopper reduces one degree—of—freedom after a single “hop”.

Interpretation

Holonomic ground contact constraint persists after liftoff.
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1. Reduction

Model with n legs reduces to Lateral Leg—Spring

V.0 A J

(3 + 2n) degrees—of—freedom 3 degrees—of—freedom
Schmit & Holmes 2001
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1. Reduction

Model with n legs reduces to Lateral Leg—Spring

(3 + 2n) degrees—of—freedom 3 degrees—of—freedom
Schmit & Holmes 2001

Controller (Burden, Revzen, Sastry (arXiv:1308.4158))

Smooth feedback law reduces 2n degrees—of—freedom after one stride.
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2. Identification

Parameter ldentification

physical system

animal, robot

detailed model
10-100 DOF

1. reduction \L

' ’ . reduced-order model
/ < 10 DOF

Sam Burden http://purl.org/sburden Systems Theory for Neuromechanics February 18, 2014 24


http://purl.org/sburden

2. Identification

Parametric identification for models of rhythmic behavior

identification

DynaROACH robot (Olin Robotics Lab, http://orb.olin.edu)
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2. Identification

Identification of initial conditions

<
=
=
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Identification of initial conditions

Yot 2) =y(t) ni=Y (0T, 2"))+ws,
w; iid random variables
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2. Identification

Identification of initial conditions

*%' X

Yot 2) =y(t) ni=Y (0T, 2"))+ws,
w; iid random variables

Identification problem
Solve arg min e (2, {n:}), where ¢ (2, {n;}) := 3_; [V (¢(iT’, 2)) — mll®.
zeDj
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2. Identification

Identification of initial conditions

Yot 2) =y(t) ni=Y (0T, 2"))+ws,
w; iid random variables

Identification problem
Solve arg min e (2, {n:}), where ¢ (2, {n;}) := 3_; [V (¢(iT’, 2)) — mll®.
zeDj

Assumption (smooth observations)

Y is smooth along trajectories, i.e. Y (¢(t, z)) is a smooth function of t.
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2. Identification

|dentification on original hybrid model vs. reduced model

dentification on (J; D,

arg min € (z, {n;})

J
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Ve undefined on G; C D;

R; not generally invertible
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dentification on (J; D, Identification on (J; M;
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|dentification on original hybrid model vs. reduced model
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arg Helglj e (2, {m}) arg rgjl\gj e (2, {ni})
Ve undefined on G; C D; Ve well-defined on G; N M;
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2. Identification

|dentification on original hybrid model vs. reduced model

dentification on (J; D, Identification on (J; M;

e (2, {mi}) g g & (2, {mi})
Ve undefined on G; C D; Ve well-defined on G; N M;
R; not generally invertible Rj|p; invertible
global optimization needed first—order algorithms applicable

Burden, Ohlsson, Sastry SysID 2012
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2. Identification

Novel quantitative predictions for biomechanics

observation

neural feedback
appears at a delay
Revzen, Burden et al. BC 2013
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2. Identification

Novel quantitative predictions for biomechanics

observation

neural feedback

appears at a delay
Revzen, Burden et al. BC 2013

identification

prediction

” passive mechanics
sensitive to inertia

Full et al. 2002
Fl
=
e
—200 ~100 o 100 200 300 a0
Time {msec)
Burden, Revzen, Moore, Sastry, Full SICB 2013
Sam Burden http://purl.org/sburden Systems Theory for Neuromechanics
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2. Identification

Model-based design and control of dynamic robots

05 minimal use
§ of actuators
£ 0.0 Hoover et al. 2010
2
o
=
-0.5
+—+ Nominal
»—  Stiff L Mid
e Stiff R Mid
—1.0!

0.0 0.5 1.0 1.5
 position (m)

Hoover, Burden, Fu, Sastry, Fearing BIOROB 2010
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2. Identification

Model-based design and control of dynamic robots

05 minimal use

§' of actuators

£ 00 Hoover et al. 2010

" os identification

+—+ Nominal
»—  Stiff L Mid
~— Stiff R Mid

-1.0

0.0 0.5 1.0 1.5

 position (m) .
asymmetric leg
stiffness change

Proctor & Holmes 2008

SMA wire |
actuator

Hoover, Burden, Fu, Sastry, Fearing BIOROB 2010
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3. Simulation

Convergent Simulation

detailed model
10-100 DOF

> reduction \l’

simple model
< 10 DOF

simulation
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3. Simulation

State space metric

Hybrid control systems comprised of distinct operating “modes”

e Digital controller state (“on" or “off")
e Physical/dynamical regime (“reach” or “grasp”)

Burden, Gonzalez, Vasudevan, Bajcsy, Sastry (arXiv:1302.4402)
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State space metric

Hybrid control systems comprised of distinct operating “modes”

e Digital controller state (“on" or “off")
e Physical/dynamical regime (“reach” or “grasp”)
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3. Simulation

Convergent numerical simulation

Transition between discrete modes occurs autonomously

e simulation algorithm must control error introduced by “event detection”

Burden, Gonzalez, Vasudevan, Bajcsy, Sastry (arXiv:1302.4402)
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3. Simulation

Convergent numerical simulation

Transition between discrete modes occurs autonomously

e simulation algorithm must control error introduced by “event detection”

State space metric enables proof of convergence for “Forward Euler”

e Linear convergence rate for any orbitally stable execution

Burden, Gonzalez, Vasudevan, Bajcsy, Sastry (arXiv:1302.4402)
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Future

Models enable translation across scale and morphology

physical system

animal, robot

) identification

detailed model
10-100 DOF

simple model
< 10 DOF

simulation
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Future
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Future

Summary of framework for studying locomotion

F)(-\

parameter identification

Cyber—Physical Systems

model reduction convergent simulation
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Future

Summary of framework for studying locomotion

r) Neuromechanics

parameter identification

intrinsic mechanisms
foundational tools

L / \ ¥
Cyber-Physical Systems

model reduction convergent simulation
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Future

Summary of framework for studying locomotion

r) Neuromechanics

parameter identification

intrinsic mechanisms data—driven models
foundational tools

L / \ ¥
Cyber-Physical Systems

model reduction convergent simulation
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Future

Summary of framework for studying locomotion

r) Neuromechanics

parameter identification
adaptive inverse modeling

intrinsic mechanisms data—driven models
foundational tools

L / \ ¥
Cyber-Physical Systems

model reduction convergent simulation
robust multi-leg gaits optimal maneuver synthesis
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Future

Robust multi—legged gaits

U. Minnesota Equine Center

—/8 +7/8
0
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Future

Optimal maneuver synthesis

o=

_/

@ A\
@

X-RHex Lite (http://kodlab.seas.upenn.edu) Johnson & Koditschek ICRA 2013

Reformulate combinatorial problem

Control yields footfall sequence; can search over continuous inputs.
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Future

Adaptive inverse modeling

° Mode 1

+ Mode 2

---Guard

£ %

> §

-10 o

-20 . |

e A

Aguilar et al. (http://crablab.gatech.edu/) -5 0 5 15 20 25

Y, (ﬂquht)

Estimate piecewise—affine model from empirical data

Use predictive model for controller synthesis

Elhamifar, Burden, Sastry (submitted)
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Future

parameter identification

adaptive inverse modeling

intrinsic mechanisms data—driven models
foundational tools

L / \ ¥
Cyber-Physical Systems

model reduction convergent simulation
robust multi-leg gaits optimal maneuver synthesis
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Future

parameter identification
adaptive inverse modeling

r) Neuromechanics

intrinsic mechanisms data—driven models
foundational tools

L / \ ¥
Cyber-Physical Systems

model reduction convergent simulation
robust multi-leg gaits optimal maneuver synthesis

An emerging Systems Theory for Neuromechanics

Engineer dynamic interactions between computation & mechanics
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Discussion & Questions — Thanks for your time!

Reduced—order model emerges from Convergent numerical simulation for
intermittent contact. hybrid control systems.

Identification
Scalable parameter identification for models of locomotion.

Collaborators

Shankar Sastry (UCB)
Robert Full (UCB)

Dan Koditschek (UPenn)
Shai Revzen (UMich)
Aaron Hoover (Olin)
Henrik Ohlsson (Linkdping)

e NSF Fellowship
e ARL MAST CTA (W911NF-08-2-0004)
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