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ABSTRACT 
Manual device interaction requires precise coordination which 
may be difficult for users with motor impairments. Muscle 
interfaces provide alternative interaction methods that may 
enhance performance, but have not yet been evaluated for 
simple (eg. mouse tracking) and complex (eg. driving) con­
tinuous tasks. Control theory enables us to probe continuous 
task performance by separating user input into intent and error 
correction to quantify how motor impairments impact device 
interaction. We compared the effectiveness of a manual versus 
a muscle interface for eleven users without and three users 
with motor impairments performing continuous tasks. Both 
user groups preferred and performed better with the muscle 
versus the manual interface for the complex continuous task. 
These results suggest muscle interfaces and algorithms that 
can detect and augment user intent may be especially useful 
for future design of interfaces for continuous tasks. 

Author Keywords 
User intent; control theory; interaction; muscle interfaces; 
electromyography; motor impairments; accessibility. 

CCS Concepts 
•Human-centered computing → User models; User stud­
ies; 

INTRODUCTION 
Users predominantly interact with devices using manual in­
terfaces such as mice, touchscreens, steering wheels, and joy­
sticks. However, many of these interfaces may be difficult or 
impossible to use for individuals with upper-extremity motor 
impairments after neurologic injury. Such users may have 
difficulty precisely coordinating arm and hand function to 
control manual interfaces due to weakness of the arm mus­
cles, spasticity provoking unintended movement, and muscle 
tightness limiting mobility [18]. The lack of accessibility of 
manual interfaces for users with motor impairments is well-
documented [13, 17, 25, 28]. People with neurologic injuries 
that impact one side of the body like stroke or cerebral palsy 
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tend to solely use their unaffected side for device interac­
tion [39]. This leads to slower and more error-prone technol­
ogy use and increases fatigue [36]. Alternatives that can be 
personalized and require less strength and coordination could 
encourage greater use and utility of the affected side. Muscle 
interfaces are one potential alternative to manual interfaces 
that may enable users with and without motor impairments to 
interact effectively and unobtrusively with their device [32]. 
The placement of the muscle sensors can be personalized so 
that users can adapt the interface to their own ability level [40]. 
Such interfaces may decrease errors, increase use of the af­
fected side, and enhance long-term function. 

In this paper, we investigate the performance of a muscle ver­
sus a manual interface for continuous trajectory tracking tasks 
in users with and without motor impairments using model­
ing techniques from control theory. While other performance 
metrics for modeling continuous task performance exist [1, 
24], we demonstrate that control theory techniques provide 
powerful insights not available with other techniques. To 
the best of our knowledge, there are no methods in human-
computer interaction (HCI) that separate and quantify user 
intent (feedforward control) from error correction (feedback 
control). This could be particularly useful for users with motor 

Figure 1. Successfully completing continuous tasks with manual or 
muscle interfaces is crucial for many tasks including cursor navigation. 
While a user may intend to follow a desired reference path (dotted red 
line) with user intent (dotted red arrows), unexpected disturbances (sud­
den change in cursor position between the two blue circles) introduce 
errors that must be corrected with error correction (solid blue arrows). 
The user input (mouse position) combines user intent and error correc­
tion and maps to the cursor position on the screen (blue solid line). 
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impairments. Users with motor impairments after neurologic 
injury often retain the ability to determine the input needed to 
control a device to follow a desired trajectory in the absence of 
errors. However, they may have difficulty correcting for errors 
that arise from unexpected disturbances like arm tremor [18] 
(Fig. 1). We apply techniques from control theory to decode 
user intent, providing a foundation for future development of 
HCI algorithms that assist users as they perform continuous 
tasks like mouse tracking and driving. 

We used frequency-domain analysis to separate and quantify 
feedforward and feedback control for simple (velocity-based) 
and complex (acceleration-based) continuous tasks using a 
muscle and manual interface in eleven users without motor 
impairments. We also studied muscle and manual interface 
performance for the complex task for three participants with 
motor impairments. We computed two performance metrics: 
(i) time-domain error between a desired trajectory and actual 
cursor position and (ii) frequency-domain error between the 
user’s feedforward controller and the controller required to 
perfectly follow a reference in the absence of errors. 

The contributions of this paper are threefold: 

C1	 extend control theory-based quantitative modeling tech­
niques that separate user intent (feedforward control) and 
error correction (feedback control) to muscle interfaces; 

C2	 experimentally compare muscle versus manual interface 
performance for simple (velocity-based) and complex 
(acceleration-based) continuous trajectory tracking tasks; 

C3	 conduct preliminary evaluations of muscle versus manual 
interface performance for a complex continuous task for 
users with motor impairments. 

We report two key experimental findings: 

F1	 users without motor impairments were 49% better at track­
ing continuous trajectories using the muscle than the manual 
interface for the complex continuous task; 

F2	 users without motor impairments were 61% better at track­
ing high-frequencies above 0.35 Hz with the muscle versus 
the manual interface. 

Our paper proposes and extends an experimental and analytical 
method to guide future development of accessible interfaces 
like muscle interfaces using control theory. The results demon­
strate the feasibility of using methods from control theory to 
inform future interface design and develop assistive algorithms 
to aid users with motor impairments in achieving desired tasks. 

RELATED WORK 

Accessible Interfaces for Users With Motor Impairments 
Despite technological advancements in personal computing, 
device accessibility for users with motor impairments and al­
ternate abilities remains a challenge [40]. Researchers have 
demonstrated how ability-based assumptions underlying tra­
ditional interfaces such as touchscreens [13, 17, 37] and 
mice [13] are inappropriate for users with motor impairments, 
and how these assumptions can be modified to encompass 
users of all abilities. Other researchers have worked on using 

artificial intelligence to adapt current interfaces such as touch­
screens [28, 46] and screen layouts for use with a mouse [15] 
such that they take into account each user’s ability level. Re­
searchers have also worked on modeling stroke gestures on 
touchscreens for users with motor impairments [38] 

We are interested in whether alternative interfaces could pro­
vide performance advantages for continuous tasks. Although 
it is crucial to understand how traditional interfaces can be 
adapted for users with motor impairments, novel interfaces 
like smart watches [25] and headsets [26] are quickly being 
developed for commercial use. Understanding whether mus­
cle interfaces provide performance benefits for users of all 
abilities is important for encouraging development of muscle 
interfaces. 

Electromyography as Non-Invasive Muscle Sensors 
Although muscle interfaces have gained popularity in research 
as a hands-free interaction method, muscle electrical signals 
are most often used in clinical research to quantitatively as­
sess impairments level, track progress, and evaluate clinical 
interventions for various clinical populations [5, 8, 35]. Elec­
tromyography (EMG) sensors are commonly used in these 
settings to noninvasively measure muscle electrical activity 
from the skin surface. Dry or wet electrodes passively measure 
these electrical signals, which can then be relayed to a com­
puting unit for analysis. EMG technology is still limited to 
short-term use due to low battery life, bulky form factor, high 
cost, and lack of comfort [4, 11, 29]. Researchers are currently 
addressing these limitations by developing novel electrodes 
and hardware for long-term EMG use [30, 42, 43]. 

Electromyography in Human-Computer Interaction 
Muscle interfaces for HCI have mainly focused on gesture 
classification tasks for hands-free device use for users without 
motor impairments. Such interfaces have been demonstrated 
to have high gesture classification accuracy even when: hands 
are occupied with other objects [32, 33], EMG signals are 
weak [22], consumer-level EMG sensors are used [19], and 
a large number of gestures are attempted [2]. These studies 
demonstrate that users without motor impairments can suc­
cessfully use muscle interfaces to reliably perform discrete 
tasks like tapping and swiping. 

Work on enabling discrete interactions with EMG data is cru­
cial for the adoption of muscle interfaces into everyday life, 
but little work has studied the use of muscle interfaces for 
continuous tasks or for users with upper-extremity motor im­
pairments. In addition, prior research on gesture classification 
with EMG data demonstrates the strength of muscle interfaces 
in scenarios where manual interfaces would be difficult to use, 
but have not directly compared performance of muscle and 
manual interfaces. 

Continuous Control Using Muscle Interfaces 
Prior work on continuous muscle interfaces focused on mea­
suring EMG signals from residual muscles of amputees for 
prosthetic control. EMG control is desirable for prosthesis 
users because it requires minimal effort, allows for intuitive 
device manipulation, and is noninvasive [10, 34]. In this appli­
cation, EMG signals are measured from the user and fed into 
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a proportionality controller to manipulate position, speed, or 
acceleration of the prosthesis [14]. 

Preliminary research on continuous muscle interfaces for pros­
thetic control is limited and compares manual and muscle 
interfaces for simple tasks that map the user input to the posi­
tion or velocity of a cursor on a screen. Researchers [7, 23] 
performed investigations where they compared force-based, 
EMG-based, and position-based interfaces for controlling po­
sition and velocity of a cursor. They demonstrated that users 
tracked a desired reference more accurately with force-based 
and position-based interfaces. However, they also found that 
users could track higher frequency signals with the muscle 
interface than with the manual interfaces. 

Our study builds on this work by using metrics from control 
theory to compare simple and complex task performance for 
users with and without motor impairments. Understanding 
tradeoffs between muscle and manual interface performance 
for simple and complex tasks may lead to greater incorporation 
of muscle interfaces that are more accurate, easier to use, and 
encourage muscle use in users with motor impairments. 

Feedforward Controller Formulation for Manual Interfaces 
An emerging technique for modeling continuous human and 
device interactions is using control theory to separate user in­
put into a feedforward component that expresses the intended 
output and a feedback component that corrects for errors [9, 
27, 31, 41, 44, 45]. The feedforward component can be consid­
ered a performance metric to determine whether the user has 
learned how their user input maps to the device output in the 
absence of errors (Fig. 1). Control theory provides established 
frequency-domain techniques for separating and quantifying 
feedforward and feedback controllers for users without motor 
impairments. In the 1960’s, McRuer et al. [27] used trajectory 
tracking data collected from pilots to demonstrate feasibility 
of estimating a user’s feedforward and feedback controllers 
from data. More recent work focuses on quantifying user 
performance using the estimated feedforward controller. Re­
searchers demonstrated that users without motor impairments 
using a manual interface develop good feedforward controllers 
for predictable [9, 31, 45] and unpredictable [41, 44] trajec­
tories. In addition, researchers also demonstrated that users’ 
feedforward controllers improve as users gain experience per­
forming a trajectory tracking task [45]. 

Our study extends the control theory-based experimental meth­
ods and analyses previously used to study how users without 
motor impairments use manual interfaces. Our paper focuses 
on how users with and without motor impairments use mus­
cle interfaces. Understanding how feedforward and feedback 
controllers are affected by alternative interfaces and motor 
impairments is crucial for improving device interaction for all 
users. 

BACKGROUND 

What is a Continuous Task? 
Continuous tasks can range from simple to more complex. We 
define simple tasks as being position-based (eg. mouse track­
ing, where the position of the mouse determines the cursor 

position) or velocity-based (eg. wheelchair navigation, where 
the joystick position determines the velocity of the wheelchair). 
We define complex tasks as being acceleration-based (eg. au­
tomobile or robot control, where the user input determines the 
acceleration of the mechanical system). Mathematically, the 
increase in task complexity arises from the increased number 
of derivatives that relate the user input to the device output. 
These complex tasks require more abstraction (derivatives) for 
the user to determine the input they should apply to produce 
the desired device output. 

In continuous tasks, the user input is theorized to be a combina­
tion of i) user intent (feedforward control; the input that yields 
the desired device output in the absence of any errors) and (ii) 
error correction (feedback control; the input that corrects for 
errors that can arise from unexpected perturbations, inappro­
priate inputs (eg. due to motor impairments), or unexpected 
changes in the task) [16]. In this paper, controller or control 
refer to the process by which the user determines their input 
in response to device output. Mathematically, a controller 
is a function that transforms time- and/or frequency-domain 
signals. Taking the example of mouse tracking as a continu­
ous task, user intent could express the user’s desire to move 
the cursor along a specific path, while error correction could 
compensate for deviations from the intended path caused by 
unintentional tremors of the user’s arm (Fig. 1). 

Neurologic injuries like stroke or cerebral palsy that result in 
motor impairments usually do not affect the cerebellum, where 
user intent (feedforward control) is formed [6]. Instead, the 
injury usually occurs in the motor cortex that coordinates and 
transmits signals to arm muscles [18]. The injury to the motor 
cortex can cause errors between the user’s intended motion 
and the implementation of the desired motion (eg. causing 
unintentional arm tremor), making it difficult to perform er­
ror correction (feedback control). Thus, we hypothesize that 
neurologic injury may impair feedback but not feedforward 
elements of user input. To test this hypothesis, we separately 
quantify user intent and error correction in continuous tasks for 
users with and without motor impairments using frequency-
domain techniques from control theory. These techniques 
have previously been applied to participants without motor 
impairments using manual interfaces [27, 41, 44, 45]. 

This study extends the applicability of these tools to include 
simple and complex tasks using muscle interfaces and users 
with motor impairments after neurologic injury (post-stroke). 

Decoding User Intent with Control Theory 
Control theory is an engineering discipline that provides tech­
niques for modeling and manipulating the dynamics of systems 
like humans and devices working together to achieve a task 
that changes over time [3]. In the context of the present study, 
we argue that control theory provides powerful estimation 
techniques that enable us to separate and quantify user intent 
and error correction during continuous interactions between 
users and devices. 

Decoding user intent is challenging for continuous tasks since 
both components of the user input (intent and error correction) 
are intertwined in time-domain measurements. Control theory 
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Figure 2. (i) Block diagram representation of user interacting with device adapted from [27]. The user, contained within the purple dotted square, 
transforms external reference R and tracking error R − Y through feedforward (user intent, F in red) and feedback (error correction, B in blue) 
controllers to produce user input U . The device transforms the sum of user input U and external disturbance D to device output Y via mapping M. 
(ii) Signals in the time-domain (left top graph) can be considered as a sum of many sine waves at different frequencies (left bottom graph). These 
sinusoidal waves can be difficult to separate in the time-domain (left), but easy to separate in the frequency domain (right). The Fourier transform is 
used to convert time-domain signals to frequency-domain signals. It is a linear operator that represents time-domain signals using a linear combination 
of sinuisoids [3]. 

techniques based on frequency-domain analysis enable us to 
separate user intent and error correction for continuous tasks. 

Previous studies have demonstrated that data collected from 
users performing continuous trajectory tracking tasks can 
be modeled as a function of prescribed (reference trajec­
tory R, disturbance signal D, task dynamics M), computed 
(user’s feedforward F and feedback B controllers), and mea­
sured (device output Y , user input U) signals and controllers 
(Fig. 2i) [27, 41, 44, 45]. In the context of a real-world ex­
ample such as a user navigating a cursor from one corner of 
a computer screen to another using a mouse as in Fig.1, the 
reference signal R is the path that the user wants to follow 
(such as clicking and dragging the cursor along a specific path 
to draw a curve), the disturbance signal D are unpredictable 
changes due to perturbations, inappropriate inputs (eg. due to 
motor impairments), or unexpected changes in the task that 
deviates the device output from the intended path (such as a 
cat bumping the user’s hand controlling the mouse), and the 
device dynamics M is the mapping that transforms the (possi­
bly disturbed) position of the mouse U + D into the position 
of the cursor on the screen Y . To follow a reference path R, 
users can employ their feedforward controller F to predict the 
mouse input necessary to produce the desired cursor path Y . 
However, unintended disturbance signals D will need to be 
corrected by the user’s feedback controller B, which aims to 
minimize the error between where the cursor currently is, and 
where the user wants to be along the reference path. 

In control theory, the block diagram in Fig. 2i is a precise 
specification of mathematical transformations that relate time-
domain or frequency-domain signals (represented by arrows). 
For the problem formulation specified in Fig. 2i, the user input 
U is determined by feedforward F and feedback B controllers 
as well as prescribed disturbance D and reference R signals 

and task dynamics M as: 

F + B BM
U = R − D. (1)

1 + BM 1 + BM 

Control theory provides a mathematical framework for ana­
lyzing time-varying signals. Continuous signals have both 
time-domain and frequency-domain representations. In the 
time-domain, signals like the position of a mouse are repre­
sented as a function of time. In the frequency-domain, the 
same position signals are represented by a linear combina­
tion of sinusoidal functions at different frequencies (Fig. 2ii). 
Take for example the sound of a 100 Hz tuning fork. In the 
time-domain, it is a sinusoidal wave of the sound represented 
over time, with magnitude A and frequency 100 Hz. In the 
frequency-domain, it is one single element with magnitude 
A represented at one frequency (100 Hz). Frequency-domain 
analysis is useful for continuous HCI tasks like mouse or ve­
hicle navigation because the user’s response to stimuli can be 
analyzed independently at each frequency [41]. Frequency-
domain analysis is also useful in cleverly designed experi­
ments, because it enables distinct signal separation that is 
difficult in the time-domain. 

In this research, we leverage the latter advantage to design 
experiments to separately quantify feedforward and feedback 
control [41, 44]. For example, in Eq. 1, we can see that if we 
isolate the effects of the reference and disturbance stimuli on 
the user input, we can compute the feedforward and feedback 
controllers. This is difficult in the time-domain as the reference 
and disturbance signals are shown concurrently to the user. 
However, by designing our experiments to expose the user to 
solely reference or disturbance signals at different frequencies, 
we can isolate the effects of the two signals on the user input 
in the frequency-domain (Fig. 2). Then, we can use Eq. 1 
to algebraically compute the feedforward (F) and feedback 
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(B) contributions to the user input (U) at each frequency of 
interest. Applying these principles to our task, eq. (1) can be 
manipulated algebraically to estimate the user’s feedback (B) 
and feedforward (F) controllers: 

U/D U/R + M−1U/D
B = F = . (2)

M(1 −U/D) 1 +U/D 

Frequency-domain analysis enables us to monitor, model, and 
predict a user’s feedforward and feedback controllers. This is 
particularly powerful in the context of decoding user intent for 
users with motor impairments. Separating feedforward and 
feedback contributions to the user input allows us to predict 
how a user will respond to a given reference or disturbance. 
Given an estimate of the user’s feedforward controller F , we 
can predict the user’s intended input in the absence of distur­
bances for a given reference trajectory R by applying transfor­
mation F to signal R. From there, algorithms can monitor and 
correct for errors arising from motor impairments between the 
planned input and the actual input to the device. 

METHODS 

Experimental Design 
We manipulated the following conditions – interface (muscle 
versus manual); task (simple versus complex); and population 
(with versus without motor impairments). We conducted two 
types of experiments. First, we ran a 2 × 2 factorial design 
study with eleven participants without motor impairments (in­
terface (muscle versus manual); task (simple versus complex)). 
Second, we conducted a case series study with three partic­
ipants with motor impairments after stroke, and compared 
muscle versus manual interface performance for the complex 
task. We compared the results from this experiment against 
the participants without motor impairments. To shorten the 
study and avoid fatigue, we only collected data for the com­
plex tasks for participants with motor impairments. The order 
of presentation for the conditions was randomized for each 
participant. 

Participants 
We recruited eleven participants without motor impairments 
for this study from the broader community (4 female, 7 male; 
1 left-handed, 10 right handed; age: 25±3.7 years, height: 
171±11.3 cm; weight: 68±10.5 kg). All were daily computer 
users and played video games monthly or yearly. Six partici­
pants were familiar with the concept of EMG signals, and one 
participant regularly worked with EMG signals. 

We also recruited three participants who had a stroke that af­
fected one side of their body from clinics and local stroke 
survivor support groups (Table 1). P1 and P2 predominantly 
used their unaffected arm for activities of daily living, includ­
ing using a computer or phone. As shown by the self-reported 
impairments, P3 had fairly good control over her affected arm, 
and used her affected side for mouse navigation and writing. 
However, she only uses her affected side to use the mouse, and 
types solely with her non-affected side. Potential participants 
were asked if they could touch their shoulder and move their 
arm back as a measure of bicep and tricep control. 

Task 
Participants used their muscles or a slider to control a cursor 
on a screen to track a yellow trajectory (Fig. 3). Since one goal 
of this work is to encourage bilateral device interaction, par­
ticipants without motor impairments used their non-dominant 
arm and participants with motor impairments used their af­
fected arm to complete the tasks. When using their muscles, 
participants were strapped into a padded rigid device with 
their palms facing up (Fig. 3 bottom). Participants moved the 
cursor up by pulling up against the rigid device to activate 
the biceps, and moved the cursor down by pushing down into 
the rigid device to activate the triceps. We previously found 
during a pilot study on participants without motor impairments 
that participants moved the slider in many different ways from 
flicking the slider to using their whole arm to move the slider. 
To standardize how participants moved the slider, participants 
were asked to lay their elbow on a hard surface and move the 
slider with their biceps and triceps (Fig. 3 top). 

The user input was mapped to the output of the device as either 
the velocity (simple task) or the acceleration (complex task) of 
the cursor. Participants without motor impairments performed 
30 trials per condition, each 45 seconds long. At the end of 
each trial the error between the reference trajectory and the 
cursor position was displayed as a scaled number between 
0 and 100%. Participants were asked to make this number 
as small as possible. Participants with and without motor 
impairments were highly encouraged to take breaks between 
trials and between conditions and were reminded that they 

Figure 3. Participants controlled a purple cursor on a computer screen 
using either a manual slider (top) or muscle EMG (bottom) interface. 
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Self-reported impairments 
Age (yrs) Sex Yrs since stroke Affected side Mo Sp St Tr Co Fa Gr Ho Se Dir Dis 

P1 48 M 2 L . . . . . . . . . 
P2 47 M 11 R . . . . . . . . . . 
P3 51 F 6 R  .  .  .  .
Mo = slow movements, Sp = spasm, St = low strength, Tr = tremor, Co = poor coordination, Fa = rapid fatigue, Gr = difficulty gripping,
 
Ho = difficulty holding, Se = lack of sensation, Dir = difficulty controlling direction, Dis = difficulty controlling distance.
 
Self-reported impairments adopted from Findlater et. al [12] and Mott et. al [28]
 

Table 1. Participant Characteristics 

were free to stop the experiment at any time. Reset screens 
where participants could take breaks were shown between 
each 45 second trial. Participants with motor impairments 
performed at least 20 trials per condition, depending on fatigue. 
Direct observation of continued clonus or spasticity (more than 
once per 45-second trial) was also used to indicate muscle 
fatigue as a break or stop point during the experiment. 

After each condition, participants filled out the NASA Task 
Load Index (TLX) [20] to subjectively quantify the difficulty 
of completing the trajectory tracking task across six different 
categories – mental demand, physical demand, temporal de­
mand, performance, effort, and frustration. The NASA TLX 
rates the workload of a task from 0 (low workload) to 100 
(high workload). At the end of the experiment, we asked par­
ticipants whether they preferred the muscle or slider interface. 

Game Development 
The experiment was described to participants as a trajectory 
tracking game (Fig. 3). Participants were asked to control a 
purple diamond cursor on the screen using a slider or their 
muscles. The cursor was restricted to motion in one-dimension 
(up or down). Participants controlled the cursor by either 
manipulating a manual interface (slider) towards or away from 
the body, or activating the muscle interface by pulling up or 
pushing down against a rigid device. 

The trajectory tracking task was visualized using pygame 1.9.4 
in Python3.5. We used a randomly phase-shifted sum-of-sines 
at eight fixed frequencies between 0.1-0.95 Hz and ampli­
tude to generate pseudorandom references and disturbances 
(Fig. 2ii). Researchers previously found that frequencies much 
higher than 1 Hz are difficult to track in the context of this 
experiment [27, 41, 44]. The position of the cursor on the 
screen was updated by the user input at 60 Hz, the same up­
date frequency as a standard computer screen. This game was 
adapted from work by [27] and more recently by [41, 44]. 

Muscle Interface Development 
We used the Delsys Trigno EMG System (Delsys Inc. Mas­
sachusetts, USA) to collect EMG activity from the biceps and 
triceps of our participants. The Delsys sensor is a wireless 
dry electrode commonly used in clinical settings, and collects 
EMG data at 1926 Hz. The electrodes were placed on the 
biceps and triceps according to Surface Electromyography 
for the Non-Invasive Assessment of Muscle (SENIAM) [21] 
guidelines. The Delsys software development kit was used to 
import raw EMG signals from the Delsys unit to Python for 
further processing. 

EMG values were normalized by calibrating the EMG activity 
against participants’ maximum voluntary contraction. At the 
beginning of the trial, we asked each participant to flex their 
biceps or triceps as hard as they could three times, each for two 
seconds, while secured by the rigid device or by a researcher. 
The 95th percentile of the EMG data collected was saved for 
each 2-second trial, and the average of the three trials was 
saved as the maximum contraction. 

Raw EMG signals were processed similarly to [7, 23]. EMG 
signals were filtered by processing 100 ms of EMG data at a 
time. Each 100 ms window was further split up into two, 50 
ms windows and delinearized before taking the average of the 
two windows. We then scaled the filtered EMG activity by the 
value of the maximum contraction for each muscle. If scaled 
user input for both the biceps and triceps were below a speci­
fied threshold (defined as 2.5% of the maximum contraction 
for participants without motor impairments), the user input 
was set to zero. This ensured that participants could reach zero 
despite minor fluctuations in EMG signal from measurement 
noise. Otherwise, the muscle with the larger scaled value was 
returned as the user input. If the biceps had a larger scaled 
value than the triceps, the cursor would move up, and if the 
triceps had a larger scaled value than the biceps, the cursor 
would move down. 

All three participants who had a stroke could not sufficiently 
relax their muscles to obtain a zero user input with the 2.5% 
threshold due to weaker maximum contractions. The threshold 
for zero user input for the muscle interface was adapted to a 
maximum of 12% of the maximum contraction, depending on 
the level of EMG activity we observed during rest. 

Slider Interface Development 
Participants manipulated a custom slider connected to a 10 
kΩ potentiometer. An Arduino Due (Arduino.cc) was used 
to measure and import the potentiometer values into Python 
for further processing. The slider was 35 mm wide  12 
mm tall × 22 mm deep and printed with a 3D printer using 

×

ABS filament. Pushing the slider required very little strength, 
similar to pushing a pen across a table. 

Data Analysis 
User input from either the muscle or manual interface, refer­
ence and disturbance trajectories, and position of the cursor 
on the screen was collected at 60 Hz. Collected data was ana­
lyzed in Python3.5. To quantify user performance taking into 
account both user intent and error correction, we compute the 
mean-square error (MSE) between the prescribed reference R 
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and the measured position of the cursor Y over time t: 

MSE 2 
t ime = ∑(|R −Y |) . (3) 

t 

To quantify user performance solely taking intent into account 
and ignoring difficulties with error correction arising from 
motor impairments, we compute the MSE between the inverse 
of the device dynamics M−1 and the estimated feedforward 
controller F over frequencies w: 

MSE f req = ∑(|M−1 − F
w 

| 2 ) . (4) 

The performance for the last five trials was averaged as a 
measure of error after learning for both performance metrics. 

For the 2 × 2 factorial design with participants without mo­
tor impairments, we looked for potential differences between 
conditions (interface; task) for the two performance metrics 
defined in eq. (3, 4) using the two-way analysis of variance 
(ANOVA) test. We tested the normality distribution assump­
tion of our data using the Shapiro-Wilks test and allowed for 
minor violations in normality because of the robustness of 
the ANOVA. We hypothesized that participants will perform 
worse when performing the complex task compared to the 
simple task due to the added abstraction (derivative). Addi­
tionally, we hypothesized that muscle interfaces will perform 
worse than manual interfaces because participants will be more 
acquainted with manual interfaces than the muscle interface. 
Paired t-tests with α = 0.05 were used as a post-hoc test. 

Similarly to previous studies [7, 23], we also hypothesized 
that we will see performance differences between muscle and 
manual interfaces at higher frequencies. Although researchers 
previously only compared muscle and manual interfaces for 
the simple task, we hypothesized that their finding will extend 
to the complex task as well. We tested for differences in 
frequency-domain performance at each frequency between 
the muscle and manual interface with the paired t-test for the 
complex task with α = 0.05. 

As we only had three participants with motor impairments, 
comparisons between users with and without motor impair­
ments are descriptive. This experiment was mainly to assess 
the viability of a muscle interface for users without motor 
impairments. We hypothesized that users with motor impair­
ments will perform worse than users without motor impair­
ments with the time-domain performance metric, but perform 
similarly for the frequency-domain performance metric. This 
is because motor impairments after neurologic injury usually 
affect the error correction (feedback), not user intent (feefor­
ward) contributions to user input [18]. 

RESULTS 

Study 1: Muscle versus Manual Interfaces for Simple and 

Complex Tasks 
To determine when muscle interfaces may provide perfor­
mance advantages over manual interfaces, this study compared 
performance for users without motor impairments using mus­
cle and manual interfaces for simple and complex continuous 
tasks. 

Muscle Interface Improves Performance for Complex Task 
The time-domain performance metric (MSEt ime ) quantifies the 
performance of continuous trajectory tracking tasks when tak­
ing into account both user intent and error correction. The two-
way ANOVA only found a main effect for the task difficulty 
(Table 2). Contrary to our hypothesis that participants will 
perform better with the manual interface, participants without 
motor impairments performed equally well with either inter­
face for both the simple and complex tasks (simple: t=1.88, 
p = 0.09; complex: t=-0.15, p = 0.88) (Fig. 4). However, 
participants performed significantly worse for the complex 
task compared to the simple task using the manual interface 
(t=-5.76, p < 0.001) (Fig. 4). This suggests that participants 
did find the increased abstraction (derivative) more difficult, 
but only when using the manual interface. 

Figure 4. Time-domain (left) and frequency-domain (right) measures 
of error for both simple and complex tasks (box plot: median, 25/75 
percentile, bars from minimum to maximum value, * outliers). Lower 
values indicate better performance. Statistically significant differences 
are marked with their respective p values. 

Factor F1,40 p Partial η2 

MSEt ime 
Interface 1.19 0.28 0.025 
Task 6.55 0.014 0.14 
Interface × task 0.74 0.39 0.15 

MSE f req 
Interface 4.83 0.034 0.047 
Task 43.5 <0.001 0.43 
Interface  task 13.5 <0.001 0.13 ×

Table 2. Two way ANOVA (interface × task) results for time-domain 
(MSEt ime ) and frequency-domain (MSE f req ) measures of performance. 

The frequency-domain performance metric (MSE f req ) quan­
tifies the performance of continuous trajectory tracking tasks 
when only taking into account the user intent. This metric 
ignores how well or poorly participants perform error cor­
rection. We found a significant main (interface; task) and 
interaction (interface × task) effect for the frequency-domain 
performance (Table 2). As expected, users developed a bet­
ter feedforward controller for the simple task compared to 
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Figure 5. Frequency-based performance across different frequencies for complex acceleration-based task. Participants performed significantly better 
with the muscle (yellow) than the manual (purple) interface at higher frequencies. 

the complex task when using the manual interface (t=-7.81, 
p < 0.001) (Fig. 4). This suggests that participants found it 
easier to determine the input required to track the desired tra­
jectory for the simple task compared to the complex task when 
using the manual interface. Participants performed equally 
well for simple and complex tasks when using the muscle 
interface (t=-2.09, p = 0.063). Surprisingly, users had 49% 
more accurate feedforward controllers when performing the 
complex task with the muscle interface than the manual in­
terface (t=-4.66, p < 0.001). This means that in the absence 
of errors users could track reference trajectories more accu­
rately with the muscle interface than the manual interface, but 
only for the complex acceleration-based task. This suggests 
that interface performance is task-dependent and feedforward 
controller accuracy is dependent on the type of interface used. 

Comparing the performance of muscle and manual interfaces 
by solely quantifying user intent (MSE f req ) enabled us to de­
tect differences between the two interfaces that were not read­
ily apparent when also taking into account error correction 
(MSEt ime ). While the two interfaces performed similarly in 
the time-domain performance metric, the muscle interface per­
formed significantly better than the manual interface in the 
frequency-domain metric. Having an accurate prediction of 
what the user intends to do is critical for developing algorithms 
that assist the user in performing tasks. 

Muscle Interface Accurately Tracks High-Frequency Signals 
To more deeply understand why the muscle interface per­
formed better than the manual interface for the complex task 
in the frequency-domain, we compared the frequency-domain 
performance at each stimulus frequency. For the complex 
task, participants performed significantly better at frequencies 
above 0.35 Hz with the muscle interface than the manual in­
terface (Fig. 5). Overall, participants performed 61% better at 

high frequencies above 0.35 Hz with the muscle than the man­
ual interface. Without accounting for error corrections, users’ 
inputs more accurately tracked faster moving components of 
the reference trajectory with the muscle than the manual inter­
face. This suggests that if a task requires users to track rapidly 
changing trajectories, like navigating a drone in a forest at a 
high speed, they may find it easier to do so with the muscle 
than the manual interface. 

Study 2: Comparing Interface Performance for Users With 

Motor Impairments 
We learned from the first study that users without motor im­
pairments performed better using the muscle compared to the 
manual interface while conducting the complex task in the 
absence of errors. In this study, we conducted a preliminary 
study comparing performance for users with and without mo­
tor impairments during a complex task with muscle or manual 
interfaces. This study was a proof-of-concept case study with 
three participants (P1, P2, P3) who had a stroke to investigate 
whether muscle interfaces were a viable alternative to manual 
interfaces for users with motor impairments. 

Muscle Interface Improves Performance 
Participants with motor impairments successfully completed 
the complex trajectory tracking task with both muscle and 
manual interfaces. P1 learned to use the muscle interface 
quickly and preferred it over the manual interface. P2 and 
P3 had more difficulties learning to use the muscle interface 
and isolating bicep and tricep activation. They expressed that 
they would have performed better if they had more time to 
practice. Despite the limited practice time, the three users with 
motor impairments performed 24% and 44% better using the 
muscle than the manual interface with the time-domain and 
frequency-domain performance metrics respectively (Fig. 6). 
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Figure 6. Time-domain (left) and frequency-domain (right) measures of 
error for complex task for users with and without motor impairments. 
Lower values equals better performance. The time-domain error for 
users with motor impairments is much higher than users without mo­
tor impairments for both the muscle and manual interface. Users with 
motor impairments perform comparably to users without motor impair­
ments in forming feedforward models in the frequency-domain. 

As we only had three participants, the performance of each 
participant with motor impairments is shown as a dot. 

The preliminary results support our hypothesis that users with 
motor impairments have worse time-domain performance 
(MSEt ime ) than users without motor impairments (Fig. 6). 
However, frequency-domain performance (MSE f req ) for users 
with motor impairments were within the range observed for 
users without motor impairments. Since frequency-domain 
performance excludes contributions from error correction 
while time-domain performance accounts for both user in­
tent and error correction, we can conclude that users with 
motor impairments had more difficulty with error correction, 
but not with forming user intent compared to users without 
motor impairments. 

NASA Task Load Index (TLX) 
Users with and without motor impairments perceived no dif­
ferences in task load across tasks and interfaces (Fig. 7). We 
found no significant main (interface (muscle versus manual); 
task (simple versus complex)) or interaction (interface × task) 
effects from the results of the NASA TLX for participants 
without motor impairments. NASA TLX for users with motor 
impairments ranged from 45 to 80, well within the range of 
users without motor impairments. This suggests that users 
found all interfaces equally easy to manipulate, despite the 
muscle interface being a novel interface for many participants. 

DISCUSSION 
We demonstrate for the first time that users without motor im­
pairments perform 49% better when using a muscle interface 
compared to a manual interface for a complex (acceleration­
based) continuous task. We additionally found that users 
without motor impairments improved performance by 61% at 
frequencies above 0.35 Hz. However, this was solely the case 
for the frequency-domain performance metric that quantifies 
accuracy of intent, and there was no significant difference 
between the two interfaces when quantifying performance for 

Figure 7. Results from NASA TLX demonstrates similar subjective 
workload across all tasks for users with and without motor impairments. 

both intent and error correction. This suggests that while users 
form better intent with the muscle interface, users conversely 
perform error correction better with the manual interface. 

It may be that muscle interfaces are particularly intuitive for 
acceleration-based tasks. The electrical activity that we mea­
sure as the user input for the muscle interface is a result of 
electrical signals sent from the brain to the muscle fibers, 
which then produce force that generates movement [8]. Since 
force (F) is correlated to acceleration (a) and the mass of the 
system (m) by F = ma, EMG activity can be mapped to accel­
eration without abstraction. This is one possible explanation 
for why the muscle interface was preferred and performed 
better for the complex acceleration-based task. Future experi­
ments should further investigate this relationship by comparing 
the muscle interface against a force-based manual interface 
instead of a position-based manual interface that we used for 
this study. If direct mapping between the user input and device 
output is important for performance, then muscle interfaces 
and force-based interfaces should perform similarly for the 
complex task. 

Muscle interfaces performing better for complex acceleration-
based high-frequency tasks have implications for interface 
design for users with and without motor impairments. Muscle 
interfaces may be beneficial for tasks where the user controls 
the acceleration of the device that require quick maneuvers like 
flying a drone through a dense forest or remotely controlling 
a running robot through rocky terrain. Continuing research 
on comparing how various interfaces perform with frequency-
domain analysis from control theory is useful for informing 
intuitive interface design for device control. 

Our preliminary findings from three participants suggest that 
control theory may be useful in deriving intent for users with 
motor impairments. We found that the three users with mo­
tor impairments also preferred and performed better with 
the muscle than the manual interface for both time-domain 
and frequency-domain performance metrics. Previous studies 
solely compared performance between manual and muscle in­
terfaces from users without motor impairments [7, 23]. Muscle 
interfaces provide an attractive alternative interaction method 
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to manual interfaces that could also encourage bilateral interac­
tion for users with motor impairments after neurologic injury. 
The fine coordination of multiple arm and finger muscles re­
quired to use manual interfaces are simplified to activating one 
or two user-chosen muscles with muscle interfaces. For users 
with difficulties performing error correction like users with 
motor impairments, quantifying the intent from the user input 
while ignoring error correction is an important metric for quan­
tifying interface performance. In the frequency-domain, we 
demonstrated preliminary success in deriving user intent for 
users with motor impairments, and showed that the quantified 
feedforward controllers were within range of users without 
motor impairments. This is consistent with what is known 
about motor impairments after stroke, where the brain injury 
generally affects the motor and sensory cortices of the brain 
that control muscle recruitment and sensory feedback, but not 
the planning of the movement [18]. To the best of our knowl­
edge, we proposed the first performance metric for users with 
and without motor impairments that quantifies user intent, that 
is, the user input needed to control a device to follow a desired 
trajectory in the absence of errors. 

These promising results suggest that muscle interfaces may be 
a viable alternative to manual interfaces to enable bilateral and 
unobstrusive device interaction for users with and without mo­
tor impairments. It is especially exciting that users with motor 
impairments appear to perform better using the muscle than the 
manual interface even when the performance metric takes into 
account error correction. However, we expect that users with 
motor impairments will perform even better when their intent 
is used by artificial intelligence to assist with error correction. 
In future work, we envision building a system that 1) quickly 
characterizes how well a specific user implements intent or 
error correction, 2) suggests alternative interfaces that may 
improve performance, and 3) employs adaptive algorithms 
to enhance performance. We can leverage frequency-domain 
methods to develop user-specific algorithms that augment user 
input to compensate for error correction. As an example, con­
sider the design of interfaces for games that require quick 
accurate movements. We can recommend an interface that 
performs well in rapid high-frequency tasks and implement 
an algorithm that augments the user’s ability to implement 
intent and correct for errors. Frequency-domain analysis is a 
powerful tool to help model and enhance user interaction. 

Limitations 
We only compared the muscle interface against a custom-built 
slider, one type of manual interface that is not as commonly 
used in daily life and was not designed for user comfort or 
performance. Additionally, users were not able to customize 
how the physical displacement of the slider mapped to the 
movement on the screen. In the future, comparing the muscle 
interface against commercially-available manual interfaces 
like touchscreens, joysticks, and mice and allowing for cus­
tomization of interface sensitivity would inform when muscle 
interfaces are a desirable alternative to manual interfaces for 
complex high-frequency continuous tasks. 

There were also a number of restrictions placed on the par­
ticipants during this study that would not be in place during 

everyday use that may have affected the results of the study. 
To standardize how participants interacted with the manual 
interface, we asked participants to place their elbow on a hard 
surface and solely use their biceps and triceps, rather than 
using their wrists or fingers to manipulate the slider. We also 
do not know the effect of handedness on muscle or manual 
interface performance. Participants may have performed better 
with the manual than the muscle interface if they had used their 
dominant hand since users generally have better coordination 
with their dominant hand. 

Lastly, with such a small population of participants with motor 
impairments (three), it is not possible to draw statistically 
significant conclusions. In addition, motor control ability in 
users who have had a stroke is diverse, and even in our case 
study we saw large heterogeneity in user capabilities, making 
it challenging to draw general conclusions about users with 
motor impairments. However, our preliminary results suggest 
that muscle interfaces are a promising alternative to manual 
interfaces and modeling methods from control theory can be 
used to quantify user intent separate from error correction for 
users with motor impairments. 

CONCLUSION 
This is the first paper to report on the performance of a muscle 
versus a manual interface for simple (velocity-based) and com­
plex (acceleration-based) continuous tasks for users without 
motor impairments. We introduced techniques from control 
theory to quantify the performance of user intent in the ab­
sence of errors (like unintended tremor from motor impair­
ments). Users without motor impairments performed 49% 
better with the muscle than the manual interface for tasks 
that required rapid changes to user inputs. Preliminary results 
suggest that users with motor impairments retained similar 
abilities to create feedforward models of a system as users 
without motor impariments, and also demonstrated more accu­
rate intent with the muscle than the manual interface. Muscle 
interfaces may provide performance advantages in developing 
intent for complex tasks for users with and without motor 
impairments. These results suggest that control theory mod­
eling can provide a platform to successfully quantify device 
performance in the absence of errors arising from motor im­
pairments. Such alternate interfaces should continue being 
developed to support users of all abilities. 
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