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Abstract—This paper considers an optimization problem for a dy-
namical system whose evolution depends on a collection of binary
decision variables. We develop scalable approximation algorithms with
provable suboptimality bounds to provide computationally tractable
solution methods even when the dimension of the system and the number
of the binary variables are large. The proposed method employs a
linear approximation of the objective function such that the approximate
problem is defined over the feasible space of the binary decision variables,
which is a discrete set. To define such a linear approximation, we propose
two different variation methods: one uses continuous relaxation of the
discrete space and the other uses convex combinations of the vector field
and running payoff. The approximate problem is a 0–1 linear program,
which can be exactly or approximately solved by existing polynomial-time
algorithms with suboptimality bounds, and does not require the solution
of the dynamical system. Furthermore, we characterize a sufficient
condition ensuring the approximate solution has a provable suboptimality
bound. We show that this condition can be interpreted as the concavity
of the objective function or that of a reformulated objective function.

I. INTRODUCTION

The dynamics of critical infrastructures and their system
elements—for instance, electric grid infrastructure and their electric
load elements—are interdependent, meaning that the state of each
infrastructure or its system elements influences and is influenced by
the state of the others [1]. For example, consider the placement of
power electronic actuators, such as high-voltage direct current links,
on transmission networks. Such placement requires consideration of
the interconnected swing dynamics of transmission grid infrastruc-
tures. Furthermore, the ON/OFF control of a large population of
electric loads whose system dynamics are coupled with each other,
e.g., supermarket refrigeration systems, must take into account their
system-system interdependency. These decision-making problems
under dynamic interdependencies combine the combinatorial opti-
mization problems of actuator placement and ON/OFF control with
the time evolution of continuous system states. Therefore, we seek
decision-making techniques that unify combinatorial optimization and
dynamical systems theory.

This paper examines a fundamental problem that supports such
combinatorial decision-making involving dynamical systems. Specif-
ically, we consider an optimization problem associated with a dy-
namical system whose state evolution depends on binary decision
variables, which we call the combinatorial dynamical system. In our
problem formulation, the binary decision variables do not change over
time, unlike in the optimal control or predictive control of switched
systems [2], [3], [4], [5]. Our focus is to develop scalable methods for
optimizing the binary variables associated with a dynamical system
when the number of the variables is too large to enumerate all
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possible system ‘modes’ and when the dimension of the system
state is large. However, the optimization problem for combinatorial
dynamical system presents a computational challenge because: (i) it
is a 0–1 nonlinear program, which is generally NP-hard [6]; and (ii)
it requires the solution of a system of ordinary differential equations
(ODEs). To provide a computationally tractable solution method that
can address large-scale problems, we propose scalable approximation
algorithms with provable suboptimality bounds.

The key idea of the proposed methods is to linearize the objective
function in the feasible space of binary decision variables. Our
first contribution is to propose a linear approximation method for
nonlinear optimization of combinatorial dynamical systems. The
approximate 0–1 optimization can be efficiently solved because it
is a linear 0–1 program and it does not require the solution of the
dynamical system. The proposed approximation method allows us to
employ polynomial-time exact or approximation algorithms including
those for problems with l0-norm constraints or linear inequality
constraints. In particular, the proposed algorithms for an l0-norm
constrained problem are single-pass, i.e. they do not require multiple
iterations, and are consequently more efficient than applicable greedy
algorithms.

The proposed linear approximation approach requires the deriva-
tive of the objective function, but this is nontrivial to construct
because the function’s domain is a discrete space, in general. The
second contribution of this work is to propose two different deriva-
tive concepts. The first concept uses a natural relaxation of the
discrete space, whereas for the second concept a novel relaxation
method in a function space using convex combinations of the vector
fields and running payoffs is developed. We refer to the former
construction as the standard derivative because it is the same as
the derivative concept in continuous space, and the latter as the
nonstandard derivative. We show the existence and the uniqueness of
the nonstandard derivative, and provide an adjoint-based formula for
it. The nonstandard derivative is well-defined even when the vector
field and the payoff function are undefined on interpolated values
of the binary decision variables. Because the two derivatives are
different in general, we can solve two instances of the approximate
problem (if the problem is well-defined on intermediate values in
addition to a 0–1 lattice), one with the standard derivative and another
with the nonstandard derivative and then choose the better solution
a posteriori. If the problem is defined only on a 0–1 lattice, we can
utilize the nonstandard derivative.

The third contribution of this paper is to characterize conditions
under which the proposed algorithms have provable suboptimality
bounds. We show that the concavity of the original problem gives
a sufficient condition for the suboptimality bound to hold if the
approximation is performed using the standard derivative. On the
other hand, the same concavity condition does not suffice when the
nonstandard derivative is employed in the approximation. To resolve
this difficulty, we propose a reformulated problem and show that its
concavity guarantees a suboptimality bound to hold.

In operations research, 0–1 nonlinear optimization problems have
been extensively studied over the past five decades, although the
problems are not generally associated with dynamical systems. In
particular, 0–1 polynomial programming, in which the objective
function and the constraints are polynomials in the decision variables,
has attracted great attention. Several exact methods that can transform
a 0–1 polynomial program into a 0–1 linear program have been
developed by introducing new variables that represent the cross terms
in the polynomials (e.g., [7]). Roof duality suggests approximation
methods for 0–1 polynomial programs [8]. It constructs the best
linear function that upperbounds the objective function (in the case of
maximization) by solving a dual problem. Its size can be significantly
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bigger than that of the primal problem because it introduces O(mk)
additional variables, where m and k denote the number of binary
variables and the degree of polynomial, respectively. This approach
is relevant to our proposed method in the sense that both methods
seek a linear function that bounds the objective function. However,
the proposed method explicitly constructs such a linear function
without solving any dual problems. Furthermore, whereas all the
aforementioned methods assume that the objective function is a
polynomial in the decision variables, our method does not require
a polynomial representation of the objective function. This is a
considerable advantage because constructing a polynomial represen-
tation of a given function, J : {0, 1}m → R, generally requires
2m function evaluations (e.g., via multi-linear extension [9]). Even
when the polynomial representations of the vector field and the
objective function in the decision variables, α ∈ {0, 1}m, are given,
a polynomial representation of the objective function in α is not
readily available because the state of a dynamical system is not,
in general, a polynomial in α with a finite degree. For more gen-
eral 0–1 nonlinear programs, branch-and-bound methods (e.g., [10])
and penalty/smoothing methods (e.g., [11]) have been suggested.
However, the branch-and-bound methods cannot find a solution in
polynomial time in general. The penalty and smoothing methods
do not generally provide any performance guarantee although they
perform well in many data sets.

An important class of 0–1 nonlinear programs is the minimization
or the maximization of a submodular set-function, which has the
property of diminishing returns. Unconstrained submodular function
minimization can be solved in polynomial time using a convex
extension (e.g., [12]) or a combinatorial algorithm (e.g., [13], [14]).
However, constrained submodular function minimization is NP-
hard in general, and approximation algorithms with performance
guarantees are available only in special cases (e.g., [15]). On the
other hand, our proposed method can handle a large class of linear
constraints with a guaranteed suboptimality bound. In the case of
submodular function maximization, a standard greedy algorithm can
obtain a provably near-optimal solution [16]. Our algorithm for l0-
norm constrained problems has, in general, lower computational
complexity than the greedy algorithm.

The rest of this paper is organized as follows. The problem setting
for the optimization of combinatorial dynamical systems is specified
in Section II. In Section III, a linear approximation approach for
this problem is proposed. Furthermore, we provide a condition under
which the proposed approximate problem gives a solution with a
guaranteed suboptimality bound and show that the condition can be
interpreted as the concavity of the objective function or that of a
reformulated objective function. In Section IV, algorithms to solve
the approximate problems with several types of linear inequality
constraints are suggested.

II. PROBLEM SETTING

Consider the following dynamical system in the continuous state
space X ⊆ Rn:

ẋ(t) = f(x(t),a), x(0) = x ∈ X , (1)

where f : Rn × Rm → Rn. Let xa := (xa1 , · · · , xan) denote the
solution of the ordinary differential equation (ODE) (1) given a ∈
Rm. We call (1) a combinatorial dynamical system when a is chosen
as an m-dimensional binary vector variable α := {α1, · · · , αm} ∈
{0, 1}m. We later view α as a decision variable that does not change
over time in a given time interval [0, T ]. We consider the following
assumptions on the vector field.

Assumption 1. For each α ∈ {0, 1}m, f( · , α) : Rn → Rn is twice
differentiable, has a continuous second derivative and is globally
Lipschitz continuous in X .

Assumption 2. For any x ∈ X , f(x, ·) : Rm → Rn is continuously
differentiable in [0, 1]m.

Under Assumption 1, the solution of (1) satisfies the following
property (Proposition 5.6.5 in [17]): for any α ∈ {0, 1}m, ‖xα‖2 :=(∫ T

0
‖xα(t)‖2dt

) 1
2
<∞. In other words, xα : [0, T ]→ Rn is such

that xα ∈ L2([0, T ];Rn). Furthermore, Assumption 1 guarantees that
the system admits a unique solution, which is continuous in time, for
each α ∈ {0, 1}m.

Our aim is to determine the binary vector α ∈ {0, 1}m that
maximizes a payoff (or utility) function, J : Rm → R, associated
with the dynamical system (1). More specifically, we want to solve
the following combinatorial optimization problem:

max
α∈{0,1}m

J(α) :=

∫ T

0

r(xα(t), α)dt+ q(xα(T )) (2a)

subject to Aα ≤ b, (2b)

where xα is the solution of (1) and r : Rn×Rm → R and q : Rn →
R are running and terminal payoff functions, respectively. Here, A
is an l ×m matrix, b is an l-dimensional vector and the inequality
constraint (2b) holds entry-wise. Note that the objective function
J and the solution αOPT of the optimization problem depend on the
initial value x of the dynamical system. For notational simplicity, we
suppress the dependency, i.e., J(α) = J(α,x) and αOPT = αOPT(x).

This optimization problem, in general, presents a computational
challenge because (i) it is NP-hard; and (ii) it requires the solution to
the system of ODEs (1). Therefore, we seek a scalable approximation
method that gives a suboptimal solution with a provable suboptimality
bound. The key idea of our proposed method is to take a first-order
linear approximation of the objective function (2a) with respect to
the binary decision variable α. This linear approximation should
also take into account the dependency of the state on the binary
decision variable. If the payoff function in (2a) is replaced with its
linear approximation, which is linear in the decision variable, the
approximate problem is a 0–1 linear program. Therefore, existing
polynomial-time exact or approximation algorithms for 0–1 linear
programs can be employed, as shown in Section IV. To obtain the
linear approximations of the payoff function J , in the following
section we formulate two different derivatives of J with respect to
the discrete decision variable. Furthermore, we suggest a sufficient
condition under which the approximate solution has a guaranteed
suboptimality bound in Section III-C.

III. LINEAR APPROXIMATION FOR OPTIMIZATION

OF COMBINATORIAL DYNAMICAL SYSTEMS

Suppose for a moment that the derivative of the objective function
with respect to the binary decision variable is given, and that the
derivative is well-defined in {0, 1}m, which is the feasible space
of the decision variable. The derivative can be used to obtain the
first-order linear approximation of the objective function, i.e., for
α ∈ {0, 1}m, J(α) ≈ J(ᾱ) + DJ(ᾱ)>(α − ᾱ). If the objective
function (2a) is substituted with the right-hand side of the Taylor
expansion, then we obtain the following approximate problem:

max
α∈{0,1}m

DJ(ᾱ)>α (3a)

subject to Aα ≤ b. (3b)

This approximate problem is a 0–1 linear program, which can be
solved by several polynomial-time exact or approximation algorithms
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(see Section IV). We characterize a bound on the suboptimality of
the approximate solution in Section III-C.

We propose two different variation approaches for defining the
derivatives in the discrete space {0, 1}m. The first uses the variation
of the binary decision variable in a relaxed continuous space; the
second uses the variation of the vector field of dynamical systems.
The first and second concepts of the derivatives are called the
standard and nonstandard derivatives, respectively. It is advantageous
to have two different derivative concepts: we solve the approximate
problem (3) twice, one with the standard derivative DSJ and another
with the nonstandard derivative DNSJ and then choose the better
solution. The one of two approximate solutions that outperforms
another is problem-dependent, in general.

Remark 1. As we will see in the following subsection, the non-
standard derivative requires less restrictive assumptions than the
standard derivative. One important distinction is that the nonstandard
derivative can be well-defined even when the problem is only defined
on the 0–1 lattice {0, 1}m, i.e., f : Rn × {0, 1}m → Rn and
J : {0, 1}m → R (i.e., r : Rn × {0, 1}m → R). However, we
can use the standard derivative only if the problem is well-defined
on the relaxed space [0, 1]m.

A. Standard and Nonstandard Derivatives

We first define the derivative of the payoff function, J , with respect
to discrete variation of the decision variable by relaxing the discrete
space {0, 1}m into the continuous space Rm. This definition of
derivatives in discrete space is exactly the same as the standard
definition of derivatives in continuous space. Therefore, it requires
the differentiability of the vector field and the running payoff with
respect to α.

Assumption 3. The functions r( · , α) : Rn → R and q : Rn → R
are continuously differentiable for any α ∈ {0, 1}m.

Assumption 4. For each x ∈ X , r(x, ·) : Rm → Rn is continuously
differentiable in [0, 1]m.

More precisely, Assumptions 3 and 4 are needed for the stan-
dard derivative while the nonstandard derivative does not require
Assumption 4. Throughout this paper, we let 1i denote the m-
dimensional vector whose ith entry is one and all other entries
are zero. For notational convenience, we introduce a functional,
J : L2([0, T ];Rn)× Rm → R, defined as

J (z, β) :=

∫ T

0

r(z(t), β)dt+ q(z(T )). (4)

Note that J(α) = J (xα, α), where xα is defined as the solution to
the ODE (1) with α.

Definition 1. Suppose that Assumptions 1, 2, 3 and 4 hold. The
standard derivative DSJ : {0, 1}m → Rm of the payoff function J
in (2a) at ᾱ ∈ {0, 1}m is defined as

[DSJ(ᾱ)]i := lim
ε→0

1

ε

[
J (xᾱ+ε1i , ᾱ+ ε1i)− J (xᾱ, ᾱ)

]
for i = 1, · · · ,m, where the functional J : L2([0, T ];Rn)×Rm →
R is defined in (4) and xᾱ is the solution of (1) with ᾱ.

The standard derivative can be computed by direct and adjoint-
based methods [18], [17]. We summarize the adjoint-based method
in the following proposition.

Proposition 1. Suppose that Assumptions 1, 2, 3 and 4 hold. The
derivative in Definition 1 can be obtained as

DSJ(ᾱ) =

∫ T

0

(
∂f(xᾱ(t), ᾱ)

∂α

>

λᾱ(t) +
∂r(xᾱ(t), ᾱ)

∂α

>
)
dt,

where xᾱ is the solution of (1) with ᾱ and λᾱ solves the following
adjoint system:

−λ̇ᾱ(t) =
∂H(xᾱ(t), λᾱ(t), ᾱ)

∂x

>

, λᾱ(T ) =
∂q(xᾱ(T ))

∂x

>
(5)

with the Hamiltonian H : Rn × Rn × {0, 1}m → R,

H(x,λ, α) := λ>f(x, α) + r(x, α).

We now define the derivative of the payoff function using variations
in vector fields and running payoffs. This nonstandard definition
of derivatives does not require Assumptions 2 and 4, i.e., the
differentiability of the vector field and the running payoff with respect
to α. Furthermore, the nonstandard derivative is well-defined even
when the vector field and the payoff function are not defined on
the interpolated values of the binary decision variable, i.e., f( · , α)
and r( · , α) are defined only at α ∈ {0, 1}m. This is a practical
advantage of the nonstandard derivative over the standard derivative.
The proposed variation procedure for the nonstandard derivative is
as follows.

(i) The 0–1 vector variable ᾱ in the discrete space {0, 1}m is
mapped to xᾱ in the continuous metric space L2([0, T ];Rn)
via the original dynamical system (1);

(ii) In L2([0, T ];Rn), we construct a new state xε(ᾱ,α) as the
solution to the ε-variational system associated with (ᾱ, α) for
ε ∈ [0, 1],

ẋ(t) = f ε(ᾱ,α)(x(t)), x(0) = x ∈ X , (6)

where the new vector field is obtained as the convex combina-
tion of the two vector fields with ᾱ and α, i.e.,

f ε(ᾱ,α)( · ) := (1− ε)f( · , ᾱ) + εf( · , α).

Set the distance between α and its ε-variation ε(ᾱ, α) as ε; and
(iii) The nonstandard derivative of J is defined in the following:

Definition 2. Suppose that Assumptions 1 and 3 hold. We define the
nonstandard derivative DNSJ : {0, 1}m → Rm of the payoff function
J at ᾱ ∈ {0, 1}m as

[DNSJ(ᾱ)]i := lim
ε→0+

1
ε

[
J ε(ᾱ,ᾱ+1i)(xε(ᾱ,ᾱ+1i))− J (xᾱ, ᾱ)

]
if ᾱi = 0

lim
ε→0+

1
ε

[
J (xᾱ, ᾱ)− J ε(ᾱ,ᾱ−1i)(xε(ᾱ,ᾱ−1i))

]
if ᾱi = 1,

where J : L2([0, T ];Rn)× Rm → R is given by (4) and J ε(ᾱ,α) :
L2([0, T ];Rn)→ R is defined as

J ε(ᾱ,α)( · ) := (1− ε)J ( · , ᾱ) + εJ ( · , α).

Here, xᾱ is the solution of (1) with ᾱ and xε(ᾱ,α) is the solution of
(6).

Note that we separately consider the cases with ᾱi = 0 and ᾱi = 1.
This is because ᾱ + 1i is out of the feasible space of the binary
decision variable when ᾱi = 1 and similarly for ᾱ − 1i when
ᾱi = 0. Unlike a classical derivative with respect to continuous
variable, the allowed directions for discrete variation depend on
the base point ᾱ. Here, the new payoff functional uses the convex
combination of the running payoff because J ε(ᾱ,α)(z) =

∫ T
0

(1 −
ε)r(z, ᾱ)+εr(z, α)dt+q(z(T )). The ε-variational system is used as
a continuation tool of the discrete variation from one decision variable
to another. The analytical properties of its solution are discussed in
our previous work [19] and also summarized in [20].

This nonstandard definition of derivatives raises the two following
questions: (i) is the nonstandard derivative well-defined?; and (ii) is
there a method to compute the nonstandard derivative? We answer



0018-9286 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2015.2504867, IEEE
Transactions on Automatic Control

4

these two questions using the adjoint system (5) associated with the
combinatorial optimization problem (2).

Theorem 1. Suppose that Assumptions 1 and 3 hold. The nonstan-
dard derivative DNSJ : {0, 1}m → Rm satisfies

[DNSJ(ᾱ)]i :=

∫ T

0

(
f(xᾱ(t), ᾱ+ 1i)− f(xᾱ(t), ᾱ)

)>
λᾱ(t)

+ r(xᾱ(t), ᾱ+ 1i)− r(xᾱ(t), ᾱ)dt

when ᾱi = 0, and

[DNSJ(ᾱ)]i :=

∫ T

0

(
f(xᾱ(t), ᾱ)− f(xᾱ(t), ᾱ− 1i)

)>
λᾱ(t)

+ r(xᾱ(t), ᾱ)− r(xᾱ(t), ᾱ− 1i)dt

when ᾱi = 1. Here, xᾱ and λᾱ are the solutions of (1) and (5) with
ᾱ, respectively. The derivative uniquely exists and is bounded.

The proof of Theorem 1 is contained in [20]. We also provide de-
tailed comparisons between the standard and nonstandard derivative
concepts in [20].

B. Complexity of Computing Derivatives

To solve the 0–1 linear program (3), we first need to compute the
standard derivative DSJ(ᾱ) or the nonstandard derivative DNSJ(ᾱ).
Recall that the dimensions of the system state and the binary decision
variable are n and m, respectively. Let NT be the number of time
points in the time interval [0, T ] used to integrate the system (1)
and the adjoint system (5). Then the complexity of computing the
trajectories of xᾱ and λᾱ is O(nNT ) if the first-order forward Euler
scheme is employed. Note that the computation of the adjoint state
trajectory λᾱ requires the state trajectory xᾱ in [0, T ]. Given xᾱ

and λᾱ, calculating all the entries of either the standard derivative
or the nonstandard derivative requires O(mnNT ) if a first-order
approximation scheme for the integral over time is used. Therefore,
the total complexity of computing either the standard derivative or
the nonstandard derivative is O(mnNT ).

C. Suboptimality Bounds

We now characterize the condition in which the solution to the
approximate problem (3) has a guaranteed suboptimality bound. The
suboptimality bound is obtained by showing that the optimal value of
the payoff function is bounded by an affine function of the solution to
the approximate problem (3). This motivates the following concavity-
like assumption:

Assumption 5. Let ᾱ ∈ {0, 1}m be the point at which the original
problem (2) is linearized. The following equality holds

DJ(ᾱ)>(α− ᾱ) ≥ J(α)− J(ᾱ) ∀α ∈ {0, 1}m. (7)

Here, DJ represents DSJ if the standard derivative used in the
approximate problem (3), and it represents DNSJ if the nonstandard
derivative is adopted in the approximate problem.

For notational convenience, we let A denote the feasible set of the
optimization problem (2), i.e., A := {α ∈ {0, 1}m |Aα ≤ b}. By
subtracting J(ᾱ) from the payoff function, we normalize the payoff
function such that, given ᾱ ∈ {0, 1}m at which the original problem
(2) is linearized, J(ᾱ) = 0. Note that J(αOPT) ≥ 0, where αOPT is a
solution of the original optimization problem (2), if ᾱ ∈ A.

Theorem 2 (Performance Guarantee). Suppose that Assumption 5
holds. Let

αOPT ∈ arg max
α∈A

J(α),

α∗ ∈ arg max
α∈A

DSJ(ᾱ)>α, α̂∗ ∈ arg max
α∈A

DNSJ(ᾱ)>α.
(8)

If DSJ(ᾱ)>(α∗ − ᾱ) 6= 0 and DNSJ(ᾱ)>(α̂∗ − ᾱ) 6= 0, set

ρ :=
J(α∗)

DSJ(ᾱ)>(α∗ − ᾱ)
, ρ̂ :=

J(α̂∗)

DNSJ(ᾱ)>(α̂∗ − ᾱ)
. (9)

and we have the following suboptimality bounds for the solutions of
the approximate problems, i.e., α∗ and α̂∗:

ρJ(αOPT) ≤ J(α∗), ρ̂J(αOPT) ≤ J(α̂∗). (10)

Otherwise, J(αOPT) = J(ᾱ) = 0 when ᾱ ∈ A.

Proof: Due to Assumption 5, we have

J(αOPT) = J(αOPT)− J(ᾱ) ≤ DSJ(ᾱ)>(αOPT − ᾱ). (11)

On the other hand, because α∗ ∈ arg maxα∈A DSJ(ᾱ)>α and
αOPT ∈ A,

DSJ(ᾱ)>αOPT ≤ DSJ(ᾱ)>α∗. (12)

Suppose that DSJ(ᾱ)>(α∗− ᾱ) 6= 0. Then, DSJ(ᾱ)>(α∗− ᾱ) > 0
due to (8). Combining (11) and (12), we obtain the first inequality in
(10); the second inequality can be derived using a similar argument.
If DSJ(ᾱ)>(α∗ − ᾱ) = 0 or DNSJ(ᾱ)>(α̂∗ − ᾱ) = 0, we have
J(αOPT) ≤ 0 = J(ᾱ). Due to the optimality of αOPT, the inequality
must be binding.

The coefficients ρ and ρ̂ must be computed a posteriori because
they require the solutions, α∗ and α̂∗, respectively, of the approximate
problems. They do not require the solution, αOPT, of the original
optimization problem. Note that ρ is, in general, different from ρ̂.
If ᾱ is feasible, i.e., ᾱ ∈ A, then we can improve the approximate
solution by a simple post-processing that replaces it with ᾱ if it is
worse than ᾱ. The payoff functions evaluated at the post-processed
approximate solutions are guaranteed to be greater than or equal to
zero because J(ᾱ) = 0.

Corollary 1 (Post-Processing). Suppose that Assumption 5 holds
and ᾱ ∈ A. Let αOPT, α∗ and α̂∗ be given by (8). Assume that
DSJ(ᾱ)>(α∗ − ᾱ) 6= 0 and DNSJ(ᾱ)>(α̂∗ − ᾱ) 6= 0. Define
α∗ ∈ arg max{J(α∗), J(ᾱ)}, α̂∗ ∈ arg max{J(α̂∗), J(ᾱ)}, ρ∗ :=
max{ρ, 0} and ρ̂∗ := max{ρ̂, 0}, where ρ and ρ̂ are given by (10).
Then, the following suboptimality bounds for α∗ and α̂∗ hold:

ρ∗J(αOPT) ≤ J(α∗), ρ̂∗J(αOPT) ≤ J(α̂∗).

The complexity of checking (7) in Assumption 5 for all α ∈
{0, 1}m increases exponentially as the dimension of the decision
variable α increases. Therefore, we provide sufficient conditions,
which are straightforward to check in some applications of inter-
est, for Assumption 5. Note that the inequality condition (7) with
DJ = DSJ is equivalent to the concavity of the payoff function at
ᾱ if the space in which α lies is [0, 1]m instead of {0, 1}m. This
observation is summarized in the following proposition.

Proposition 2. Suppose that Assumptions 1, 2, 3 and 4 hold. We also
assume that the payoff function J : Rm → R in (2a) with xα defined
by (1) is concave in [0, 1]m, i.e.,

J(α) :=

∫ T

0

r(xα(t), α)dt+ q(xα(T )),

with xα satisfying ẋα(t) = f(xα(t), α) and xα(0) = x is concave
for all α ∈ [0, 1]m. Then, the inequality condition (7) with DJ =
DSJ holds for any ᾱ ∈ {0, 1}m.

Recall that we view xα as a function of α. Therefore, the concavity
of J is affected by how the system state depends on α.

The inequality condition (7) with DJ = DNSJ is difficult to
interpret due to the nonstandard derivative. We reformulate the
dynamical system and the payoff function such that (i) the standard
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derivative of the reformulated payoff function corresponds to the
nonstandard derivative of the original payoff function and (ii) the
reformulated and original payoff functions have the same values at
any α ∈ {0, 1}m. Then, the concavity of the reformulated payoff
function guarantees the inequality (7). To be more precise, we
consider the following reformulated vector field and running payoff :

f̂( · , α) := f( · , 0) +

m∑
i=1

αi(f( · ,1i)− f( · , 0)),

r̂( · , α) := r( · , 0) +

m∑
i=1

αi(r( · ,1i)− r( · , 0)).

(13)

In general, f̂( · , α) (resp. r̂( · , α)) and f( · , α) (resp. r( · , α)) are
different even when α is in the discrete space {0, 1}m. One can show
that they are the same when α ∈ {0, 1}m if the following additivity
assumption holds.

Assumption 6. The functions f(x, · ) and r(x, · ) are additive in
the entries of α ∈ {0, 1}m for all x ∈ X , i.e.,

f( · , α) = f( · , 0) +

m∑
i=1

(f( · , αi1i)− f( · , 0)),

r( · , α) = r( · , 0) +

m∑
i=1

(r( · , αi1i)− r( · , 0)).

Note that these additivity conditions are less restrictive than the
conditions that both of the functions are affine in α as shown in [20].

This reformulation and Assumption 6 play an essential role in inter-
preting the nontrivial inequality condition (7) (with DJ = DNSJ) as
the concavity of a reformulated payoff function, Ĵ , defined in the next
theorem. The standard derivative of the reformulated payoff function
is equivalent to the nonstandard derivative of the original payoff
function under Assumption 6, i.e., DSĴ ≡ DNSJ . Furthermore, the
two payoff functions have the same values when α is in the discrete
space {0, 1}m, i.e., J |{0,1}m ≡ Ĵ |{0,1}m . Therefore, the inequality
condition (7) with nonstandard derivative can be interpreted as the
concavity of the reformulated payoff function.

Theorem 3. Suppose that Assumptions 1, 3 and 6 hold. Define the
reformulated payoff function Ĵ : Rm → R as

Ĵ(α) :=

∫ T

0

r̂(yα(t), α)dt+ q(yα(T )), (14)

with yα satisfying

ẏα(t) = f̂(yα(t), α), yα(0) = x ∈ X ,

where f̂ and r̂ are the reformulated vector field and running payoff,
respectively, given in (13). If the reformulated payoff function Ĵ is
concave in [0, 1]m, then the inequality condition (7) with DJ = DNSJ
holds for any ᾱ ∈ {0, 1}m.

Proof: Fix x ∈ Rn and i ∈ {1, · · · ,m}. If αi = 0, then
αi(f(x,1i) − f(x, 0)) = 0 = f(x, αi1i) − f(x, 0). If αi = 1,
then αi(f(x,1i) − f(x, 0)) = f(x, αi1i) − f(x, 0). On the
other hand, due to Assumption 6, we have f(x, α) = f(x, 0) +∑m
i=1(f(x, αi1i) − f(x, 0)). Therefore, f̂(x, α) = f(x, α) for

any α ∈ {0, 1}m. Using a similar argument, we can show that
r̂(x, α) = r(x, α) for any α ∈ {0, 1}m. These imply that

Ĵ(α) = J(α) ∀α ∈ {0, 1}m. (15)

Furthermore, using the adjoint-based formula in Proposition 1 for the
standard derivative of the reformulated payoff function Ĵ , we obtain

[DSĴ(α)]i :=

∫ T

0

(f(xα(t),1i)− f(xα(t), 0))> λα(t)

+ r(xα(t),1i)− r(xα(t), 0)dt.

(16)

On the other hand, under Assumption 6, the adjoint-based formula
for the nonstandard derivative of the original payoff function J can
be rewritten as

[DNSJ(α)]i :=

∫ T

0

(f(xα(t), (αi + 1)1i)− f(xα(t), αi1i))
> λα(t)

+ r(xα(t), (αi + 1)1i)− r(xα(t), αi1i)dt

when αi = 0, and

[DNSJ(α)]i :=

∫ T

0

(f(xα(t), αi1i)− f(xα(t), (αi − 1)1i))
> λα(t)

+ r(xα(t), αi1i)− r(xα(t), (α− 1)1i)dt

when αi = 1. Plugging αi = 0 and αi = 1 into the two formulae,
respectively, and comparing them with (16), we conclude that

DSĴ(α) = DNSJ(α) ∀α ∈ {0, 1}m. (17)

Suppose now that Ĵ is concave in [0, 1]m. Then, we have

DSĴ(ᾱ)>(α− ᾱ) ≥ Ĵ(α)− Ĵ(ᾱ) ∀ᾱ, α ∈ {0, 1}m.

Combining this inequality with (15) and (17), we confirm that the
inequality condition (7) with DJ = DNSJ holds for any ᾱ ∈ {0, 1}m.

When the system is linear, the concavity of r (resp. r̂) guarantees
that the optimization problem (2) (resp. (14)) is concave. When the
system is nonlinear, the results on convex control systems [21], [22]
can be used to provide a sufficient condition for the concavity. In more
general cases, we admit that it is nontrivial to check the concavity.
Further studies on characterizing the conditions for the concavity will
be performed in the future.

IV. ALGORITHMS

We now propose approximation algorithms for the optimization (2)
of combinatorial dynamical systems using the linear approximation
proposed in the previous section. Formulating the approximate prob-
lem (3) only requires the computation of the standard or nonstandard
derivative with computational complexity O(mnNT ) as suggested in
Section III-B, i.e., it is linear in the dimension of the decision variable.
Because the approximate problem (3) is a 0–1 linear program, several
polynomial time exact or approximation algorithms can be employed.

A. l0-Norm Constraints

An important class of combinatorial optimization problems rele-
vant to (2) is to maximize the payoff function, given that the l0-
norm of the decision variable is bounded. More specifically, instead
of the original linear constraint (2b), we consider the constraint,
K ≤ ‖α‖0 ≤ K, where K and K are given constants. We
consider the following first-order approximation of the combinatorial
optimization problem:

max
α∈{0,1}m

{DJ(ᾱ)>α |K ≤ ‖α‖0 ≤ K}. (18)

A simple algorithm to solve (18) can be designed based on the
ordering of the entries of DJ(ᾱ), where DJ is equal to either DSJ
or DNSJ . Let d(·) denote the map from {1, · · · ,m} to {1, · · · ,m}
such that [DJ(ᾱ)]d(i) ≥ [DJ(ᾱ)]d(j) for any i, j ∈ {1, · · · ,m}
such that i ≤ j. Such a map can be constructed using a sorting
algorithm with O(m logm) complexity. Note that such a map may
not be unique. We let αd(i) = 1 for i = 1, · · · ,K. We then assign
1 on αd(i) if [DJ(ᾱ)]d(i) > 0 and K + 1 ≤ i ≤ K. Therefore,
the total computational complexity to solve the approximate problem
(18) is O(mnNT ) +O(m logm).
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B. General Linear Constraints

A totally unimodular (TU) matrix is defined as an integer matrix
for which the determinant of every square non-singular sub-matrix
is either +1 or −1. TU matrices play an important role in integer
programs because they are invertible over the integers (e.g., Chapter
III.1. of [23]). Suppose that A is TU and b is integral. Let Ā :=[

A
Im×m

]
and b̄ :=

[
b
1

]
, where 1 is the m-dimensional vector whose

entries are all 1’s. The new matrix Ā is also TU. Therefore, the
solution of the approximate problem can be obtained as the solution
of the linear program, whose feasible region is relaxed to Rm, of the
form maxα∈Rm{DJ(ᾱ)>α | Āα ≤ b̄}. The proof of the exactness
of this continuous relaxation can be found in [23].

Suppose that l = 1, i.e., A ∈ R1×l is a vector and b ∈ R is a scalar
and that all the entries of A and [DJ(ᾱ)]i are non-negative.1 In this
case, the approximate problem (3) is a 0–1 knapsack problem. Several
algorithms and computational experiments for 0–1 knapsack prob-
lems can be found in the monograph [24] and the references therein.
If no assumptions are imposed on the linear inequality constraints,
then successive linear or semidefinite relaxation methods for a 0–1
polytope can provide approximation algorithms with suboptimality
bounds [25], [26], [27].

Remark 2. Our proposed 0–1 linear program approximation does
not have any dynamical system constraints, while the original prob-
lem (2) does. This is advantageous because the approximate problem
does not require any computational effort to solve the dynamical
system once the standard or nonstandard derivative is calculated.
In other words, the complexity of any algorithm applied to the
approximate problem is independent of the time horizon [0, T ] of
the dynamical system or the number, NT , of discretization points in
[0, T ] used to approximate DJ(ᾱ).

We validated the performance of the proposed approximation
algorithms by solving ON/OFF control problems of commercial
interconnected refrigeration systems. In our numerical experiments,
the suboptimality bound is greater than 74% though in practice the
performance of the proposed approximation algorithm is greater than
90% of the oracle’s performance. See [20] for more details.

V. CONCLUSION

We have proposed approximation algorithms for optimization of
combinatorial dynamical systems, in which the decision variable is
a binary vector and a payoff is evaluated along the solution of the
systems. The key idea of the approximation is to replace the payoff
function with a first-order approximation obtained from a derivative
that is well-defined in the feasible space of the binary decision
variable. We proposed two different variation methods to define such
derivatives. The approximate problem has three major advantages: (i)
the approximate problem is a 0–1 linear program and, therefore, can
be exactly or approximately solved by polynomial time algorithms
with suboptimality bounds; (ii) it does not require us to repeatedly
simulate the dynamical system; and (iii) its solution has a provable
suboptimality bound under certain concavity conditions.
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[18] P. Kokotović and J. Heller, “Direct and adjoint sensitivity equations
for parameter optimization,” IEEE Transactions on Automatic Control,
vol. 12, no. 5, pp. 609–610, 1967.

[19] I. Yang, S. A. Burden, S. S. Sastry, and C. J. Tomlin, “Infinitesimal
interconnection variations in nonlinear networked systems,” in Proceed-
ings of the 52nd IEEE Conference on Decision and Control, 2013, pp.
1417–1422.

[20] I. Yang, “Risk management and combinatorial optimization for large-
scale demand response and renewable energy integration,” Ph.D. disser-
tation, University of California, Berkeley, 2015.

[21] V. Azhmyakov and J. Raisch, “Convex control systems and convex opti-
mal control problems with constraints,” IEEE Transactions on Automatic
Control, vol. 53, no. 4, pp. 993–998, 2008.

[22] P. Colaneri, R. H. Middleton, Z. Chen, D. Caporale, and F. Blanchini,
“Convexity of the cost functional in an optimal control problem for a
class of positive switched systems,” Automatica, vol. 50, pp. 1227–1234,
2014.

[23] G. L. Nemhauser and L. A. Wolsey, Integer and Combinatorial Opti-
mization. New York: Wiley, 1988.

[24] S. Martello and P. Toth, Knapsack Problems. New York: John Wiley
& Sons, 1990.

[25] L. Lovász and A. Schrijver, “Cones of matrices and set-fuctions and 0–1
optimization,” SIAM Journal on Optimization, vol. 1, no. 2, pp. 166–190,
1991.

[26] H. D. Sherali and W. P. Adams, “A hierarchy of relaxations between the
continuous and convex hull representations for zero-one programming
problems,” SIAM Journal on Discrete Mathematics, vol. 3, no. 3, pp.
411–430, 1990.

[27] J. B. Lasserre, “An explicit equivalent positive semidefinite program for
nonlinear 0–1 programs,” SIAM Journal on Optimization, vol. 12, no. 3,
pp. 756–769, 2002.


