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a b s t r a c t

We propose an offline algorithm that simultaneously estimates discrete and continuous components
of a hybrid system’s state. We formulate state estimation as a continuous optimization problem by
relaxing the discrete component and using a robust loss function to accommodate large changes in the
continuous component during switching events. Subsequently, we develop a novel nonsmooth variable
projection algorithm with Gauss–Newton updates to solve the state estimation problem and prove the
algorithm’s global convergence to stationary points. We demonstrate the effectiveness of our approach
by comparing it to a state-of-the-art filter bank method, and by applying it to simple piecewise-linear
and -nonlinear mechanical systems undergoing intermittent impact.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

This paper considers the problem of using noisy measure-
ments from a piecewise-continuous trajectory to estimate a hy-
brid system’s state. A hybrid dynamical system switches between
dynamic regimes at time- or state-triggered events. The state
estimation problem has been extensively studied in classical dy-
namical systems whose states evolve according to one (possi-
bly time-varying) smooth model. This problem is fundamentally
more challenging for hybrid systems since the set of discrete
state1 sequences generally grows combinatorially in time.

When the discrete state sequence and switching times are
known a priori or directly measured, only the continuous state
needs to be estimated, yielding a classical state estimation prob-
lem; this approach has been applied to piecewise-linear sys-
tems (Stengel, 1994, Chap. 4.5) and to nonlinear mechanical
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components. We refer to the discrete component of the hybrid system state as
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systems undergoing impacts (Menini & Tornambe, 2001). When
the discrete state is not known or measured, estimating both
the discrete and continuous states simultaneously improves es-
timation performance. One approach uses a bank of filters, each
tuned to one discrete state, and selects the discrete states as the
filter with the lowest residual (Balluchi, Benvenuti, Di Benedetto,
& Sangiovanni-Vincentelli, 2002, §4.1). This filter bank method
has been applied to hybrid systems with linear dynamics (Bal-
luchi, Benvenuti, Di Benedetto, & Sangiovanni-Vincentelli, 2003,
§4.1) (Gómez-Gutiérrez, Čelikovský, Ramírez-Treviño, Ruiz-Léon,
& Gennaro, 2011), nonlinear dynamics (Barhoumi, Msahli, Djemaï,
& Busawon, 2012), and jumps in the continuous state when
the discrete state changes (Balluchi, Benvenuti, Di Benedetto, &
Sangiovanni-Vincentelli, 2013). Likewise, particle filter methods
for hybrid systems (Blom & Bloem, 2007; Doucet, Gordon, &
Krishnamurthy, 2001; Seah & Hwang, 2009) use a collection of
filters, identified as particles, and are applicable to more general
nonlinear process dynamics. Particle filters and filter banks are
effective when the number of discrete states and dimension of
continuous state spaces are small.

Another approach formulates a moving-horizon estimator
over both the continuous and discrete states, resulting in a mixed-
integer optimization problem (Bemporad, Mignone, & Morari,
1999). The inherently discrete nature of the problem formulation
enables estimation of the exact sample when the discrete state
switches, at the expensive of combinatorial growth of the set
of discrete decision variables as the horizon increases. Multiple
methods have been developed to mitigate the challenge posed by
this combinatorial complexity. One approach entails summarizing
past measurements and state estimates with a penalty term in
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the objective function (Ferrari-Trecate, Mignone, & Morari, 2002).
Another approach, applicable to systems with bounded noise,
entails restricting the set of possible discrete state sequences
using a priori knowledge of the system (Alessandri, Baglietto, &
Battistelli, 2005, 2007).

An alternative approach to circumventing the combinatorial
challenge entailed by exactly estimating the discrete state se-
quence involves relaxing the discrete state estimate to take on
continuous values as in Bako and Lecoeuche (2013) and John-
son (2016). The latter reference uses a sparsity-promoting con-
vex program whose objective incorporates a nonsmooth penalty
across all possible discrete state sequences, and guarantees the
estimate converges to the true continuous and discrete states.
Both approaches are formulated for piecewise-linear systems
whose continuous states do not jump when switching between
subsystems; in the language of hybrid systems, the continuous
states are reset using the identity function.

Our approach and contributions

We propose an offline algorithm for estimating the state of
hybrid systems with nonlinear dynamics, non-identity resets,
and noisy process and observation models. Although prior work
accommodates aspects of our problem formulation, to the best
of our knowledge no work simultaneously allows nonlinear dy-
namics and non-identity resets: Balluchi et al. (2013) do not
allow nonlinear dynamics, Blom and Bloem (2007) and Ferrari-
Trecate, Mignone, and Morari (2002) do not allow non-identity
reset, and Bako and Lecoeuche (2013) do not allow either non-
linear dynamics nor non-identity resets. Our starting point is
the optimization perspective on generalized and robust state
estimation (Aravkin, Burke, Ljung, Lozano, & Pillonetto, 2017;
Aravkin, Burke, & Pillonetto, 2012). To formulate state estimation
as a continuous optimization problem, we relax the discrete state
to take on continuous values as in prior work. Unlike prior work
on state estimation for hybrid systems, we model process noise
using the Student’s t distribution, which allows large innovations
and makes the method applicable to systems with non-identity
resets.

In combination, these elements yield a nonsmooth noncon-
vex continuous optimization formulation for offline state esti-
mation (Section 2). We develop a Gauss–Newton type algorithm
to solve this problem and prove the algorithm globally con-
verges to stationary points (Section 3). The algorithm is compared
to a class of state-of-the-art algorithms (Section 5) and evalu-
ated on piecewise-linear and -nonlinear hybrid system models
(Section 6).

2. Problem formulation

We consider observational data periodically sampled from
a continuous-time hybrid dynamical system (Goebel, Sanfelice,
& Teel, 2009) that undergoes occasional jumps in continuous
state, such as a mechanical system undergoing intermittent im-
pacts (Johnson, Burden, & Koditschek, 2016). We utilize a discrete-
time switched system as the process model for this sampled data.
The process model is chosen to capture the salient features of a
hybrid dynamical system model, e.g. the continuous-time dynam-
ics differing between discrete states, while shifting the challenge
of non-identity resets to the process noise. As we explain below,
combining this process model with a Student’s t distribution
for the process noise captures the salient features of the un-
derlying system dynamics while enabling our derivation of a
computationally efficient state estimation algorithm.

2.1. Process and observation models

We use a discrete-time switched system

xt+1 =
M∑

m=1

Fm(xt )wt [m] + σt

yt = Ht (xt )+ δt

(1)

where m ∈ {1, . . . ,M} indexes the continuously-differentiable
process model Fm:Rn

→ Rn, M ∈ N is the number of process
models, Ht :Rn

→ Rd is the continuously-differentiable observa-
tion model that generates observations yt ∈ Rd of the hidden
continuous state xt ∈ Rn, σt , δt are process and measurement
noises, and wt ∈ DM is a one-hot vector2 that indicates which
process model is active at time t . Note that the observation model
does not depend explicitly on the active model Fm, which must
be inferred from measurements of the continuous state xt .

The model Fm that is active during each time step may be
determined by an exogenous signal, prescribed as a function of
time or state, or some combination thereof. Thus, the equation
in (1) can represent the process and observation models of a
wide variety of hybrid systems. Appendix provides an overview
of the construction of a switched system by sampling a general
hybrid dynamical system. We are motivated theoretically and
experimentally to focus on cases where the active model Fm is
constant for many time steps, only occasionally switching to a
new model. When the sampling rate of a continuous-time hybrid
dynamical system is much faster than the dwell-time (Hespanha
& Morse, 1999), consecutive measurements will often be from the
hybrid system in the same discrete state.

The problem of when measurements from a switched-system
as in (1) with no process noise σt ∼ 0, and no measurement
noise δt ∼ 0, can reconstruct the true discrete and continuous
state (i.e. when is the system is observable) is well studied con-
tinuous time switched linear systems (Vidal, Chiuso, Soatto, &
Sastry, 2003) (Johnson, 2016, Chpt. 2). For the more general linear
hybrid system, when the continuous state undergoes occasional
jumps, observability tests with particular assumptions have been
proposed (Balluchi et al., 2003). To the best of our knowledge
there is not a general observability test that applies to nonlinear
hybrid systems with non-identity resets; a class of hybrid systems
considered in this paper.

When the discrete state changes in a hybrid system, the con-
tinuous state may change abruptly according to a reset map.
As an example, the velocity of a rigid mass changes abruptly
when it impacts a rigid surface (Lötstedt, 1982). Empirically, these
discrete reset dynamics are much more poorly characterized than
their continuous counterparts. For instance, whereas the ballis-
tic trajectory of a rigid mass is well-approximated by Newton’s
laws, the abrupt change in velocity that occurs at impact is not
consistent with any established impact law (Fazeli, Zapolsky,
Drumwright, & Rodriguez, 2017). Including such a reset in the
system model (1) will introduce bias into the state estimate
because the model will generate erroneous predictions at resets,
diminishing the accuracy of estimated states at nearby times. This
observation motivates us in the next section to account for the
effect of unknown resets as part of the process noise.

2.2. Process noise and observation noise models

Instead of incorporating continuous state resets explicitly into
the model (1), we introduce a distributional assumption on the
process noise σt that accepts large instantaneous changes in the

2 w ∈ RM is one-hot if w[i] ∈ {0, 1} for all i ∈ {1, . . . ,M} and 1Tw = 1;
DM
⊂ RM denotes the set of one-hot vectors.



J. Zhang, A.M. Pace, S.A. Burden et al. / Automatica 115 (2020) 108871 3

continuous state estimate. Specifically, we assume that process
noise σt follows a Student’s t distribution. However, we em-
phasize that this is a modeling assumption. It does not imply
that process noise from real hybrid system has to follow this
distribution. Compared with the commonly-used Gaussian distri-
bution, the heavy-tailed Student’s t is tolerant to large deviations
in the estimate of the hidden continuous state xt (Aravkin, Burke,
& Pillonetto, 2014). Hence, the Student’s t error model allows
an instantaneous change in the state that is consistent with (1)
before and after the change. The negative log-likelihood of the
Student’s t (as a function of σt ) is given by

r log
(
r +

Q−1/2σt
2)− C(r), (2)

where r is the degrees-of-freedom parameter of the Student’s t ,
and Q is the covariance matrix, and C(r) is a term independent
of σt .

If the continuous state xt was known, then any residual be-
tween the predicted observations Ht (xt ) and actual measure-
ments yt at time t is due to measurement noise; in particular, the
residual does not exhibit large deviations due to continuous state
resets at switching times. Thus, we assume the measurement
noise δt follows the usual Gaussian distribution, with negative
log-likelihood
1
2

R−1/2δt2 , (3)

where R is the covariance matrix. The plots below provide a
comparison between the probability density (left) and the nega-
tive log-likelihood (right) for the scalar Gaussian (solid blue) and
Student’s t distributions (dashed red; degree-of-freedom r = 1).

2.3. State estimation problem formulation

We derive the objective function for estimating states of (1)
using maximum a posteriori (MAP) likelihood. Including the con-
straint on w, we obtain the optimization problem

min
xt∈Rn,wt∈Dm

T−1∑
t=0

lmeas(xt , yt )+ lproc(xt , yt , wt ) (4)

where

lmeas(xt , yt ) =
1
2

R−1/2 (yt −Ht (xt ))
2

and

lproc(xt , yt , wt ) =

r log

⎛⎝r +

Q−1/2
(
xt+1 −

M∑
m=1

Fm(xt )wt [m]

)
2
⎞⎠ .

Problem (4) is a nonlinear mixed-integer program with respect to
both the continuous (xt ) and discrete (wt ) decision variables, with
the discrete variable constrained to be a one-hot vector (wt ∈

DM ). We can significantly simplify the structure by establishing
the following lemma.

Lemma 1 (Formulation Equivalence). Given w ∈ DM , any vectors
x1, x2, models Fi, and any penalty functional g, we have

min
w∈DM

g

(
x2 −

M∑
m=1

w[m]Fm(x1)

)

= min
w∈DM

M∑
m=1

w[m]g (x2 − Fm(x1))

and

argmin
w∈DM

g

(
x2 −

M∑
m=1

w[m]Fm(x1)

)

= argmin
w∈DM

M∑
m=1

w[m]g (x2 − Fm(x1)) .

Proof. Since w ∈ DM for both problems, there are only M
possible values for both objective functions, i.e.

g(x2 − F1(x1)), g(x2 − F2(x1)), . . . , g(x2 − FM (x1)).

Hence, the minimum objective value for both problems will be
minm g(x2−Fm(x1)) and every minimizer is a one-hot vector that
selects a minimum value. □

Based on Lemma 1, an equivalent formulation to (4) is given
by

min
xt∈Rn,wt∈DM

T−1∑
t=0

(
1
2

R−1/2 (yt −Ht (xt ))
2+

M∑
m=1

wt [m]r log
(
r +

Q−1/2 (xt+1 − Fm(xt ))
2)).

(5)

Although still a mixed-integer program, this reformulation ex-
hibits linear coupling between the discrete variables wt and con-
tinuous variables xt . We will leverage this linear coupling when
we develop our estimation algorithm based on the relaxed prob-
lem formulation introduced in the next section.

2.4. Relaxed state estimation problem formulation

Ultimately, the discrete state estimate will be specified as a
one-hot vector, wt ∈ DM

⊂ RM . To formulate a continuous
optimization problem that approximates the mixed-integer prob-
lem formulated in the previous section, we relax the decision
variable wt to take values in the convex hull ∆M of DM . We
use ∆M

:= {w ∈ [0, 1]M : 1Tw = 1} to denote the simplex in RM .
The optimal relaxed wt will generally lie on the interior of the
simplex, so we project the result from our relaxed optimiza-
tion problem to return the one-hot discrete state estimate. Since
this relaxation–optimization–projection process tends to induce
frequent changes in the discrete state estimate, we introduce a
smoothing term on wt ,

ν∥wt+1 − wt∥
2
2,

yielding the continuous relaxation of (5) given by

min
xt∈Rn,wt∈∆M

f (x, w) :=
T−1∑
t=0

(
1
2

R−1/2 (yt −Ht (xt ))
2

+

M∑
m=1

wt [m]r log
(
r +

Q−1/2 (xt+1 − Fm(xt ))
2)

+ ν∥wt+1 − wt∥
2
2

)
,

(6)

where x is the concatenated variable containing all xt , w is the
concatenated variable containing all wt , and ν is a parameter
controlling the strength of smoothing. The optimal relaxed dis-
crete state estimate wt ∈ ∆M is projected onto DM by choosing
the (unique) one-hot vector whose argmaxm wt [m] component is
equal to 1.
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3. State estimation algorithm

In this section, we derive an algorithm to solve the relaxed
state estimation problem formulated in (6) using two key ideas:

(1) nonsmooth variable projection;
(2) Gauss–Newton descent with Student’s t penalties.

These two ideas are explained in the next two subsections, fol-
lowed by a convergence analysis in the third subsection.

3.1. Nonsmooth variable projection

The first idea is to pass to the value function, projecting out
(partially minimizing over) the w variables, so as to reduce the
number of variables to optimize over. Define

v(x) := min
w

f (x, w) (7)

with f (x, w) as in (6). The objective f (x, w) is convex in w, but
not strictly convex. To guarantee differentiability of v(x), we add
a smoothing term and consider

vβ (x) := min
w

f (x, w)+
β

2
∥w∥2. (8)

where β is usually taken to be a very small number (e.g. 10−4
or smaller) so that the added term has minimal effect on the
original value function. (The minimizer of vβ is different from
that of v.) The function vβ (x) is a Moreau envelope (Rockafellar
& Wets, 1998, Def 1.22) of the true value function v; we refer
the interested reader to Aravkin, Drusvyatskiy, and van Leeuwen
(2016) for details and examples concerning the Moreau envelope
specifically (and nonsmooth variable projection more broadly).
The unique minimizer w(x) can be found quickly and accurately
since the minimization problem with respect to w is strongly
convex: projected gradient descent converges linearly and can
be accelerated using the Fast Iterative Shrinkage-Thresholding
Algorithm (FISTA) (Beck & Teboulle, 2009). With the minimizer
w(x), the gradient of vβ is readily computed as

∇vβ (x) = ∂xf (x, w)|w=w(x). (9)

Plugging w(x) back into (6) we obtain the problem

min
x

vβ (x) =
1
2

T−1∑
t=0

∥yt −H(xt )∥2R−1 + ν∥wt+1(x)− wt (x)∥22

+

M∑
m=1

wt,m(x)r log

(
1+
∥xt+1 − Fm(xt )∥2Q−1

r

)

+
β

2
∥w(x)∥2,

(10)

where wt,m(x) ≡ wt [m](x).

3.2. Gauss–Newton descent with Student’s t penalties

We derive a Gauss–Newton descent algorithm to solve (10)
based on a line search method first proposed in Burke (1985)
for convex composite problems. To apply the method we first
cast the objective in (10) into a convex composite function, let
vβ = ρ ◦ F , where

F (x) =
(
f1(x)
f2(x)

)
with

f1(x) =
1
2

T−1∑
t=0

M∑
m=1

wt,i(x)r log

(
1+
∥xt+1 − Fm(xt )∥2Q−1

r

)

+ ν∥wt+1(x)− wt (x)∥22 +
β

2
∥w(x)∥2

f2(x) =H(x)− y

and

ρ

(
c
u

)
= c +

1
2
∥u∥2R−1 + δ[0,+∞](c).

At each iteration, we choose a search direction d∗(x) that

d∗ ∈ argmind ρ(F (x)+ F (1)(x)d)+
1
2
dTU(x)d

∈ argmind f1(x)+∇f1(x)d+
1
2
∥f2(x)+∇f2(x)d∥2R−1

+
1
2
dTU(x)d

∈ argmind
1
2
dT
(
U(x)+∇H(x)TR−1∇H(x)

)
d

+ ∇vβ (x)Td

(11)

where the equivalence is obtained by dropping terms indepen-
dent of d. In general U(x) can be any positive semidefinite matrix
that varies continuously with respect to x, but for our particular
objective function involving Student’s t penalty, U(x) is chosen to
be a Hessian approximation of the Student’s t term in f1(x). There-
fore the update can be interpreted as a Gauss–Newton style up-
date. This approximation, proposed in Aravkin et al. (2014, (5.5),
(5.6)), is employed here because of its significant computational
advantage; it is of the form

U =

⎡⎢⎢⎣
U1 AT

2 0
A2 U2 AT

3 0

0
. . .

. . .
. . .

0 AT UT

⎤⎥⎥⎦ (12)

with

At = −r
M∑

m=1

wt−1,m(x)
Q−1∇Fm(xt−1)

r + ∥xt − Fm(xt−1)∥2Q−1
,

Ut =r
M∑

m=1

wt,m(x)∇Fm(xt )TQ−1∇Fm(xt )
r + ∥xt+1 − Fm(xt )∥2Q−1

+
wt−1,m(x)Q−1

r + ∥xt − Fm(xt−1)∥2Q−1

for 1 ≤ t ≤ T − 1, and

UT =
rwT−1,m(x)Q−1

r + ∥xT − Fm(xT−1)∥2Q−1
.

We can rewrite U(x) as

U(x) =
∑
m

Fm(x)T Q̃m(w(x))−1Fm(x),

where

Gm(x) =

⎡⎢⎢⎣
I 0 0

−∇Fm(x2) I 0 0

0
. . .

. . .
. . .

. . . 0−∇Fm(xT ) I

⎤⎥⎥⎦
and

Q̃m(w(x))−1 = diag(Q̃m,t (w(x))−1)

Q̃m,t (w(x))−1 =
rwt−1,m(x)Q−1

r + ∥xt − Fi(xt−1)∥2Q−1
.
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Clearly U(x) is positive semidefinite; we show in Lemma 3 that
U(x) is actually positive definite, so problem (11) reduces to the
block tridiagonal linear system(
U(x)+∇H(x)TR−1∇H(x)

)
d+∇vβ (x) = 0.

Given d∗(x), the new x+ is of the form

x+ = x+ δd∗,

where δ is a step size selected using the Armijo-type (Nocedal &
Wright, 2006, Sec. 3.1) line search criterion.

δ = max{γ l:ρ(F (x+ γ ld∗)) ≤ ρ(F (x))+ cγ l∆(x; d∗)
and c ∈ (0, 1)}

(13)

with

∆(x; d) = ρ(F (x)+ F (1)(x)d)+
1
2
dTU(x)d− ρ(F (x)).

When d = 0, we have ∆(x; 0) = 0,3 and since we choose the
minimizing

d∗ = argmin
d

ρ(F (x)+ F (1)(x)d)+
1
2
dTU(x)d,

we have ∆(x; d∗) ≤ 0. Further,

∆(x; d∗) = 0⇔ 0 ∈ argmin
d

ρ(F (x)+ F (1)(x)d)+
1
2
dTU(x)d

⇔ 0 ∈ ∂ρ(F (x))F (1)(x)

by Burke (1985, Thm. 3.6). In other words, stationarity is achieved
when ∆(x; d∗) = 0. When ∆(x; d) < 0, we are guaranteed to have
descent

ρ(F (x)+ F (1)(x)d) < ρ(F (x))

since U(x) is positive semidefinite. This condition ensures that the
line search step (13) is well-defined (Burke, 1985, Lemma 2.3).

Our approach is summarized in Algorithm 1. The positive
parameter ϵ in the algorithm specifies the stopping condition.
Finally, we project the relaxed discrete state estimate wt ∈ ∆M to
obtain a discrete state estimate in DM as described in Section 2.4.

Algorithm 1 Variable Projection for (6)

Require: x, w,Q , R, r, ν, β, ϵ

1: for k = 1, 2, 3, ... do
2: d(k) ← Gauss–Newton direction for x(k)
3: x(k+1) ← x(k) + δd(k)
4: w(k+1)

← InnerSolverΠt∆(w
(k))

5: lossk ← f (x(k+1), w(k+1))
6:

Iterate till ∆(x(k); d(k)) ≥ −ϵ.

3.3. Convergence of state estimation algorithm

In this section we show the convergence of the proposed
algorithm. The convergence of Algorithm 1 to a stationary point
for a general class of convex composite objective functions is
established in Aravkin et al. (2014) and Burke (1985). In par-
ticular (Aravkin et al., 2014, Theorem 5.1) establishes the possi-
ble outcomes when applying this type of algorithm; informally,
either the algorithm converges or the search direction dk di-
verges. In the remainder of this section we provide two tech-
nical results needed to formalize this intuition and to apply the
aforementioned theorem:

3 We overload ∆ here to match the notation in Aravkin et al. (2014) and
Burke (1985); ∆(x; d∗) should not be confused with ∆M , which is used to denote
the simplex containing relaxed state estimates.

• Lemma 2 establishes a set of sufficient conditions that pre-
vent divergence (∥d(k)∥ → ∞);
• Lemma 3 proves that the sufficient conditions are satisfied.

Lemma 2. Let Λ = {y|ρ(y) ≤ vβ (x(0))}. If F−1(Λ) = {x|F (x) ∈ Λ}

is bounded and U(x) is positive definite for all x ∈ F−1(Λ), then the
hypotheses in Aravkin et al. (2014, Theorem 5.1) are satisfied and
the sequence of search directions {d(k)} is bounded.

Proof. The hypotheses in Aravkin et al. (2014, Theorem 5.1)
require that F (1) to be bounded and uniformly continuous on
the set S = c̄o(F (−1)(Λ)) where c̄o stands for the closed convex
hull. F (1) is continuous on S since f (1)1 exists and is continuous by
property of Moreau envelope and proximal operator, and f (1)2 is
continuous trivially. Further, given that S is closed by definition
and bounded by assumption, it is compact. Hence F (1) is bounded
and uniformly continuous on S.

Now we need to show that the sequence of search direction
is bounded. At any iteration, the search direction d we choose
satisfies

0 ≤ ρ(F (x)+ F (1)(x)d)+
1
2
dTU(x)d ≤ ρ(F (x)) ≤ ρ(F (x0))

where the first inequality relies on ρ ≥ 0 and on the positive
semidefinite property of U(x); the second inequality comes from
∆(x; d) ≤ 0; the third inequality results from the line search
condition that creates a decreasing sequence {ρ(F (x(k)))}.

Since ρ(F (x0)) is finite, dTU(x)d <∞ for all iterations. Because
Λ is closed by closedness of ρ and F is continuous, F−1(Λ) is
also closed. Along with its boundedness by assumption, F−1(Λ) is
compact. Since x ∈ F−1(Λ) ↦→ λmin(U(x)) is continuous, its image
is bounded, hence given that U(x) is positive definite there exists
some λmin > 0 for all x ∈ F−1(Λ). Therefore 0 < λmin∥d∥2 ≤
dTU(x)d <∞, which implies that d(k) cannot be unbounded. □

Lemma 3. F−1(Λ) is bounded for problem (10) and U(x) is positive
definite for all x ∈ F−1(Λ).

Proof. First note that Λ is bounded by the coercivity of ρ. This
implies that for an unbounded sequence ∥x(k)∥ → ∞, we still
have f1(x(k)) <∞ and ∥f2(x(k))∥ <∞.

If ∥x(k)∥ → ∞, then we can find some t+1 and a subsequence
J such that limk∈J ∥x

(k)
t+1∥ = ∞. By the definition of f1 and

f1(x(k)) < ∞, limk∈J ∥Fi(x
(k)
t )∥ = ∞, which further implies that

limk∈J ∥x
(k)
t ∥ = ∞. Iteratively this means that limk∈J ∥x

(k)
t ∥ = ∞

for all t , in particular for the given starting point x0, but that is
not possible.

To show that U(x) in (12) is positive definite, recall that we
can rewrite U(x) as

U(x) =
∑
m

Gm(x)T Q̃m(w(x))−1Gm(x) ⪰ 0.

If there exists some d such that dTU(x)d = 0, then

dT
(∑

m

Gm(x)T Q̃m(w(x))−1Gm(x)

)
d

=

∑
m

dTGm(x)T  
zm(x)T

Q̃m(w(x))−1 Gm(x)d  
zm(x)

=

∑
m

zm(x)T Q̃m(w(x))−1zm(x) = 0,

⇒zm(x)T Q̃m(w(x))−1zm(x) = 0 ∀i

⇒zm,t (x)T Q̃m,t (w(x))−1zm,t (x) = 0∀t ∀i
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since Q̃m(w(x))−1 = diag(Q̃m,t (w(x))−1), and

Q̃m,t (w(x))−1 =
rw(x)t,mQ−1

r + ∥xt+1 − Fm(xt )∥2Q−1

are positive semidefinite. However because each wt ∈ ∆, there
has to be some Q̃−1m,t ≻ 0 for each t . Therefore U(x) must be
positive definite for all x ∈ F−1(Λ). □

4. Parameter tuning for proposed algorithm

Before we present numerical results, we include a general
guidance on parameter tuning for the new algorithm. We discuss
both standard parameters (e.g. Q , R) that must be tuned by any
algorithm for this application, as well as the parameters ν and r
which are specific to our approach. We first give a rough outline
of steps we have taken to tune the parameters, followed by more
detailed guidelines to tune each individual parameter.

(1) Start with large r for Student’s t , i.e. distribution close to
Gaussian.

(2) If Q and R are unknown, they are tuned such that the
smooth part of trajectories can be well approximated.

(3) Decrease degrees of freedom r of Student’s t so that the
nonsmooth part of trajectories can be captured.

(4) Adjust smoothing coefficient ν to reduce number of
switches.

For degrees of freedom r , one can start with a large value, mean-
ing that the distribution is close to Gaussian, and decrease it later
to capture jumps in the continuous state.

For covariance matrices Q and R, if empirical estimations are
available, they can be supplied to the model directly. There is
existing literature on estimation methods for noise covariance
matrices (Duník, Straka, Kost, & Havlík, 2017). When such es-
timations are not available, we usually assume the matrices to
be diagonal for simplicity, in which case the inverse of diagonal
entries can also be interpreted as weights. The diagonal values
of R represent variance for measurements. When choosing R,
we consider the relative scale of measurements, e.g. measure-
ments with smaller magnitude usually have smaller variance.
For choices of diagonal values of Q , we usually assign smaller
variance for observed states, e.g. positions in our examples, and
larger variance for unobserved states.

The choice of smoothing coefficient ν depends on modeler’s
belief in frequency of switches. One can start with a small value of
ν (i.e. little penalty on frequent switches), and gradually increase
it, till the pattern of switches is close to modeler’s belief.

We recommend having a short piece of manually labeled
trajectories as a training set for the purpose of parameter tuning.
After tuning, the user can apply the same parameters on larger
dataset collected from similar scenarios.

In terms of sensitivity of estimation results on parameters, we
had the following observations when running our experiments:

• The estimation result is not very sensitive to r . We were able
to decrease r fairly aggressively during parameter tuning.
• For the diagonals of Q and R, we found that it was important

to have values in the correct ranges, but the exact values
taken were not crucial.
• For smoothing coefficient ν, we noticed that the switching

times were sensitive to ν when ν was very small relative
to the diagonal entries of Q−1 and R−1. Since we assumed
that the discrete states should not change too frequently, we
used a slightly larger ν.

Fig. 1. Algorithm 1 (VP) performs comparably to IMM when the continuous
state does not undergo any resets. The top plot shows the true state w and
the simplex estimate of the true state from both methods w̃VP , w̃IMM1 . The
simplex estimate is shown in color and the probability estimate of the discrete
state being w = 1 is superimposed as a black line. The middle plot shows the
actual value of the continuous state of the simulation and the estimates. The
bottom plot shows the residual between true continuous state and the estimated
continuous state.

5. Comparison with the Interacting Multiple Model (IMM)
method

We compare the nonsmooth variable projection algorithm
(Algorithm 1) with the Interacting Multiple Model (IMM) (Blom
& Bar-Shalom, 1988) algorithm implemented in the open-source
package filterpy (Labbe, 2014). We consider two examples,
in both cases the continuous state x is a scalar, and there are
two discrete states. In the first example, the continuous state x
undergoes no jumps, i.e. the reset is the identity function. In the
second example, the continuous state x undergoes an instanta-
neous jump when the discrete state changes; i.e. a non-identity
reset. The dynamics of the two discrete state process models are:

ẋ = −1 Fw=1,

ẋ = 1 Fw=2.

For the second example with non-identity resets, when a discrete
state switch occurs, the continuous state decreases by 5. In both
examples the discrete state switches at t = 1 and t = 2. Addition-
ally, the measurement noise has a variance of R = [.0001], which
is used as the measurement noise covariance for all models. IMM1
uses a process noise model of covariance Q = [.001] for both the
internal Kalman filters and IMM2 uses a process normal process
noise model with covariance Q = [.2].

In the first example, Algorithm 1 (VP) and IMM perform nearly
identically (Fig. 1). Both methods accurately recover the con-
tinuous state and discrete state. When the system undergoes
instantaneous jumps in the continuous state at discrete state
changes, Algorithm 1 outperforms IMM (Fig. 2). For IMM, there
is a clear trade-off that exists between recovering the continuous
state and recovering the discrete state. When using a process
noise model with large covariance, as in the case of IMM2, the
continuous state can be recovered at the expense of the discrete
state. In the top subplot of Fig. 2, w̃IMM2 is nearly the same
value for the duration of the simulation, with slight separation
between the two modes. With a smaller covariance, as in IMM1,
the discrete state can be recovered. From t = 1 to near t =
1.25, IMM1 incorrectly identifies the discrete state due to the
continuous state jump direction being opposite of the continuous
state dynamics for discrete state w = 2.
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Fig. 2. Algorithm 1 (VP) outperforms the IMM when there are jumps in the
continuous state. The plots follow the convention laid out in Fig. 1.

Both Algorithm 1 and IMM require a similar number of pa-
rameters from the user. For both methods, covariance matrices
for the process error model Q and measurement error model R
need to be provided. IMM adjusts the estimated frequency of
switching between the discrete states via a probability transi-
tion matrix while Algorithm 1 uses the smoothing parameter ν,
Section 2.4. Algorithm 1 has one additional parameter r due to
the process noise model being Student’s t distribution, which is
crucial for obtaining accurate estimates with non-identity resets,
Section 2.2.

6. Experiments with hybrid system models

To evaluate the proposed approach to state estimation for
hybrid systems, we apply our algorithm to linear and nonlinear
impact oscillators. In addition to being well-studied (Di Bernardo,
Budd, Champneys, & Kowalczyk, 2008, §1.2), (Schatzman, 1998),
these mechanical systems were chosen since they are among the
simplest physically-relevant models that have non-identity reset
maps. The parameter and trajectory regime considered in what
follows is representative of a jumping robot constructed from one
limb of a commercially-available quadrupedal robot (Kenneally,
De, & Koditschek, 2016) and controlled with an event-triggered
stiffness adjustment; Fig. 3a contains a photograph of the limb.
The jumping robot’s hip and foot are constrained to move verti-
cally in a gravitational field, so the rigid pantograph mechanism
depicted in Fig. 3b has two mechanical degrees-of-freedom (DOF)
coupled through nonlinear pin-joint constraints. These two DOF
are preserved, but their nonlinear coupling is neglected, in the
piecewise-linear model illustrated in Fig. 3c. The hybrid dynamics
of these linear and nonlinear impact oscillators are specified in
Section 6.1

We perform two sets of experiments. The first set of ex-
periments in Section 6.2 concern the piecewise-linear model
depicted in Fig. 3c and explore the consequences of our modeling
assumptions and the efficacy of our proposed algorithm:

• Section 6.2.1 demonstrates the advantage of employing a
Student’s t distribution for process noise as compared to a
Gaussian distribution;
• Section 6.2.2 demonstrates the superior convergence rate

yielded by Gauss–Newton descent directions as compared
to gradient (steepest) descent;
• Section 6.2.3 demonstrates the advantage of smoothing the

relaxed discrete state estimate; and

Fig. 3. Jumping robot and impact oscillator hybrid system models (Section 6.1).
(a) Photograph of the physical robot (one leg from a Minitaur Kenneally et al.,
2016) that inspired the simulation models. (b) Nonlinear model consisting of two
masses coupled with a linear spring and a nonlinear pantograph mechanism. (c)
Linear model consisting of two masses coupled with a linear spring.

• Section 6.2.4 demonstrates the algorithm’s performance
when onboard measurements are used instead of offboard
measurements.

The second set of experiments in Section 6.3 evaluate our pro-
posed approach using the nonlinear model depicted in Fig. 3b.

Since this section is devoted to comparing estimated states to
ground truth simulation results, and since our approach entails
the determination of a relaxed discrete state estimate en route to
obtaining the discrete state estimate, we now introduce notation
that distinguishes these quantities:

• wt ∈ DM denotes the ground truth discrete state;
• w̃t ∈ ∆M denotes the relaxed discrete state estimate;
• ŵt ∈ DM denotes the discrete state estimate.

This notational distinction was not introduced previously in the
interest of readability since there was no ambiguity entailed by
overloading notation in the problem formulation and algorithm
specification.

6.1. Impact oscillator hybrid system models

The continuous state x = (q, q̇) ∈ R4 for the jumping robot
hybrid system model consists of the two-dimensional configura-
tion vector q ∈ R2 and corresponding velocity q̇ ∈ R2, where
q[1] and q[2] denote the vertical height of the hip and foot,
respectively. The foot is not permitted to penetrate the ground,
q[2] ≥ 0, so the first part of the discrete state indicates whether
this constraint is active: A (air) if q[2] > 0, G (ground) if q[2] = 0.
To compensate for energy losses at impact, an event-triggered
controller stiffens or softens a spring based on which direction the
hip is traveling, so the second part of the discrete state indicates
the direction of travel for q[1]: ↑ if up, ↓ if down. With q̈m(q, q̇) ∈
R2 denoting the acceleration of the hip and foot in discrete state
m ∈ {A↓,G↓,G↑,A↑},4 formula for this acceleration is given
in Table 1. At the moment of impact (when the discrete state
changes from wt ∈ {A ↓,A ↑} to wt+1 ∈ {G ↓,G ↑}) the
foot velocity q̇[2] is instantaneously reset to 0, corresponding to
perfectly plastic impact. An example of the jump in continuous
state when transitioning from A↓ to G↓ on the foot velocity q̇[2]
is shown in Fig. 4 near time 17.5 s.

4 To simplify exposition we identify m = A ↓ with m = 1, m = G ↓ with
m = 2, m = G↑ with m = 3, and m = A↑ with m = 4.
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Table 1
Discrete states and continuous dynamics for impact oscil-
lator hybrid system models (Section 6.1). Note that the
continuous dynamics q̈ have the same general form for both
the piecewise-linear and -nonlinear models, with the spring
law k being a linear or nonlinear function of the continuous
state x = (q, q̇) depending on which model is considered.

6.2. Piecewise-linear impact oscillator experiment

In this subsection, we employ the linear spring laws

k1(q, q̇) = 10(q[1] − q[2])− 3,

and

k2(q, q̇) = 15(q[1] − q[2])− 3,

with parameter values mh = 3,mt = 1, g = 2.
In our first demonstration the observed states are q[1] and

q[2], position of the hip and foot, leaving the velocities unob-
served:

Hpos(x) = q. (14)

State estimation results for this system are shown in Fig. 7.
In the remainder of this subsection, we demonstrate the

effects of the choices we made in our problem formulation
(Section 2) and algorithm derivation (Section 3) using the piece-
wise-linear model as a running example. We also consider a
variation where the measurements correspond to the leg length
and velocity, which are more representative of the onboard mea-
surements available to an autonomous robot operating outside of
the laboratory.

6.2.1. Student’s t versus Gaussian process noise
Fig. 4 compares the estimation of foot velocity using Stu-

dent’s t with r = 0.01 versus using Gaussian for the process
noise distribution; in both cases the true discrete state is given.
The estimated trajectory for both distributions matches the true
simulated trajectory away from jumps, while near jumps, such as
around times 16.6s and 17.5s, using the Student’s t distribution
enables closer tracking of the instantaneous change in the true
foot velocity q̇[2] than when using a Gaussian distribution.

6.2.2. Gauss–Newton versus gradient (steepest) descent
We empirically compared convergence rates for continuous

state xt updates obtained using Gauss–Newton and gradient
(steepest) descent directions (Algorithm 1, line 2). Fig. 5 shows
the log loss versus algorithm iteration for the two methods; the
actual discrete state wt was taken as given to perform this com-
parison. As expected, the objective value decreases significantly
faster when the search direction is determined by the Gauss–
Newton scheme as compared to the direction of steepest descent,
reaching the stopping criterion in ten times fewer iterations in
our tests.

Fig. 4. The Student’s t distribution process noise yields better estimates of
instantaneous changes in continuous state (Section 6.2.1). In this plot, estimates
of the foot velocity are shown near two impacts (≈ 16.6 s, 17.5 s).

Fig. 5. Gauss–Newton descent directions yield faster convergence than gradient
(steepest) descent (Section 6.2.2). In this plot, the discrete state variables w are
given and the second line of Algorithm 1 is modified to use either Gauss–Newton
descent directions or gradient (steepest) descent to estimate the continuous state
variables x by minimizing the relaxed objective function f (x, w) (6).

6.2.3. Smoothing the relaxed discrete state versus not
If the continuous states are given, the discrete state estimate

returned by our algorithm (skipping lines 2 and 3 of Algorithm 1)
is very close to the true discrete state regardless of whether
a smoothing term is included in the relaxed problem formula-
tion. When simultaneously estimating both the continuous and
discrete states, the smoothing term becomes crucial, as illus-
trated by comparing the discrete state estimates (ŵt ) in Fig. 6
(without smoothing) and Fig. 7 (with smoothing). In particular,
the estimated discrete state switches rapidly without smooth-
ing, whereas with smoothing the discrete state tends to remain
constant for many samples and change mostly near ground-truth
switching times.

6.2.4. Onboard versus offboard measurements
In the laboratory, the positions of the robot hip and foot

can be directly measured offboard, e.g. with an external camera
system. Outside of the laboratory, only the relative position of
the hip and foot can be directly measured onboard our robot.
Thus, we are motivated by this practical consideration to evaluate
our algorithm’s performance in the case where only the relative
position and velocity of the hip and foot are measured,

Hrelative(x) =
[
q[1] − q[2]
q̇[1] − q̇[2]

]
. (15)
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Fig. 6. Without smoothing (ν = 0), the discrete state estimate switches
frequently (Section 6.2.3). The top plot shows the true discrete state of the
system w ∈ DM , the relaxed discrete state estimate w̃ ∈ ∆M , and the discrete
state estimate ŵ ∈ DM for a simulation of the piecewise-linear system. The
subsequent plots show the estimate, simulation, and error ϵ values for position
and velocity of the hip q[1] and foot q[2].

Although the full hybrid system state is formally unobservable
with these relative measurements, our algorithm nevertheless
yields good estimates of the discrete state as shown in Fig. 8;
due to large errors in the estimate of (unobservable) continuous
states, we omit those results from the figure.

6.3. Piecewise-nonlinear impact oscillator experiment

To test Algorithm 1 on a nonlinear model, we included the
kinematic constraints depicted in Fig. 3b, resulting in a nonlinear
spring force. In this model we set the two spring laws to be the
same k1 = k2, decreasing the number of discrete states from four
to two: w = A when q[2] > 0 and w = G when q[2] = 0. State
estimation results compare favorably with the analogous results
from the piecewise-linear system when using either absolute
position measurements Hpos (14) (compare Fig. 9 with Fig. 7) or
relative measurements Hrelative (15) (compare Fig. 10 with Fig. 8).

In Fig. 9 we see that the model can estimate continuous and
discrete states in the nonlinear setting. However, we do notice
that the estimated trajectories are not as close to ground truth as
in the linear case. In particular, when q[2] has a value only slightly

Fig. 7. With smoothing (ν > 0), the discrete state estimate mostly switches
near the true switching times. (Section 6.2.3). This plot shows results from the
piecewise-linear system; the notational and plotting conventions are adopted
from Fig. 6.

Fig. 8. Estimated discrete state using onboard (relative position and velocity)
measurements Hrelative (15) for the piecewise-linear system closely matches true
discrete state. (Section 6.2.4). Continuous state estimates are not shown since
they are formally unobservable using only onboard measurements (in practice,
they drift away from ground truth over time).

greater than 0 (e.g. between times 3 s and 4 s), the algorithm fails
to detect the transition between w = A and w = G.

7. Conclusion

We proposed a new state estimation algorithm for hybrid sys-
tems, analyzed its convergence properties, compared with IMM,
and evaluated its performance on piecewise-linear and -nonlinear
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Fig. 9. Continuous and discrete states estimated for the piecewise-nonlinear
model (Section 6.3). Notational and plotting conventions are adopted from Fig. 6;
note that this model only has two discrete states (Section 6.1).

Fig. 10. Estimated discrete state using onboard (relative position and velocity)
measurements Hrelative (15) for the piecewise-nonlinear system closely matches
true discrete state. (Section 6.2.4). As with Fig. 8, continuous state estimates
are not shown since they drift from the true values over time; note that this
nonlinear model only has two discrete states (Section 6.1).

hybrid systems with non-identity resets. The algorithm leverages
a relaxed state estimation problem formulation where the deci-
sion variables corresponding to the discrete state are allowed to
take on continuous values. This relaxation yields a continuous op-
timization problem that can be solved using recently-developed
nonsmooth variable projection techniques. The effectiveness of
the approach was demonstrated on hybrid system models of
mechanical systems undergoing impact.

Appendix. Switched and hybrid dynamical systems

A hybrid dynamical system is a tuple H = (D, F ,G, R) (Burden,
Revzen, & Sastry, 2015; Goebel et al., 2009) where

D =
∐
j∈J

Dj, F : D→ TD, G ⊂ D, R : G→ D.

With φ : [0,∞) × D → D the flow of H , then a discrete-
time switched nonlinear system is obtained by sampling H with
timestep ∆ > 0:

x+ = φ(∆, x).

This equation may not immediately appear to be ‘‘switched’’,
but the function φ is only piecewise-continuous; the switching
structure can be exposed with reference to the flows φj : [0,∞)×
Dj → Dj and time-to-guard τj : Dj → [0,∞), τj,k : Dj → [0,∞)
functions associated with each discrete state j ∈ J and pair of
discrete states (j, k) ∈ J × J:

x+ =

⎧⎪⎨⎪⎩
φj(∆, x), τj(x) > ∆;

φk
(
∆− τj,k(x), Rj,k

(
φj(τj,k(x), x)

))
,

τj(x) = τj,k(x) ≤ ∆.

This piecewise-defined equation, equivalent to (but much more
explicit than) x+ = φ(∆, x), is a discrete-time switched nonlinear
system (in particular, each function in the piecewise definition
is continuously differentiable) with model set indexed by M =
J ∪ (J × J) and switching rule determined as a function of x:

m(x) =
{
j, τj(x) > ∆;

(j, k), τj(x) = τj,k(x) ≤ ∆.
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