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External Measurement System for Robot Dynamics 
 

Yana Sosnovskaya 
 

Chair of the Supervisor Committee:  
Assistant Professor Samuel Burden 

Department of Electrical Engineering 
 

Robots require testing to verify modeling assumptions, confirm performance characteristics, and quantify 
their limits. One requirement for format robot testing is an external measurement system (EMS), that 
measures the robot’s dynamics without relying on the robot’s modeling assumptions or using any compo-
nent of the robot’s control system. Most robot dynamics measurement systems in literature are not external: 
they connect to the robot’s instruments, and/or rely on its modeling assumptions. 
In this work, I present a new, inertial sensor-based EMS. This EMS consists of a set of inertial sensors, data 
acquisition hardware, and precisely specified calibration procedures. Static and dynamic calibration algo-
rithms are tested for accelerometers, with static shown to be superior. Monte Carlo-based calibration algo-
rithms are presented, to quantify calibration uncertainties, which can then be propagated to uncertainties in 
measurements. The EMS is tested on a Hopper robot, demonstrating its usefulness for dynamics, and certain 
limitations for position, measurement. 
 





 

i 
 

TABLE OF CONTENTS 

List of Figures .............................................................................................................................................................. iii 
List of Tables ................................................................................................................................................................. v 

Chapter 1 Introduction ................................................................................................................................................... 1 

1.1 Problem Statement .......................................................................................................................................... 1 

1.2 Objectives ........................................................................................................................................................ 2 

1.3 Summary of Contributions .............................................................................................................................. 2 

1.4 A Note to the Reader ....................................................................................................................................... 2 

Chapter 2 Background ................................................................................................................................................... 5 

2.1 Inertial Sensor Fundamentals .......................................................................................................................... 5 

2.2 Inertial Sensor Calibration .............................................................................................................................. 9 

2.3 Robot Dynamics Measurement Systems ....................................................................................................... 13 

2.3.1 Onboard Sensors .................................................................................................................................. 13 

2.3.2 External Measurement Systems ........................................................................................................... 15 

2.4 Uncertainty Propagation Fundamentals ........................................................................................................ 18 

Chapter 3 Inertial Sensor Calibration Theory .............................................................................................................. 21 

3.1 Deterministic Calibration Algorithms ........................................................................................................... 22 

3.1.1 Deterministic Algorithm for 1-axis Sensors ........................................................................................ 23 

3.1.2 Deterministic One-step Algorithm for 3-axis Sensors ......................................................................... 27 

3.1.3 Deterministic Two-step Algorithm for 3-axis Sensors ......................................................................... 33 

3.2 Uncertainty-Quantifying Calibration Algorithms ......................................................................................... 39 

3.2.1 Monte Carlo Algorithm for 1-axis Sensors .......................................................................................... 42 

3.2.2 Monte Carlo One-step Algorithm for 3-axis Sensors ........................................................................... 45 

3.2.3 Monte Carlo Two-step Algorithm for 3-axis Sensors .......................................................................... 46 

Chapter 4 Accelerometer Calibration via “Box” Experiments .................................................................................... 53 

4.1 Experimental Setup and Descriptions of Experiments .................................................................................. 53 

4.1.1 Experimental Setup .............................................................................................................................. 53 

4.1.2 One-step “Box” Experiment Description ............................................................................................. 55 

4.1.3 Two-step “Box” Experiment Description ............................................................................................ 60 

4.2 Results and Discussion for One-step “Box” Experiment .............................................................................. 61 



TABLE OF CONTENTS 

ii 
 

4.2.1 Sensor Noise Analysis ......................................................................................................................... 61 

4.2.2 Selection of Computational Approach ................................................................................................. 62 

4.2.3 Monte Carlo Convergence Study ......................................................................................................... 64 

4.2.4 Evaluation of Quality of Fit ................................................................................................................. 68 

4.2.5 Final 3-axis Accelerometer Calibration Parameters from One-step “Box” Experiment ...................... 72 

4.3 Results and Discussion for Two-step “Box” Experiment .............................................................................. 74 

4.4 Summary ....................................................................................................................................................... 77 

Chapter 5 Accelerometer and Gyroscope Calibration via “Turntable” Experiments .................................................. 79 

5.1 Experimental Setup ....................................................................................................................................... 79 

5.2 3-axis Accelerometer Calibration by Varying Speeds ................................................................................... 82 

5.2.1 Description of Experiment ................................................................................................................... 82 

5.2.2 Experimental Results ........................................................................................................................... 84 

5.2.3 Discussion ............................................................................................................................................ 87 

5.2.4 Comparison of “Box” One-step, “Box” Two-step and “Turntable” Calibration Methods ................... 87 

5.3 1-axis Gyroscope Calibration by Varying Speeds ......................................................................................... 89 

5.3.1 Description of Experiment ................................................................................................................... 89 

5.3.2 Experimental Results and Discussion .................................................................................................. 89 

Chapter 6 External Measurement System Testing on a “Hopper” Robot .................................................................... 93 

6.1 Experimental Setup ....................................................................................................................................... 93 

6.2 Data Processing Algorithms .......................................................................................................................... 97 

6.3 Experimental Results..................................................................................................................................... 98 

6.4 Discussion ................................................................................................................................................... 101 

Chapter 7 Conclusions and Recommendations for Future Work ............................................................................... 103 

7.1 Conclusions ................................................................................................................................................. 103 

7.2 Recommendations for Future Work ............................................................................................................. 104 

Appendix A. List of Equipment Used........................................................................................................................ 105 

References.................................................................................................................................................................. 107 

 



 

iii 
 

LIST OF FIGURES 

Fig. 2.1. Sensor misalignment angle definitions ............................................................................................................ 9 

Fig. 3.1. Illustration of Step 2 of Deterministic Two-step Algorithm for 3-axis Sensors ............................................ 36 

Fig. 4.1. Accelerometers mounted on the rectangular parallelepiped wooden “Box” ................................................. 54 

Fig. 4.2. “Box” experiment in a 45° orientation, supported by steel angles ................................................................ 54 

Fig. 4.3. 12 orientations of the accelerometers for one-step “Box” experiment .......................................................... 56 

Fig. 4.4. Summary of notation for uncertainty derivations for the 45° orientations of the “Box” experiment ............ 57 

Fig. 4.5. Representative voltage signal noise bin histogram ........................................................................................ 62 

Fig. 4.6. Convergence of all elements of ! and " for 1-axis data: accelerometers 1 (left) and 2 (right) ....................... 65 

Fig. 4.7. Convergence of all elements of # for 3-axis data: accelerometers 1 (left) and 2 (right) ............................... 65 

Fig. 4.8. Convergence of the offset vectors: accelerometers 1 (left) and 2 (right) ....................................................... 66 

Fig. 4.9. Convergence of fractional errors of ! and $! for 1-axis data: accelerometers 1 (left) and 2 (right) .............. 66 

Fig. 4.10. Convergence of fractional errors of # for 3-axis data: accelerometers 1 (left) and 2 (right) ....................... 67 

Fig. 4.11. Convergence of fractional errors for $#: accelerometers 1 (left) and 2 (right) ........................................... 67 

Fig. 4.12. Convergence of fractional errors of % and $% for 3-axis data: accelerometers 1 (left) and 2 (right)............ 68 

Fig. 4.13. Quality of fit plot for accelerometer 1, using one-step “Box” experiment data ........................................... 69 

Fig. 4.14. Quality of fit plot for accelerometer 2, using one-step “Box” experiment data ........................................... 70 

Fig. 4.15. Quality of fit plot for accelerometer 1, using one-step “Box” experiment data, and ignoring misalignments
 ..................................................................................................................................................................................... 71 

Fig. 4.16. Quality of fit plot for accelerometer 2, using one-step “Box” experiment data, and ignoring misalignments
 ..................................................................................................................................................................................... 72 

Fig. 4.17. Quality of fit plot for accelerometer 1, using two-step “Box” experiment data ........................................... 74 

Fig. 4.18. Quality of fit plot for accelerometer 2, using two-step “Box” experiment data ........................................... 76 

Fig. 5.1. Horizontal sensor placement on the turntable for accelerometer &- and '-axis calibration ........................... 80 

Fig. 5.2. Vertical sensor placement on the turntable for accelerometer (-axis and gyroscope calibration .................. 81 

Fig. 5.3. The laboratory setup for data acquisition in “Turntable” experiment............................................................ 81 

Fig. 5.4. Quality of fit plots for transducer functions at magnitude 1.01); accelerometers: 1 (left) and 2 (right) ....... 84 

Fig. 5.5. Quality of fit plots for transducer functions at magnitude 1.04); accelerometers: 1 (left) and 2 (right) ....... 85 

Fig. 5.6. Quality of fit plots for transducer functions at magnitude 1.32); accelerometers: 1 (left) and 2 (right) ....... 85 

Fig. 5.7. Linear regressions with uncertainty quantifications for gyroscopes 1 (left) 2 (right) .................................... 90 



LIST OF FIGURES 

iv 
 

Fig. 6.1. Experimental setup for testing the EMS on the Hopper robot, linked to a vertical slider harness ................ 94 

Fig. 6.2. Hopper robot CAD model ............................................................................................................................. 95 

Fig. 6.3. Vertical slider harness for Hopper robot ........................................................................................................ 96 

Fig. 6.4. Height of main body above rest, using one-step (left) and two-step (right) “Box” calibration methods ....... 99 

Fig. 6.5. Height of main body above rest, using turntable calibration method ............................................................ 99 

Fig. 6.6. Angular velocities read by gyroscopes and encoders: motors 1 (left) and 2 (right) .................................... 100 

Fig. 6.7. Main body vertical acceleration, reported by accelerometer and high-speed camera ................................. 101 

 



 

v 
 

LIST OF TABLES 

Table 4.1. Comparison of 1-axis calibration algorithm approaches ............................................................................ 63 

Table 4.2. Comparison of 3-axis calibration algorithm approaches ............................................................................ 63 

Table 4.3. Quality of fit quantification, using one-step “Box” experiment data .......................................................... 71 

Table 5.1. Comparison of the three calibration methods for 3-axis accelerometers .................................................... 87 

 





 

vii 
 

ACKNOWLEDGEMENTS 

I would like to thank my parents, Natalia and Dmitry Gavrilov, for support and love over all my life. Also, 
I’d like to thank my parents-in-law, Olga and Ray Hayes, for supporting my husband and me over the hardest 
immigration time. 
I’d like to thank my husband, Gene, who always believes in me, no matter what, and always supports and 
loves me. Thank you also for discussing with me some technical problems over the course of this project, 
it helped a lot. 
I’d like to thank Dr. Hannaford for his support, and for taking me on board as his Ph.D. student. 
I’d like to thank Brenda Larson and Dr. Ostendorf for helping me with a lot of my questions and problems, 
and supporting me over the Spring 2017 quarter. It means a lot for me! 
Lastly, I’d like to thank all of UW BioRobotics Lab for supporting me, and for coming to my defense! You 
are awesome! 
 

This material is based upon work supported by the U. S. Army Research Laboratory and theU. S. Army Research Office under contract/grant number W911NF-16-1-0158.





 

1 
 

Chapter 1 
Introduction 

This chapter briefly summarizes the problem addressed in this thesis, and summarizes the thesis’s objec-
tives. 

1.1 PROBLEM STATEMENT 

Robots require testing, among other reasons, to verify modeling assumptions. Formal testing requires two 
major components: a mechanical system to restrict the robot’s degrees of freedom, and an external meas-
urement system (EMS) to measure the robot’s dynamics. Vast majority of examples of sensor systems for 
robots, in literature, are not external measurement systems (rather, they are onboard, which have very dif-
ferent requirements), and the few that are external, have serious issues. A major one is that there does not 
appear to be any published with a calibration procedure that would quantify uncertainties – which is neces-
sary for a laboratory instrument. So, the problem to solve is this: There is a need for an external measure-
ment system for robot dynamics that is cheap, accurate, has clear calibration protocols, and quantifies its 
measurement uncertainty. 
Such external measurement system is useful for the following purposes: 

• To track the dynamics of the robot; 
• To calibrate the onboard sensors; 
• To verify the modeling assumptions made in robot design and control system development; 
• To test and compare the performance of different control systems development;  
• To verify end-effector position in the forward kinematics and angles in the inverse kinematics. 
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1.2 OBJECTIVES 

The following objectives are set for this thesis: 
• To choose the components and the structure for an external measurement system for robot dynam-

ics; 
• To construct such system, and develop associated software; 
• To develop and test a calibration procedure for this system; and 
• To test the system, together with its calibration, on the jumping robot (Hopper). 

1.3 SUMMARY OF CONTRIBUTIONS 

The following contributions to the state of the art are delivered with this thesis: 
• I designed, built, tested, and quantified the performance of an external measurement system, using 

inertial sensors. The system consists of inertial sensors, data acquisition hardware, associated soft-
ware (LabVIEW virtual instruments), and precisely specified calibration procedures for the sys-
tem’s sensors. 

• A family of Monte Carlo-based uncertainty quantification protocols, for sensor calibration, were 
developed. 

• Several different calibration procedures for 3D accelerometers were experimentally compared, and 
the best one selected. 

• Test results for the system, on a Hopper robot, are also provided. 

1.4 A NOTE TO THE READER 

The intended audience of this thesis are robotics engineers who anticipate having to formally, or informally, 
test mobile robots, on a budget. 
Chapter 2 summarizes the state of the art in the field, and provides the necessarily background to understand 
the contributions made in subsequent chapters. The novel uncertainty-quantifying calibration algorithms 
are presented in chapter 3. Chapters 4 and 5 provide test results for various calibration procedures, for 
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accelerometers and gyroscopes. Chapter 6 describes the tests performed on the EMS, and draws conclusions 
about its performance. Overall conclusions and recommendations for future work are given in chapter 7. 
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Chapter 2 
Background 

One of the first objectives for this research was to select the general type of a robot dynamics measurement 
system. I selected an inertial sensor-based EMS, and this chapter provides the background information for 
this selection. Section 2.1 provides overall information on the fundamentals and typical applications of 
inertial sensors. When used in a laboratory setting, calibration and uncertainty quantification become more 
important than for a less precise use case, like onboard controls, therefore section 2.2 provides some general 
information on how inertial sensors can be calibrated. Section 2.3 lists different types of dynamics meas-
urement systems, and discusses why inertial sensors were chosen in this project. Lastly, section 2.4 dis-
cusses the basics of uncertainty propagation, necessary for testing the EMS on a physical robot. 

2.1 INERTIAL SENSOR FUNDAMENTALS 

Accelerometer is a device that measures proper acceleration. Proper acceleration is not the same as the 
change of velocity in time; it is instead acceleration relative to freefall [1]. Conceptually, one can think of a 
single axis of an accelerometer as a mass on a spring. When the accelerometer experiences an acceleration, 
then by Newton’s second law, the mass is displaced to the point that the spring is accelerating the mass at 
the same rate. The displacement is then measured to compute the acceleration. Modern accelerometers are 
mostly microelectromechanical systems (MEMS) [2]. 
Gyroscope is a device that measures angular rate (rate of rotation about an axis) [1]. Gyroscopes are also 
mostly microelectromechanical systems (MEMS), and their working principle is based on the Foucault 
pendulum. Specifically: the angular rate induces a Coriolis force on a resonating mass-spring system inside 
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the accelerometer, this force displaces it, and the displacement is capacitively measured to compute the 
angular rate [2]. 
Both accelerometers and gyroscopes can be analog or digital, differing by the type of signal they produce. 
It is important to note, that fundamentally, both proper acceleration and angular rate are analog quantities, 
so only the output signal format, and not the internal measurement process, define whether a sensor is 
analog or digital. 
Analog signal is a signal that continuous in time [3]. It is often linearly proportional to the physical quantity 
being measured. Their main advantages are [4]: 

1. Analog sensors do not require programming for data acquisition.  
2. It is easier to deal with multi-sensor systems that use analog sensors, because there is no need to 

synchronize multiple devices like with digital protocols. 
3. Analog sensors give more precise readings than digital sensors. This is more of a limitation of 

digital sensors though, that rises from the fact that digital sensors have an onboard analog-to-digital 
(ADC) converter, which introduces a discretization error. 

4. Analog sensors do not have the same limitations in wire length as digital protocols. Digital sensors’ 
protocols tend to be short-range, typically for communication on the same printed circuit board 
(PCB). Therefore, if one desires to process data from a sensor elsewhere, for an analog sensor, one 
can simply pull a wire, while for a digital sensor additional transmission equipment is necessary. 

They do have disadvantages as well: 
1. Analog sensors do not typically have built-in options, like low-pass filtering to reduce noise, tem-

perature compensation, etc. 
2. Analog sensors each require a wire to transmit data, while synchronized digital sensors can 

transport data over a single synchronized bus. 
3. Digital sensors’ protocols are significantly more resistant to noise; this is a general advantage of 

digital technology [3]. 

Digital signals are discrete in time, and communicate data using one of several short-range communication 
protocols. The most common ones are I2C, SPI and 1-wire digital protocol. Digital protocols’ main ad-
vantage is that the signal is generally less noisy, and less subject to noise. Their main disadvantage is that 
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the data is less precise due to quantization, due to the use of analog to digital converter (ADC) between the 
measuring device and the output pins. 
As discussed in section 2.3, the system proposed in this text uses analog inertial sensors, so the rest of 
inertial sensor information below is primarily on analog sensors. They were chosen, primarily, due to their 
superior accuracy, achieved by relying on a benchtop laboratory ADC converter, as opposed to the lower-
resolution on-chip that most inertial digital sensors have. 
To convert between the signal output by a sensor, and the physical values being measured, a “transducer 

function” is used. The following quote defines the term “transducer” [5]: 

“The transducer is a device or element (concept of physics) that transforms one type of energy into another, 
e.g. wind energy into electrical energy or electrical energy into acoustic energy. The transducer acts be-
tween both electrical physical quantities and non-electrical physical quantities, such as sound or light, 
symbolizing a mediator and a converter. In most cases, it consists of converting electrical energy into a 
mechanical displacement or converting a non-electrical physical quantity such as sound, temperature, pres-
sure, velocity, or light, into electrical quantity.” 

A transducer function, in context of this work, is therefore simply the mathematical function that relates the 
output signal (“electrical quantity”), and the measured non-electrical physical quantity, of the device. It 
can also be referred to as a “sensor transfer function” [6]. For 1-axis analog accelerometers and gyroscopes, 
it typically has the following form: 

 *(+) = !(+ − "), (2.1) 

in which *(+) is the physical value (e.g., acceleration), + is the voltage output by the sensor, " is the voltage 
offset, and ! is the sensor inverse sensitivity. 
For 3-axis analog accelerometers and gyroscopes, the transducer function typically has the following form 
[7]: 

 -⃗(0⃗) = #(0⃗ − %⃖⃗), (2.2) 

in which -⃗, 0⃗ and %⃖⃗ are the 3-axis vector versions of the corresponding scalar variables from Eq. (2.1), and 
# is the sensor calibration matrix. 
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Analog sensor datasheets generally report the sensor sensitivity 3 and the offset voltage ", each as a range 
with a typical value [8]. For multiaxial sensors, the datasheets tend to report a single sensitivity and offset, 
that are the “typical values” for all 3 axes. 3 and ! are reciprocals of each other: 

 3 = 1!. (2.3) 

Internally, the microelectromechanical axes, also known as “(internal) sensor axes,” of the 3-axis MEMS 
sensor may not be precisely orthogonal to each other, and may also not be exactly aligned to the correspond-
ing “physical axes.” Physical axes, also known as “body axes” [7], are the axes that the sensor is assumed 
to be measuring along, and are generally marked on the sensor’s body. They may also be referred to as the 
“mounting axes” [9]. In Eq. (2.2) above, -⃗ is assumed to lie on the mutually orthogonal body axes. Lastly, 
the sensor may not necessarily be equally sensitive on all 3 axes. 
The full sensor calibration matrix # is a 3×3 matrix. It has all 9 possible degrees of freedom, and accounts 
for the axis sensitivities, their mutual nonorthogonalities, and their misalignment relative to the body axes. 
The 6 degrees of freedom corresponding to the 3 nonorthogonality and the 3 misalignment errors are, to-
gether, known as the “misalignment error angles,” or simply as the misalignment angles. For practical sen-
sors, misalignment angles are small (under 4°), and therefore can be linearly approximated. Using this ap-
proximation, the calibration matrix can be decomposed as follows [7]: 

 # = 56 = [
!& 0 00 !' 00 0 !(] [

1 −9'( 9('9&( 1 −9(&−9&' 9'& 1 ], (2.4) 

in which 5 is the inverse sensitivity (or “scaling”) matrix, and 6 is the misalignment error matrix. The 
angles in 6 are illustrated in Fig. 2.1 below. In it, {&;, ';, (;} are the body axes, that the sensor is treated 
as measuring, and {&= , '= , (=} are the sensor axes, that the sensor is actually measuring along with inverse 
sensitivities {!&, !', !(}. 
A “datasheet 3-axis sensor” (i.e., one that behaves exactly according to the datasheet stated values) has the 
following calibration parameters: 

 5 = [3−1 0 00 3−1 00 0 3−1], (2.5) 
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 6 = [1 0 00 1 00 0 1], (2.6) 

 %⃖⃗ = ["""], (2.7) 

which effectively means “the misalignments are zero, and the axes are equally sensitive.” 

 
Fig. 2.1. Sensor misalignment angle definitions 

(from Ref. [10]) 

Because of manufacturing variability, and temperature dependence, sensor datasheets normally give ranges 
for the calibration parameters. Inertial sensors therefore require calibration, which yields the transducer 
function parameters for the specific sensor. Section 2.2 discusses sensor calibration in more detail. 

2.2 INERTIAL SENSOR CALIBRATION 

Calibration is the process of comparison between measured sensors’ output values and corresponding stand-
ard of known accurate, reference values. Calibration of accelerometers and gyroscopes is necessary to get 
their offsets, sensitivities and misalignment angles. These parameters are unique for each sensor, due to the 
tolerances in manufacturing processes of MEMS devices. More generally, calibration parameters are unique 
to each sensor [6]. 
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The full calibration process consists of two stages: the experimental stage, and the computational stage. The 
first stage is specific to sensor type, and is discussed in this section. Its purpose is to subject the sensor to a 
set of well-known, reference physical values, and to measure the signals (i.e., voltages) the sensor outputs 
for each one. The second stage is the computation of the sensor’s transducer function based on the data 
collected in stage 1. The second stage is discussed in chapter 3. The first stage is sensor type-specific, and 
is discussed below. 
There exist multiple ways to calibrate accelerometers, generally divided into: 
1. Centrifugal (or, turntable) calibration. 

A point rotating about an axis with a given angular velocity experiences a constant centripetal acceler-
ation. This fact is used as the basis of turntable calibration: a centrifuge, or a turntable, is used, and the 
accelerometer is placed on it. It is placed in such a way that the axis being calibrated that calibrated is 
pointed to the axis of rotation, which then subjects it to a known acceleration. Reference accelerations 
can be varied by changing radii or changing the velocity of centrifuge. [11] 
Because accelerometers measure proper acceleration, orientation of the axes that do not point along the 
radius is still important: the vertical component of each axis will experience the gravitational compo-
nent, same as in one-step static calibration (method 3 below). 
This method can work with both 1-axis and 3-axis accelerometers. 

2. Shaking table calibration. 
Shaking table calibration is intended to determine errors in calibration factor due to frequency effects. 
A shaking table has a pure sinusoidal motion with a minimum harmonic distortion over a wide fre-
quency band. This method is often used in conjunction with others, or for accelerometers later used to 
identify resonant frequencies of machine parts, which are expected to be exposed to a wide spectrum 
of mechanical frequencies. [11] [12] 
Depending on the shaking table configuration, this method can work with both 1-axis and 3-axis accel-
erometers. In practice, accelerometers used to identify resonant frequencies of machine parts are typi-
cally multiaxial. 

3. One-step static calibration. 
Accelerometers measure proper acceleration, and therefore are able to sense gravitational acceleration 
), as 1) pointed vertically upward. They sense it as pointed upward because relative to freefall, the 
accelerometer is being vertically accelerated up, at acceleration 1). [7] 
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The one-step static calibration method consists of orienting the accelerometer in several known, static 
positions, such that the projection of the gravitational acceleration onto each of the accelerometer’s 
body axes is known. This method does not require knowing the sensor axes’ orientation at any point, 
but does require knowing the body axes’ orientation. A proposed set of 12 orientations for the body 
axes, to use with this method, is given in Ref. [7]. 
The primary disadvantage of this method is that all reference accelerations the accelerometer experi-
ences have magnitude 1). Such restricted reference value ranges can bias the resulting calibration pa-
rameters, to make them more accurate near constant velocities, and less accurate when the device is 
rapidly accelerating. In robotics, accelerations experience by parts exceed 1), particularly on impact. 
Another disadvantage is that precisely orienting the sensor is difficult; however, as will be shown in 
chapter 4, this disadvantage is largely cancelled out by the fact that orientation errors are independent 
of each other. 
Theoretically, this method can work with both 1-axis and 3-axis accelerometers (as long as the orienta-
tions are chosen appropriately), but in practice, it appears to primarily be used for 3-axis accelerometers 
(e.g., Ref. [7]). 

4. Two-step static calibration. 
The two-step static calibration method is proposed by Bonnet, et al. [9]. In the first step, the accelerom-
eter is placed in at least 9 static orientations, that are not necessarily known, other than the fact that all 
orientations are distinct. The measured voltage vectors are used to evaluate the offset vector %⃗⃖, and the 
upper triangular matrix @. @ accounts for 6 of the 9 degrees of freedom in #: the sensitivities and the 
orthogonalization, but not the alignment from the orthogonalized sensor frame to the body frame. To-
gether, @ and %⃖⃗ are not yet usable (unless only the acceleration magnitude is of interest): they do not 
produce the acceleration vector in the body frame. Instead, @(0⃗ − %⃖⃗) yields the acceleration vector in 
the orthogonalized sensor frame. 
In the second step, one of the accelerometer’s body axes is fixed (not parallel or antiparallel to gravity), 
and the sensor is rotated about this fixed axis. During this rotation, it is stopped several times (at least 
3 per axis), and the voltage vector measured. This procedure is repeated for every body axis. The re-
sulting data is used to evaluate the rotation matrix A!B, which rotates the measured acceleration vector 
from the orthogonalized sensor to the body frame. This step relies on the fact that when a body axis is 
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held fixed, the projection of gravity on this axis is constant, independently of the sensor’s orientation 
about this axis. After the two steps, # is computed through: 

 # = A!B@. (2.8) 

The primary advantage of this method is that it does not rely on precisely knowing orientations – it only 
needs the orientation of a single axis, at a time, fixed, during the second step. It has the same disad-
vantage as the one-step static calibration method above: only a limited range of accelerations (±1)) is 
covered. Its other disadvantage is that during the second step, the calibrating engineer is required to 
hold one axis fixed, and, as will be shown in chapter 4, the resulting errors can be significant. 
This method only works with 3-axis accelerometers (and also 3-axis magnetometers, which are not used 
in this work). 

Accelerometers are typically calibrated using the method that best resembles their intended application. 
Gyroscopes do not have such diversity of calibration methods, because they measure angular rates. Effec-
tively, gyroscope calibration is limited to method 1 above: turntable calibration method [13]. 
It is important to note, that when a reference acceleration is imposed on an accelerometer – whether a 
controlled one via a turntable, or simply the gravitational acceleration in a static pose – its vector can only 
be known (within an uncertainty) in the body frame, but not in the sensor frame. This is due to the fact, that 
without the 3 alignment angles (the 3 degrees of freedom in A!B), one cannot know the orientation of the 
sensor frame, and therefore cannot evaluate the orientation of a reference acceleration in it. 
However, one can know (within an uncertainty) the length and orientation of the reference acceleration 
vector in the body frame. This is due to the fact, that the body frame – which, again, may be potentially 
different from the sensor frame – is effectively chosen by the engineer using the sensor, typically to corre-
spond with the edges of the sensor’s rectangular parallelepiped body. Therefore, the fact that one does not 
know the orientation of the reference acceleration vector in the sensor frame does not introduce an unac-
countable error into methods 1 and 3 above: in both of those methods, the reference accelerations are those 
in the body frame, and not the sensor frame. 
Method 2 above is not used in this work. Methods 1 and 3 above are used, and each can utilize the one-step 
calibration computational stage, which relies on having a set of voltage measurements {0⃗} and correspond-
ing known reference accelerations, with known orientations, {-⃗}. Method 4 above is also used in this work, 
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and it requires a special calibration computational stage, that would not work for the other methods. The 
one-step (for methods 1 and 3) and two-step (for method 4) computational methods, in both deterministic 
and uncertainty-quantifying versions, developed for this work, are described in chapter 3. 
There are instances in literature, in which Kalman filter is mentioned as an online or real-time calibration 
method, such as in Refs. [14] [15]. However, this terminology is incorrect: by definition referenced at the 
beginning of this section, a calibration procedure is one that involves the exposure of a sensor to a set of 
known reference physical values in order to optimize its transducer function. Kalman filter, on the other 
hand, is a recursive filter that helps with state estimation for moving objects [16]. It relies on the system’s 
dynamic model to correct the state estimate obtained from the sensors’ measurements – thus effectively 
increasing the sensors’ usefulness, but not their accuracy. The calibration procedure, on the other hand, 
substantially increases the sensors’ accuracy, relative to using datasheet sensitivities and offsets; see, for 
example, chapters 4 and 5 of this thesis. 

2.3 ROBOT DYNAMICS MEASUREMENT SYSTEMS 

An objective of this thesis is to develop and test an external robot dynamics measurement system. In the 
following subsections, the difference between onboard measurement systems and EMSs is explained, mul-
tiple types of EMSs are reviewed, and justifications for selecting an inertial sensor-based external robot 
dynamics measurement system are provided. 

2.3.1 Onboard Sensors 

Onboard measurement system is a sensor system that is permanently mounted on a controllable object, and 
measures its dynamic parameters in real time. This measured data is then fed to the control system, which 
processes the measured data, estimates the system’s state based on its measurements, and uses this estimated 
state in its control algorithms. 
The most common onboard measurement systems are Inertial Measurement Units (IMUs), which consist 
of accelerometers, gyroscopes and magnetometers, sometimes also a thermistor is included; motor encod-
ers, onboard cameras, and Global Positioning System (GPS) units. 
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All the above sensors’ measurements can be used for state estimation in the control system of a robot. 
Typically, Kalman filters are first applied to correct the robot’s position and velocity using the robot’s dy-
namics equations. Kalman filter itself has three different types: the Kalman filter, the Extended Kalman 
filter (EKF) and the Unscented Kalman filter (UKF). The Kalman filter has serious limitations, because it 
works only with linear robot dynamics equations, but most modern robots have nonlinear dynamics. Ex-
tended Kalman filter relies on Taylor expansion-based linearization of the robot’s nonlinear dynamics. The 
accuracy of the linear approximation applied by the EKF depends on two factors: the degree of uncertainty 
and the degree of local nonlinearity of the functions that are being approximated. The Unscented Kalman 
filter is used for more complicated nonlinear dynamics, where it performs a stochastic linearization using a 
weighted statistical linear regression process. UKF’s main disadvantage is computational time: it often re-
quires pre-processing and post-processing some procedures, and so it can be nearly impossible to run fully 
UKF in real-time for complicated nonlinear dynamics. [16] 
The differences between onboard sensors and external measurement systems are the following: 
1. Onboard sensors give measurements to the control system of the robot to correct its states by using any 

of above described Kalman filters and robot dynamic equations [17]. External measurement system is 
designed for measuring the robot’s dynamics separately from the control system, without relying on the 
robot’s dynamics. It can therefore be used to verify or reject the modeling assumptions that underlie the 
robot’s dynamic model and control system, which onboard sensors’ measurements cannot be: they are, 
as described above, reliant on the robot’s model. 

2. Onboard sensors can be a part of the control PCB (mainboard, microcontroller, FPGA, processor unit, 
etc.), or built into another part of the robot. This seriously diminishes the options for calibrating the 
onboard sensors. In Ref. [13], the entire robot was placed on a Stewart platform to calibrate the robot’s 
IMU. Obviously, such method cannot possibly work for bigger robots, like humanoids, unless massive, 
expensive calibration platforms are used. 
Another example could be the IMU calibration process on robotic manipulators, to calibrate the posi-
tioning of end effector. Such position-based calibration procedure can be used only for manipulators 
[18]. 
On the other hand, much more precise calibration is possible for an external measurement system’s 
sensors: they are not permanently attached to any robot, and therefore can be calibrated separately, and 
placed back on the robot post-calibration. 
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3. Because onboard sensors feed their signals directly to the control board (mainboard, microcontroller, 
FPGA, processor unit, etc.) to control the robot, their computational, power and memory resources are 
restricted, due to space and weight limitation. External measurement systems do not have such re-
strictions, because to process the data from external measurement systems, an external computer, ex-
ternal DAQs, power supplies or other powerful, high-memory and high-speed benchtop equipment, can 
be used. 
This also illustrates why an external measurement system cannot be thought of as a replacement for 
onboard sensors: onboard sensors are a component of the robot, working “in the field,” while an external 
system is a laboratory instrument, intended for use in a laboratory setting, for robot testing. 

2.3.2 External Measurement Systems 

The following definition is given in literature for external robot dynamics measurement systems [19]: 

“External measurement system is designed to evaluate and calibrate the performance of a robot by means 
of external measuring instruments.” 

Below, several potential options for robot dynamics EMSs are discussed. 
1. High-speed camera or motion tracking camera. 

A high-speed camera is an optical device that track the reflective markers’ motion in time, and can 
either record videos, or dynamically calculate the time-dependent positions of the markers. High-speed 
camera requires some calibration procedure to calibrate its measurements depending of the location of 
the camera and the tracked object. To fully track a 3D robot's motion, multiple cameras around the robot 
are needed, followed by a sophisticated algorithm to fuse the data from all the cameras. Moreover, the 
high-speed camera suffers from occlusions and false data detection based on reflections from metal 
(reflective) parts of the robot. [20] 

2. Laser-based measurement systems. 
A notable example of a laser-based measurement system is described in Ref. [21]. It consists of a set of 
infrared LEDs and a camera that is used for calibration of kinematics of the manipulator.  The meas-
urement technique is based on a laser interferometry tracker (Leica LT500 Laser Tracker). This system 
is not able to provide orientation data; the proposed method was implemented for estimating position 
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errors only. Like a high-speed camera with reflectors, such system also suffers from occlusions and 
types of materials that can be used in the experiments [21]. 

3. Inertial sensor-based measurement systems. 
Inertial sensor-based measurement systems mostly are used for placing accelerometers on a human 
body to track its movement [22]. There appears to be only a limited published experience with inertial 
sensor-based EMSs in robotics. Two examples include: 1) a system with inertial sensors are used for 
getting precise measurements of joint angles on pin joints or positions of the links [20] [23], and 2) an 
accelerometer-based system for tracking manipulator positioning with high precision [24]. These sys-
tems are clearly external, but they are not intended for dynamics tracking. Also, despite being laboratory 
measurement systems, they do not quantify their uncertainties explicitly, or provide a technique to do 
so. Therefore, these inertial sensor-based EMSs cannot be considered to meet the requirements of the 
system designed in this work. 
Inertial sensors measurement systems do not suffer from occlusions or material dependencies, and are 
significantly less expensive than the high-speed cameras. They can also easily track 3D motion, not 
only translational but also rotational. As is discussed in sections 2.1 and 2.2 above, inertial sensors 
require calibrations to get the offsets, sensitivities and misalignment angles: datasheet values are listed, 
but are not accurate enough. 

4. Ultrasound measurement system. 
Ultrasound measurement systems can be used for position correction of the manipulator. Such method 
works in the following way: the ultrasound 3D sensor is placed on the end effector of the manipulator; 
then the measurements are converting into translations and rotations of the end effector by multiplying 
a matrix comprised of the offset measurement by a previously prepared conversion matrix; next the 
coordinates are corrected by applying such rotations and translations. [25] 
Outside of robotics, a position- and orientation-tracking ultrasound measurement system has been used 
in surgery [26]. In this system, ultrasound markers (i.e., transmitters) were placed on surgical instru-
ments, and ultrasound microphones outside the patient. Knowing the dimensions of the usually rigid 
instruments, it was possible to calculate the positions and orientations of the instruments inside the 
patient, by identifying the markers’ positions. 
Wireless ultrasound sensors’ data suffers from temperature, humidity and air pressure influence. It is 
also obviously susceptible to acoustic noise. Ultrasound sensors are generally less accurate compared 
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to optical sensors, however, ultrasound sensors are not affected by object reflectivity. Working terrain-
traversing robot’s motors can influence ultrasound results as well, as they emit noise over a wide spec-
trum of frequencies, and tend to be louder than the precise, low-speed motors used in robot manipula-
tors. 

There also exist combinations of the systems described above, for example: inertial sensors and force sensor 
[27], camera and laser-tracking systems, camera and ultrasound systems, camera and inertial sensors [28]. 
Based on the above comparison of EMSs for robot dynamics, for the purposes of this work, I have selected 
to develop an inertial sensor-based EMS. The motivation for this is the following: 

• While they require an external DAQ, power supply and control computer, these are reasonable re-
quirements for any dedicated laboratory system. The sensors themselves, however, are significantly 
cheaper than the hardware required for the other options listed above. 

• Terrain-traversing robots generally move in 3 dimensions, and the EMS has to work with this. A 
single high-speed camera cannot effectively track 3-dimensional motion, and multiple cameras are 
very costly, and difficult to fuse the signals from. Occlusion is another considerable problem for 
robots with constantly moving parts, particularly if one desires to track limbs, and not the main 
body of the terrain-traversing robot. This rules out laser- and camera-based systems. 

• Ultrasound sensor systems, as described in the above list, are not well-suited to terrain-traversing 
robot applications, due to the noise that is likely to be produced by the motors. Furthermore, many 
of these robots are made of metal, which can affect the ultrasound sensors’ performance. 

A set of inertial sensors does not become a proper external measurement system until it is calibrated, and 
software and hardware are configured together with it. There appear to be no uncertainty-quantifying cali-
bration algorithms for inertial sensors present in literature; the closest work is Ref. [19], in which Monte 
Carlo-based uncertainty propagation was used to deduce the Denavit-Hartenberg (DH) parameters for a 
robot manipulator. Other related works include Ref. [29] in which Monte Carlo is used to propagate sensor 
mounting errors to the outputs of an inertial navigation system, and Ref. [30], in which Monte Carlo is again 
used to judge the numeric sensitivity of several different computational algorithms for accelerometer cali-
bration. 
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None of the three publications above actually quantify the sensor calibration uncertainties. A calibration 
that quantifies a measurement system’s uncertainties is much more preferable to one that does not. There-
fore, part of this work’s results are the development and testing of new, more advanced calibration algo-
rithms, that quantify transducer functions’ uncertainties. 
Section 2.2 discussed experimental setups that can be used for inertial sensor calibration, and chapter 3 
presents the computational algorithms, developed as part of this work, that provide uncertainty quantifica-
tion together with best fit calibration parameters for inertial sensors. The uncertainties in calibration param-
eters can be propagated to the actual physical parameters being measured; the fundamentals of the mathe-
matics for propagating uncertainties are covered in the following subsection. 

2.4 UNCERTAINTY PROPAGATION FUNDAMENTALS 

The mathematics of uncertainty propagation presented in this section are taken from chapter 3 of Ref. [31]. 
First, consider an uncertain quantity & with a small uncertainty $&. Here, “small” implies that for a smooth 

function C (&), linear Taylor approximation may be used to approximate C (& ± $&) as C (&) ± DCD&|&$&. Here 

and below, DCD&|& is the first derivative of C (&) evaluated at &. All uncertain quantities below are assumed to 

have small uncertainties. Also, note, that all uncertainty magnitudes (e.g., $&) are, by definition, nonnega-
tive. 
The sum F with uncertainty $F of two variables & and ' with independent uncertainties is given by: 

 F ± $F = & + ' ± √$&2 + $'2, (2.9) 

and the difference F ± $F of two variables & and ' with independent uncertainties is given by: 

 F ± $F = & − ' ± √$&2 + $'2. (2.10) 

In other words, for a sum or a difference of uncertain variables with independent uncertainties, uncertainties 
add in quadrature. 
However, if there is no guarantee that the uncertainties are independent, then the sum F ± $F becomes: 

 F ± $F = & + ' ± [$& + $'], (2.11) 

and the difference: 
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 F ± $F = & − ' ± [$& + $'], (2.12) 

In other words, for a sum or a difference of uncertain variables with potentially systematic (i.e., dependent) 
uncertainties, uncertainties add directly. 
The product F ± $F of an uncertain variable & ± $& and an exactly known constant H  is given by: 

 F ± $F = H& ± |H|$&. (2.13) 

If F ± $F is the value of a smooth function C (&), evaluated at & ± $&, using linear approximation yields: 

 F ± $F = C (&) ± |DCD&|&| $&. (2.14) 

The product F ± $F of two uncertain variables & and ' with independent uncertainties is given by: 

 F ± $F = &' ± √(&$')2 + ('$&)2, (2.15) 

and the product F ± $F of two uncertain variables & and ' with potentially systematic (i.e., dependent) un-
certainties is: 

 F ± $F = &' ± [|'|$& + |&|$']. (2.16) 

The algorithms in chapter 3 produce transducer functions with independently uncertain parameters. The 1-
axis transducer function (Eq. (2.1)) therefore becomes characterized by inverse sensitivity ! ± $! and offset 
" ± $". To estimate the uncertainty $* in measured physical value * due to calibration uncertainties (i.e., 
without accounting for uncertainty $+ in measured voltage +), we may therefore apply the above rules to 
obtain: 

 * ± $* = !(+ − ") ± √(+$!)2 + (!$")2 + ("$!)2. (2.17) 

The 3-axis transducer function (Eq. (2.2)) is characterized, with uncertainties, by the sensor calibration 
matrix # ± $#: 

 # ± $# = [
J1,1 J1,2 J1,3J2,1 J2,2 J2,3J3,1 J3,2 J3,3] ± [

$J1,1 $J1,2 $J1,3$J2,1 $J2,2 $J2,3$J3,1 $J3,2 $J3,3], (2.18) 

and the offset vector %⃖⃗ ± $%⃖⃗: 
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 %⃖⃗ ± $%⃖⃗ = ["&"'"(] ± [
$"&$"'$"(]. (2.19) 

As stated above, all 12 of the above parameters (9 elements of # and 3 of %⃖⃗) are independently uncertain. 
Recognizing this, we again apply the above rules to estimate the (independent) uncertainties $-⃗ in the meas-
ured physical value vector -⃗: 

 *K ± $*K = ∑ JK,M(+K − "K)3
M=1 ± ⎷√

√√∑(JK,M$"M)23
M=1 + ∑("M$JK,M)23

M=1 + ∑(+M$JK,M)23
M=1 , (2.20) 

in which the subscript K, with K = 1 = &, K = 2 = ', and K = 3 = (, was used. 
With the above rules, these expressions for uncertain transducer functions, and a set of calibration parame-
ters with quantified uncertainties for a given sensor, one can quantify the uncertainties and best estimate 
values for any measurement made with this sensor. 
In the following chapter, the computational stages for 1- and 3-axis inertial sensor calibration, including 
calibration uncertainty quantification, are provided. 
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Chapter 3 
Inertial Sensor Calibration Theory 

As was discussed in section 2.1, inertial sensors require calibration. The outcome of an inertial sensor cal-
ibration process is this sensor’s “transducer function,” which converts between the voltage(s) that the sen-
sor outputs, and the physical value(s) that the sensor measured. In this text, the “calibration process” for 
an inertial sensor is understood to consist of: 
1. Specifications for an experiment, or a series of experiments, that impose a set of “reference” (i.e., 

known) physical values onto the sensor, and measure the corresponding voltages. If the calibration 
process provides uncertainty quantification for the transducer function, it must also include guidelines 
for how to quantify the uncertainties in the measured voltages and reference physical values. 
These specifications are the applied part of the calibration process, and generally constitute the bulk of 
the time necessary to apply it. Several such specifications are described in section 2.2. 

2. A calibration algorithm that uses the values obtained in stage 1 to construct the sensor’s transducer 
function. A “deterministic” calibration algorithm results in the best fit function, while an “uncertainty-

quantifying” calibration algorithm results in the best fit function, and some specification for this func-
tion’s uncertainties (typically error margins for each term). 
The application of the calibration algorithm, once it is properly developed, generally requires simply 
running a computer program, like a MATLAB script, to process the values from stage 1. Even for a 
large number of measurements, this stage is generally much faster. 

Experiment specifications from stage 1 are specific to the sensor type, and, by definition, to the experiment. 
Calibration algorithms, however, can be more general: one-step calibration algorithms presented in this 
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chapter can be applied to any sensor with the algorithm-specific number of axes, and algorithm-specific 
transducer function shape. The two-step calibration algorithm in this chapter can only be applied to the two-
step static calibration experiment data (calibration method 4 in section 2.2), and is therefore only applicable 
to 3-axis accelerometers (and also to magnetometers, which are not used in this work). 
The External Measurement System developed in this work consists of a set of inertial sensors, with associ-
ated data acquisition systems, and carefully specified calibration processes for them. The experiment spec-
ifications from these calibration processes are given in chapters 4 and 5, and several calibration algorithms 
are presented below. 

3.1 DETERMINISTIC CALIBRATION ALGORITHMS 

As was discussed in section 2.1, a 1-axis inertial sensor typically has a linear transducer function, with a 
(normally) nonzero offset voltage: 

 *(+) = !(+ − "), (3.1) 

in which *(+) is the physical value (e.g., acceleration), + is the voltage output by the sensor, " is the voltage 
offset, and ! is the sensor inverse sensitivity. 
A 3-axis inertial sensor also has a linear transducer function: 

 -⃗(0⃗) = #(0⃗ − %⃖⃗), (3.2) 

in which -⃗, 0⃗ and %⃖⃗ are the 3-axis vector versions of the corresponding scalar variables from Eq. (3.1), and 
# is the sensor calibration matrix. 2-axis sensors were not used in this work, but they too would have the 
transducer function in Eq. (3.2). Recall from section 2.1, that -⃗ exists in the body frame of the sensor. 
The objective of the 1-axis deterministic calibration algorithm is to find the inverse sensitivity ! and offset 
" which best fit, in the least squares sense, the set of Q  scalar voltage measurements {+} = {+1, … , +Q }, 
with corresponding scalar reference physical values {*} = {*1, … , *Q }. Similarly, the objective of the one-
step 3-axis deterministic calibration algorithm is to find # and %⃖⃗ which best fit, in the least squares sense, 
the set of Q  vector voltage measurements {0⃗} = {0⃗1, … , 0⃗Q }, with corresponding vector reference phys-
ical values {-⃗} = {-⃗1, … , -⃗Q}. Both algorithms ignore the uncertainties in both the measurements and 
the reference values; see section 3.2 for the uncertainty-quantifying algorithms that do account for them. 
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The two-step 3-axis deterministic calibration algorithm also finds # and %⃖⃗, but does so based two different 
specific sets of data, and is only applicable to 3-axis accelerometers (and magnetometers). 
The deterministic algorithm for 1-axis sensors is presented in subsection 3.1.1 below. The one-step 3-axis 
deterministic algorithm is in subsection 3.1.2. The more complicated two-step 3-axis deterministic algo-
rithm is in subsection 3.1.3. 

3.1.1 Deterministic Algorithm for 1-axis Sensors 

Equation (3.1) is a linear equation, which can be expressed as the following more conventional 1st-order 
polynomial: 

 *(+) = !+ + R0, (3.3) 

with the '-intercept R0 related to ! and " through: 

 R0 = −!". (3.4) 

The task of finding the linear polynomial coefficients R0 and ! that “best fit” a given dataset ({+}, {*}) is a 
very common one, known as “(simple) linear regression” (Ref. [31], chapter 8). Here, the Q  voltages {+} 
are the independent (&-) values, and the Q  reference physical values {*} are the dependent ('-) values. The 
following requirement applies: 

 Q ≥ 2, (3.5) 

otherwise the system is underdetermined. 
Typically, the best fit is defined as one that yields the lowest possible sum of squares of the errors T, ex-
pressed as follows (Ref. [31], chapter 8): 

 T(R0, !) = T(U⃗) = ∑(*(+M) − *M)2Q
M=1 = ∑(!+M + R0 − *M)2Q

M=1 . (3.6) 

The minimization of Eq. (3.6) is a scalar minimization problem for the convex function T(R0, !), which, for 
such problems, is known as the “cost function.” The scalar minimization problem for a general multivariate 
scalar function can be expressed as follows: 
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 minV⃖⃗ C(V⃖⃗)  for any real scalar function C(V⃖⃗), (3.7) 

where, in case of Eq. (3.6), T(U⃗) plays the role of C(V⃖⃗), with U⃗ = [R0, !]T. 
Many methods exist for solving the problem of Eq. (3.7); below I list three of them: 

1. Steepest Descent [32]. This method works by constructing (either numerically, or analytically, if 
available) the gradient ∇C(V⃖⃗), taking a step in the opposite (from the gradient) direction, reevalu-
ating the cost function, and repeating until the steps yield no further improvement. 

2. Quasi-Newton algorithm, implemented in the fminunc function of the MATLAB Optimization 
Toolbox: it is essentially an accelerated form of the above-mentioned Steepest Descent method. It 
utilizes a finite difference-based gradient calculator, and the Broyden-Fletcher-Goldfarb-Shanno 
(BFGS) formula for Hessian (“gradient of gradient”) approximation, known to be highly robust 
[33] [34] [35] [36]. 

3. The Nelder-Mead simplex search algorithm, implemented in the MATLAB fminsearch function 
[37]. This method does not rely on either numeric or analytic estimates of gradients. It is generally 
slower than the Quasi-Newton algorithm, but for small problems, can be superior, because it is able 
to take a lot faster (less efficient) iterations, than the gradient-based algorithms. 

Note, that all 3 of the above methods are meant for the general multivariate scalar function minimization 
problem of Eq. (3.7). Our problem, however, is more specific: it is a least squares minimization problem, 
which refines Eq. (3.7) as follows: 

 minV⃖⃗ C(V⃖⃗)  for C(V⃖⃗) = ∑()M(V⃖⃗, +M) − *M)2Q
M=1 , (3.8) 

where, in our case, *(+) from Eq. (3.3) plays the role of )M(V⃖⃗, +M), with U⃗ instead of V⃖⃗. 
The classic method for solving this much less general problem is the Levenberg-Marquardt algorithm [38] 
[39]. It also relies on a gradient, but recognizes that each term of the sum in Eq. (3.8) is a square of an 
element of the error vector, and takes advantage of this knowledge. In MATLAB Optimization Toolbox, 
the function lsqnonlin can use this algorithm, and lsqcurvefit can use it with the recognition that the 
error vector is of the form in Eq. (3.8). 
Our problem is even more specific than Eq. (3.8) though: )M(V⃖⃗, +M) is not a general, but a linear scalar 
function. The problem therefore becomes: 
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 minV⃖⃗ C(V⃖⃗)  for C(V⃖⃗) = C (R0, !) = ∑(!+M + R0 − *M)2Q
M=1 . (3.9) 

Equation (3.9) turns out to be the statement of an overdetermined linear algebraic problem, solved in the 
least squares sense. To show this, first consider the following linear algebraic problem: 

 [
1 +1⋮ ⋮1 +Q ] [R0! ] = [ *1⋮*Q ]. (3.10) 

If Q = 2, Eq. (3.10) is solvable exactly, unless +1 = +2 (in which case the data is useless). For Q > 2 
though, Eq. (3.10) has no exact solution, because it is an overdetermined algebraic linear system. Such 
systems are discussed in section 2.4, in which it is stated, that they are normally solved “in the least squares 
sense.” In effect, this means finding the solution vector U⃗ that minimizes the sum of the squares of the 
differences between the left- and right-hand sides of the system. 
To express this sum, I multiply the coefficient matrix by the vector, and get: 

 
R0 + +1! = *1,⋮R0 + +Q ! = *Q. 

(3.11) 

The sum of the squares of the differences between the left- and right-hand sides then becomes: 

 (R0 + +1! − *1)2 + ⋯ + (R0 + +Q ! − *Q )2 = ∑(!+M + R0 − *M)2,Q
M=1  (3.12) 

which happens to be the exact expression in Eqs. (3.6) and (3.9). This confirms, that the search for the linear 
regression function which the 1-axis deterministic calibration algorithm must find (Eq. (3.1)), can be viewed 
as simply an overdetermined linear algebraic problem, constructed as follows: 
• The coefficient matrix \ is given by: 

 \ = [
1 +1⋮ ⋮1 +Q ]. (3.13) 

• The right hand side vector ]⃗⃖ is given by: 

 ]⃗⃖ = [ *1⋮*Q ]. (3.14) 
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• The solution vector are the coefficients of best fit, U⃗. 

This problem must then be solved in the least squares sense. This is therefore not, strictly, a “linear” alge-
braic problem – it is a least squares problem for a linear curve. 
The most common method for solving the overdetermined linear algebraic problem in the least squares 
sense is the orthogonal-triangular decomposition (or “factorization”) method, often simply called “QR fac-

torization.” This is the method that MATLAB’s “\” operator, also called by the mldivide function, uses to 
solve overdetermined linear algebraic problems in the least squares sense. 
Note, that all of the optimization methods above, except QR factorization, are iterative. Therefore, they do 
not yield an exact solution: they converge to it, but terminate once reaching a specified tolerance (which, 
for a cost function, can be hard to select, particularly for a multiscale problem). They also require an initial 
guess for the coefficients. QR factorization is different: it is an exact method, that does not require initial 
guesses, and yields an exact solution. Therefore, assuming similar or superior speeds, it is generally a better 
method for our purposes. 
Any one of the optimization methods discussed above can potentially be used as part of the deterministic 
algorithm for 1-axis sensor calibration. In this thesis, I have tested two for this purpose: MATLAB’s 
fminsearch (Nelder-Mead simplex search, method 3 in the list of general methods above) to minimize Eq. 
(3.6), and MATLAB’s “\” operator, treating the problem as an overdetermined linear algebraic problem, 
using Eqs. (3.13) and (3.14). The first approach was chosen because it is frequently reported to be used for 
this problem in literature (e.g., Ref. [40]), and also because for small problems (e.g., fewer than a hundred 
measurements) it converges faster than the gradient-dependent methods. (Note, that it may take more itera-
tions, but the speed is still higher, because the cost of an iteration is much lower). The second approach was 
chosen because it is the most narrow-purpose one, and because unlike the other iterative algorithms, it is 
exact. 
The 1-axis deterministic calibration algorithm, using the fminsearch-based approach, consists of the fol-
lowing steps: 

1. Accept the voltage set {+} and the reference physical value set {*} as inputs. The sets must be of 
the same size Q ≥ 2. 

2. Select an initial guess vector U⃗(0), using the inverse sensitivity and offset values specified in the 
sensor’s datasheet, and Eq. (3.4) to compute the coefficient R0. 
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3. In MATLAB, construct the cost function T(U⃗) using Eq. (3.6), and the data from step 1. 
4. Use MATLAB fminsearch function to minimize T(U⃗), with the initial guess from step 2. 
5. Using the resulting U⃗, extract ! and compute ": 

 " = − R0! . (3.15) 

The 1-axis deterministic calibration algorithm, using the overdetermined linear algebraic problem approach, 
consists of the following steps: 

1. Accept the voltage set {+} and the reference physical value set {*} as inputs. The sets must be of 
the same size Q ≥ 2. 

2. Construct the coefficient matrix \, using Eq. (3.13). 

3. Construct the right hand side vector ]⃖⃗, using Eq. (3.14). 

4. Use MATLAB mldivide function, or the “\” operator, to solve the \U⃗ = ]⃗⃖ overconstrained linear 
problem in the least squares sense. 

5. Using the resulting U⃗, extract ! and compute " (Eq. (3.15)). 

The two approaches can be compared: the quality of fit can be evaluated by substituting U⃗ into Eq. (3.6). In 
chapter 4, I show that the overdetermined linear algebraic problem approach is clearly superior for 1-axis 
sensors. 
The one-step 3-axis deterministic algorithm, which is an extension of the one presented above, is given in 
the following subsection. 

3.1.2 Deterministic One-step Algorithm for 3-axis Sensors 

Equation (3.2) is a linear equation, like Eq. (3.1). Rearranging it yields: 

 -⃗(0⃗) = #0⃗ + ^⃗0, (3.16) 

with the following coefficients: 
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 # = [
J1,1 J1,2 J1,3J2,1 J2,2 J2,3J3,1 J3,2 J3,3], (3.17) 

 ^⃗0 = [
R0,1R0,2R0,3] = −#%⃖⃗. (3.18) 

The task of finding the coefficient matrix # and the coefficient vector ^⃗0 that “best fit” a given dataset of 
vector data pairs ({0⃗}, {-⃗}) is known as “general linear regression” [41]. Here, the Q  voltages {0⃗} are 
the independent values, and the Q  reference physical values {-⃗} are the dependent values. For Q_-dimen-
sional datasets {0⃗} and {-⃗}, the following requirements apply: 

 # ∈ ℝQ_×Q_ , (3.19) 

 ^⃗0 ∈ ℝQ_ , (3.20) 

 Q ≥ Q_ + 1. (3.21) 

The first two requirements arise directly from Eq. (3.16), and the third is necessary, because otherwise the 
system would be underdetermined. 
As with simple linear regression, the best fit is usually defined as one that yields the lowest possible sum of 
squares of the Euclidean norms of errors T, now expressed as follows [41]: 

 T(#, ^⃗0) = T(U⃗) = ∑‖-⃗(0⃗M) − -⃗M‖2Q
M=1 = ∑‖#0⃗M + ^⃗0 − -⃗M‖2Q

M=1 . (3.22) 

Here, ‖0⃗‖ denotes the Euclidean norm of vector 0⃗, and the coefficient vector U⃗ can be written as: 

 U⃗ = [R0,1, R0,2, R0,3, J1,1, J1,2, J1,3, J2,1, J2,2, J2,3, J3,1, J3,2, J3,3]T. (3.23) 

As was discussed in subsection 3.1.1 above, the minimization of a general multivariate scalar cost function 
is a known problem. Multiple methods, including the Nelder-Mead simplex search algorithm, on which 
MATLAB’s fminsearch is based, were presented there. Using Eq. (3.22) instead of Eq. (3.6), the rest of 
the fminsearch-based approach holds for the 3-axis algorithm without any additional changes. For 3-axis 
sensors, most texts in literature appear to use some form of this approach [7] [40]. 
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As with the 1-axis problem, we note, that ours is more specific than Eq. (3.7). This is also a least squares 
minimization problem, but the squares are those of Euclidean norms of the error vectors, and not of the 
scalar differences between the reference and predicted values. We can rearrange Eq. (3.22), however, to 
make the residual function look structurally similar to the one Eq. (3.8). 
Expanding a single element of the sum in Eq. (3.22), for a 3-axis problem: 

 

‖-⃗(0⃗M) − -⃗M‖2 = ‖#0⃗M + ^⃗0 − -⃗M‖2 = 

= [√(#0⃗M + ^⃗0 − -⃗M)&2 + (#0⃗M + ^⃗0 − -⃗M)'2 + (#0⃗M + ^⃗0 − -⃗M)(2]2 = 

= (J1,1+M& + J1,2+M' + J1,3+M( + R0& − *M&)2 + ⋯ 

 … + (J2,1+M& + J2,2+M' + J2,3+M( + R0' − *M')2 + ⋯ 

… + (J3,1+M& + J3,2+M' + J3,3+M( + R0( − *M()2. 

(3.24) 

Using subscript K, with K = 1 = &, K = 2 = ', and K = 3 = (, we can write the sum as follows: 

 ‖#0⃗M + ^⃗0 − -⃗M‖2 = ∑(JK,1+M& + JK,2+M' + JK,3+M( + R0K − *MK)23
K=1 . (3.25) 

Substituting Eqs. (3.24) and (3.25) into Eq. (3.22) yields the following form for the residual function: 

 T(U⃗) = ∑ ∑(JK,1+M& + JK,2+M' + JK,3+M( + R0K − *MK)23
K=1

Q
M=1 . (3.26) 

As we can see, this is a sum of squares! Minimizing this function is therefore, again, a least squares mini-
mization problem, exactly like the one in Eq. (3.8). Like Eq. (3.8), this problem can be solved using the 
Levenberg-Marquardt algorithm. 
Also like in Eq. (3.8), the function in Eq. (3.26) is more specific: each error term is the difference between 
a linear 3-variable function, and a scalar. It is therefore a multivariate version of Eq. (3.9), which we know 
to be the statement of an overdetermined linear algebraic problem, solved in the least squares sense. 
Before demonstrating this for Eq. (3.26), it will be helpful to demonstrate a small fact. Consider a vector g⃖⃗ 
of length Q', and a vector h⃖⃗ of length Q(. Composing them into a vector i⃗⃖: 

 i⃗⃖ = [g⃖⃗h⃖⃗] = ['1 … 'Q' 𝑧𝑧1 … (Q(]T. (3.27) 
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Evaluating the square of its Euclidean norm: 

 ‖i⃗⃖‖2 = ∑ 'K'2Q'
M'=1 + ∑ (M(2

Q(
M(=1 = ‖g⃖⃗‖2 + ‖h⃗⃖‖2. (3.28) 

We can see that the square of the sum of the terms of this vector can be written as the sum of the Euclidean 
norms of its two constituent vectors, with “constituent” in the sense defined in Eq. (3.27). By trivial deduc-
tion, one can see that this will be with any number of constituent vectors. 
Next, consider the following matrix: 

 \M = [
1 0 0 +M& +M' +M( 0 0 0 0 0 0
0 1 0 0 0 0 +M& +M' +M( 0 0 0
0 0 1 0 0 0 0 0 0 +M& +M' +M(]. (3.29) 

Multiplying \M by U⃗ from Eq. (3.23): 

 \MU⃗ = [
R0& + J1,1+M& + J1,2+M' + J1,3+M(R0' + J2,1+M& + J2,2+M' + J2,3+M(R0( + J3,1+M& + J3,2+M' + J3,3+M(]. (3.30) 

Next, consider the following problem: 

 \MU⃗ = -⃗M. (3.31) 

By itself, it is underdetermined: at least 4 such problems are needed to make it determined, and more to 
make it overdetermined. Still, we can express the square of its residual: 

 

‖\MU⃗ − -⃗M‖2 = 

= (R0& + J1,1+M& + J1,2+M' + J1,3+M( − *M&)2 + ⋯ 

… + (R0' + J2,1+M& + J2,2+M' + J3,3+M( − *M')2 + 

… + (R0( + J3,1+M& + J3,2+M' + J3,3+M( − *M()2 = 

= ∑(R0K + JK,1+M& + JK,2+M' + JK,3+M( − *MK)23
K=1  

(3.32) 

Clearly the squared residual in Eq. (3.32) is simply the inner sum of Eq. (3.26). 
Next, we construct the following right-hand side vector: 
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 ]⃗⃖ = [
-⃗1⋮-⃗Q ] =

⎣⎢⎢
⎢⎡*1&*1'*1(⋮*Q(⎦⎥⎥

⎥⎤, (3.33) 

and the following full coefficient matrix: 

 \ = [
\1⋮\Q ]. (3.34) 

Lastly, we construct the linear algebraic problem: 

 \U⃗ = ]⃗⃖. (3.35) 

Like Eq. (3.10), Eq. (3.35) is a linear algebraic problem, determined if Q = 4, and overdetermined if Q >
4. When solved in the least squares sense, and using the fact from Eq. (3.28) for Q  constituent vectors of 3 
elements each, its residual squared can be written as follows: 

 ‖\U⃗ − ]⃗⃖‖2 = ∑‖\MU⃗ − -⃗M‖2Q
M=1 . (3.36) 

Substituting Eq. (3.32) into Eq. (3.36) finally yields the following double sum: 

 ‖\U⃗ − ]⃗⃖‖2 = ∑ ∑(R0K + JK,1+M& + JK,2+M' + JK,3+M( − *MK)23
K=1

Q
M=1 , (3.37) 

which happens to be the exact expression in Eq. (3.26). This confirms, that the search for the general linear 
regression, which the 3-axis deterministic calibration algorithm must find (Eq. (3.2)) can, like the 1-axis 
problem, be viewed as simply an overdetermined linear algebraic problem, constructed as follows: 
• The coefficient matrix \ is given by Eq. (3.34), with its components from Eq. (3.29). 

• The right-hand side vector ]⃗⃖ is given by Eq. (3.33). 
• The solution vector are the coefficients of best fit, U⃗, from Eq. (3.23). 

This problem can be solved in the least squares sense, using exactly the same methods (i.e., QR factorization 
through MATLAB “\” operator) as those used for this purpose in subsection 3.1.1. 
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As in subsection 3.1.1, I can now formulate two approaches to the one-step 3-axis deterministic calibration 
algorithm. The one-step 3-axis deterministic calibration algorithm, using the fminsearch-based approach, 
consists of the following steps: 

1. Accept the voltage set {0⃗} and the reference physical value set {-⃗} as inputs. The sets must be of 
the same size Q ≥ 4, and each element must be a 3-dimensional vector. 

2. Select an initial guess vector U⃗(0), using the sensitivities (and misalignment angles, if they are spec-
ified to be nonzero, which is generally not the case for commercially available sensors) and offset 
values specified in the sensor’s datasheet. Use Eq. (3.18) to calculate the coefficient vector U⃗0. Be-
cause most sensors are specified with a single sensitivity 3 = !−1 for all axes, and 0 misalignment 
angles, the following initial guess for the coefficient matrix #(0) is usually the best available: 

 #(0) =
⎣⎢⎢
⎢⎡13 0 00 13 00 0 13⎦⎥⎥

⎥⎤. (3.38) 

3. In MATLAB, construct the cost function T(U⃗) using Eq. (3.22), and the data from step 1. 
4. Use MATLAB fminsearch to minimize T(U⃗), with the initial guess from step 2. 
5. Using the resulting U⃗, construct # using Eq. (3.23), and extract the coefficient vector U⃗0. 
6. Compute %⃖⃗: 

 %⃖⃗ = −#−1U⃗0. (3.39) 

#−1 is always possible, because # is strictly diagonally dominant, and therefore is nonsingular [42]. 

The 3-axis deterministic calibration algorithm, using the overdetermined linear problem approach, consists 
of the following steps: 

1. Accept the voltage set {0⃗} and the reference physical value set {-⃗} as inputs. The sets must be of 
the same size Q ≥ 4, and each element must be a 3-dimensional vector. 

2. Construct the coefficient matrix \, using Eq. (3.34), with components from Eq. (3.29). 

3. Construct the right-hand side vector ]⃖⃗, using Eq. (3.33). 
4. Use MATLAB mldivide function, or the “\” operator, to solve Eq. (3.35) in the least squares sense. 
5. Using the resulting U⃗, construct # using Eq. (3.23), and extract the coefficient vector U⃗0. 



3.1 Deterministic Calibration Algorithms 

33 
 

6. Compute %⃖⃗ (Eq. 3.39). 

As with the 1-axis problem, the two approaches can be compared: the quality of fit can be evaluated by 
substituting U⃗ into Eq. (3.22). In chapter 4, I show that the overdetermined linear algebraic problem ap-
proach is also clearly superior for 3-axis sensors. This by itself is a useful result, because in literature the 
use of fminsearch is prevalent. 
The two-step deterministic algorithm for 3-axis accelerometers, which is reliant on data from method 4 
from section 2.2, is described in the following subsection. 

3.1.3 Deterministic Two-step Algorithm for 3-axis Sensors 

Bonnet et al. use the factorization of # in Eq. (2.8), and separate the finding of the calibration parameters 
into two steps [9]. The algorithm described below is taken nearly verbatim from Ref. [9], with appropriate 
notation changes, and several modifications explicitly noted as such. It may be used for calibrating accel-
erometers and magnetometers. 
In step 1, @ and %⃖⃗ are found. The step 1 of the experiment, associated with this calibration method, produces 
a set of Q ≥ 9 voltage vectors {0⃗}, each with a fixed magnitude (i.e., Euclidean norm) of p. Their orien-
tations are not used. 
Step 1 of this calibration algorithm consists of minimizing the following cost function: 

 q (@, %⃖⃗) = ∑[(0⃗M − %⃖⃗)T@T@(0⃗M − %⃖⃗) − p2]2Q
r=1 , (3.40) 

The minimization of this function is the ellipsoid optimization problem (i.e., the search for best fit, using 
an ellipsoid as the fitting function), because for an upper triangular @, Eq. (3.41) is the general ellipsoid 
equation in 0⃗ ∈ ℝ3: 

 (0⃗ − %⃖⃗)T@T@(0⃗ − %⃖⃗) = p2. (3.41) 

Because gravity is used as the field with constant magnitude p: 



CHAPTER 3. INERTIAL SENSOR CALIBRATION THEORY 

34 
 

 p = 1). (3.42) 

The cost function in Eq. (3.40) is nonlinear, and unlike Eq. (3.6) or Eq. (3.22), cannot be reformulated as a 
sum of residual squares with a linear fitting function. Its minimization is therefore not solvable via the 
overdetermined linear problem. Bonnet et al. propose using the Quasi-Newton nonlinear optimizer, a form 
of which is implemented in the MATLAB Optimization Toolbox as the fminunc function. 
In step 2, A!B is found. The step 2 of the experiment, associated with this calibration method, produces 3 

sets of measurements, of Q&, Q' and Q( voltage vectors. Each of the 3 sets {0⃗}K = {0⃗1K , … , 0⃗QK
K } consists 

of measurements made when rotating the sensor about body axis K, keeping axis K fixed relative to gravity. 
Step 2 of this calibration algorithm relies on the fact that when the accelerometer is rotated about a fixed 
body axis K, the projection of gravity onto this axis is constant: 

 @(0⃗MK − %⃖⃗) ⋅ v̂K = 1) cos(xK)  ∀ M = 1 … QK . (3.43) 

Here v̂K  is the unit vector for body axis K in the orthogonalized sensor frame, to be used to construct A!B 
below, and xK  is the angle between body axis K and the vertically upward direction. This vector can be found 
as the solution for the following cost function minimization problem: 

 minv̂K z̃K(v̂K) = minv̂K ∑(@(0⃗MK − %⃖⃗) ⋅ v̂K − 1) cos(xK))2QK
M=1 . (3.44) 

The minimization problem in Eq. (3.44), when solved for each body axis K, yields 3 unit vectors in the 
orthogonalized sensor frame. This problem is clearly an overdetermined linear algebraic problem: 

 \Kv⃖⃗⃖K = |⃗⃖K , (3.45) 

with the following matrix \K: 

 \K =
⎣⎢⎢
⎢⎢⎡ (@(0⃗1K − %⃖⃗))T

⋮
(@ (0⃗QK

K − %⃖⃗))T
⎦⎥⎥
⎥⎥⎤, (3.46) 

and the following right-hand side vector |⃗⃖K: 
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 |⃗⃖K = ⎣⎢⎢
⎡1) cos(xK)⋮1) cos(xK)⎦⎥⎥

⎤ ∈ ℝQK . (3.47) 

However, Eq. (3.47) requires knowing xK , which can introduce an additional error. Dividing both sides of 
Eq. (3.45) by ) cos(xK) yields the following: 

 \K�⃗⃖K = �⃖⃗ ∈ ℝQK , (3.48) 

in which �⃗⃖K  are non-unit vectors that are parallel to v̂K , and from which v̂K  can therefore be obtained: 

 v̂K = �⃗⃖K
‖�⃗⃖K‖. (3.49) 

Unfortunately, Eq. (3.48) can only be valid if xK ≠ 90°, otherwise cos(xK) = 0, and dividing Eq. (3.45) by 
) cos(xK) would mean dividing by 0. For an accelerometer, this describes a horizontal rotation body axis K, 
which is likely the most convenient axis to hold fixed (e.g., by mounting the accelerometer on a rectangular 
parallelepiped block, and rotating the block in 90° increments on a flat, precisely horizontal surface, as in 
chapter 4). Furthermore, as Bonnet et al. state, xK = 90° provides the most possible variation of the meas-
ured quantity in the orthogonal (to v̂K) plane, and therefore actually provides the best estimate of  v̂K . 

To address these challenges, Bonnet et al. point out, that by: (a) computing the means �&K , �'K  and �(K , (b) 
and subtracting each mean from the corresponding column of \K , the problem of Eq. (3.45) is transformed. 
For illustration purposes, this operation is illustrated for a set of simulated measurements, on Fig. 3.1 below. 
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Fig. 3.1. Illustration of Step 2 of Deterministic Two-step Algorithm for 3-axis Sensors 

This illustration demonstrates, that this centering (i.e., subtraction of each column’s mean from the corre-
sponding column of \K), in effect, puts all the data, as closely as possible, on a plane that (a) is orthogonal 
to v̂K , and (b) runs through the origin. And, if xK = 90°, data would already be on such plane! (Although 
not necessarily centered about the origin, until the centering transformation). Therefore, whether or not xK  
is 90°, or some other value, by centering the data, the problem becomes the following: 

 \RK v⃖⃗⃖K = �⃖⃗ ∈ ℝQK , (3.50) 

in which \RK  is the centered version of \K . 
This problem is known as the “overdetermined homogeneous linear algebraic system.” It obviously has a 

trivial (�⃗⃖) solution, but also has nontrivial solutions, because it is rank-deficient (by construction, it has rank 
2, not 3). To find the nontrivial solutions, we utilize the following Singular Value Decomposition (SVD), 

performed by MATLAB’s svd function on a centered matrix like \RK : 
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 \RK = �K�K�KT, (3.51) 

in which �K ∈ ℝQK×QK , �K  is a diagonal 3×3 matrix, and �K ∈ ℝ3×3. �K  and �K  are both unitary (i.e., norm-

preserving) matrices, with �K’s columns consisting of the 3 right-singular vectors of \RK . The 3 nonnegative 

values in �K  are the “singular values” of \RK , arranged (along the diagonal) from the highest to the lowest. 
These values quantify the variance in the data along the right-singular vectors, with a higher singular value 
corresponding to greater variance. 
As is obviously illustrated in Fig. 3.1 above, we are clearly interested in the singular vector with the least 
possible variance along it, which is aligned with v⃖⃗⃖K . Since the singular values are arranged in decreasing 
order in �K , and the columns of �K  correspond to these values, we are clearly interested in the 3rd column 

of �K , �⃗3K . 
The other two vectors in �K  will lie in the plane in which the centered data points lie (or the best fit to such 
a plane, if there is small transverse variance due to noise and uncertainties). Their exact orientations will 
depend on how asymmetric (i.e., how unevenly distributed over the edge of the cone) the data is; see Fig. 
3.1 for an illustration of a fairly asymmetric (180°) dataset. 
All of the above details were either implied, or stated directly, by Bonnet et al. However, one point was not 

stated: as we can clearly see from Fig. 3.1 above, if �⃗3K  is parallel to the vector along which the least variance 

in the data occurs, −�⃗3K  will be antiparallel, but with exactly the same amount of variance. We therefore 

cannot automatically state that v⃖⃗⃖K = �⃗3K : it can be shown, that the SVD, due to the uncertainty in data, can 

converge to �⃗3K = −v⃖⃗⃖K . In fact, for example, MATLAB’s svd, when executed on the (centered) data in Fig. 

3.1 above, converges to �⃗3K = −[ 1√3 1√3 1√3]T
, which is clearly −v⃖⃗⃖K . 

To determine the appropriate sign to apply to �⃗3K , I propose the following consideration: we know, that 
misalignment angles (i.e., the 3 orientation correction angles that define A!B) between the orthogonalized 
sensor frame, and the body frame, are, for real commercial sensors, generally relatively small, on the order 
of a few degrees. 
Therefore, we can use the following fact: even for a very poor, and very noisy, dataset, v⃖⃗⃖K  is going to be 
closer aligned to �K̂ , with �K̂  as the unit vector in the direction of orthogonal sensor frame axis K. Therefore, 

to assess whether v⃖⃗⃖K = �⃗3K  or v⃖⃗⃖K = −�⃗3K , I propose the following: 



CHAPTER 3. INERTIAL SENSOR CALIBRATION THEORY 

38 
 

 v⃖⃗⃖K = { �⃗3K if �⃗3K ⋅ �K̂ ≥ −�⃗3K ⋅ �K̂ ,−�⃗3K otherwise.  (3.52) 

Beyond this point, the algorithm is once again, as specified by Bonnet, et al. 
After v⃖⃗⃖&, v⃖⃗⃖' and v⃖⃗⃖( are all found, regardless of how this was accomplished (i.e., by using Eq. (3.48) with 
known, nonzero xK , or by using Eqs. (3.50)–(3.52)), the following matrix is constructed: 

 A = [v⃖⃗⃖& v⃖⃗⃖' v⃖⃗⃖(]T, (3.53) 

and decomposed using SVD: 

 A = ���T, (3.54) 

from which A!B can finally be obtained: 

 A!B = ��T. (3.55) 

Lastly, with @, %⃖⃗ and A!B computed, we can finally compute #: 

 # = A!B@. (3.56) 

In this work, I will use the more general technique for finding {v⃖⃗⃖&, v⃖⃗⃖', v⃖⃗⃖(}, based on Eqs. (3.50)–(3.52). 
The deterministic two-step calibration algorithm for 3-axis accelerometers, due to Bonnet et al. [9], with 
my modifications, is therefore summarized as follows: 

1. Accept as inputs: the voltage set {0⃗} of size Q  measurements from step 1 of the two-step accel-
erometer calibration experiment, and the voltage sets {0⃗}&, {0⃗}' and {0⃗}( of sizes Q&, Q' and 
Q( from step 2 of the two-step experiment. The following requirements apply: Q ≥ 9, and QK ≥ 3 
for all K = &, ', (. Each element of each set must be a 3-dimensional voltage vector. 

2. In MATLAB, construct the cost function q (@, %⃖⃗) from Eq. (3.40), using p = 1) and data from 
step 1. 

3. Set the initial guesses @(0) and %⃖⃗(0), using the typical sensitivities 3 and offset values " specified in 
the sensor datasheet. Because most sensors are specified with a single sensitivity 3 = !−1 for all 
axes, and 0 misalignment angles, the following initial guess for @(0) is usually the best available: 
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 @(0) =
⎣⎢⎢
⎢⎡13 0 00 13 00 0 13⎦⎥⎥

⎥⎤. (3.57) 

4. Use MATLAB Optimization Toolbox fminunc function to minimize q (@, %⃖⃗), with the initial guess 
from step 3, yielding @ and %⃖⃗. 

5. For each body axis K = {&, ', (}: 
a. Construct the coefficient matrix \K  according to Eq. (3.46), using the data from step 1, and 

@ and %⃖⃗ from step 4. 

b. Compute the means �&K , �'K  and �(K  of each column of \K . 
c. Center the matrix \K  by subtracting the column means from their corresponding columns. 
d. Using MATLAB svd function, perform the SVD decomposition of Eq. (3.51). 

e. Extract �⃗3K  as the 3rd column of �K . 

f. Select v⃖⃗⃖K  (i.e., v⃖⃗⃖K = �⃗3K  or v⃖⃗⃖K = −�⃗3K) using Eq. (3.52). 
6. Assemble A according to Eq. (3.53). 
7. Perform SVD on A using MATLAB svd function, yielding the orthogonal unitary matrices � and 

� (and diagonal matrix �, which is not used), as per Eq. (3.54). 
8. Compute rotation matrix A!B using Eq. (3.55). 
9. Compute # using Eq. (3.56). 

This concludes the summary of the deterministic calibration algorithms for 1- and 3-axis sensors, including 
low-level details of their implementation. These algorithms, as was stated at the beginning of this chapter, 
do not quantify the sensors’ uncertainties. In the following section, I propose Monte Carlo-based modifica-
tions, which give these algorithms uncertainty quantification capabilities. 

3.2 UNCERTAINTY-QUANTIFYING CALIBRATION ALGORITHMS 

By definition, an uncertain quantity is one that is represented by a probability density function (PDF), as 
opposed to a single best estimate [16]. As discussed in the introduction to this chapter, an uncertainty-
quantifying calibration algorithm is one that accepts uncertain measured voltages and reference physical 
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values, and outputs a transducer function that also computes the uncertainties in the measured physical 
values. 
Most generally, uncertainties are quantified via PDFs. However, in engineering and scientific practice, it is 
very common to assume a shape to the PDF, and quantify the uncertain parameter via two quantities: the 
PDF’s mean (aka, the best estimate for the value), and some measure of the PDF’s spread (e.g., the standard 
deviation, or the width of a confidence interval) [31]. In engineering in particular, the half-width of a 95% 
confidence interval (CI) is commonly used [6]. 
The normal distribution, also known as the “Gaussian distribution,” is the most commonly used form of 
PDF for uncertain parameters. The reason for this is the following: by the central limit theorem (CLT), “if 
a measurement is subject to many small sources of random error, and negligible systematic error, the meas-
ured values will be distributed in accordance with a bell-shape curve and this curve will be centered on the 
true value [of the measurement]” [31]. Here by “bell-shaped curve” Taylor refers to the Gaussian PDF. This 
means that if the uncertainty in a parameter is caused by several independent, small random effects, the 
parameter will be quantified by a Gaussian PDF. 
In this work, both measured voltages and reference values will be treated as independent uncertain param-
eters, quantified with independent Gaussian PDFs. This is done for three reasons: 

1. The source of the uncertainty in measured voltages is the signal noise, which tends to be modeled 
either as white noise (flat PDF) or as Gaussian noise (Gaussian PDF) [3]. Signals from sensors tend 
to have Gaussian noise, which makes this a good assumption. 

2. Uncertainties in reference physical values depend on the experimental setup, and how the reference 
value was calculated. However, regardless of the shapes of the PDFs in the individual quantities 
that contribute to the true physical value experienced by the sensor, as long as the uncertainties in 
these individual quantities are small, the PDF for the reference physical value will be a Gaussian, 
centered on the best estimate. This is by the CLT, as described above. Also, by design of experi-
ments, we can clearly assume that the errors in the individual contributing quantities (e.g., the ori-
entations of the sensors, the noise in the nonzero voltages, etc.) are relatively small. 

3. Assuming the uncertainties in measured voltages and in reference physical values to be independent 
from each other also significantly simplifies the analysis (specifically, the PDFs of the calibration 
parameters), so partly this assumption is for convenience. For measured voltages, this is also a good 
assumption simply because the 3 analog channels of the DAQ are completely independent from 
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each other, and their analog-to-digital conversion (ADC) is the primary source of the voltage un-
certainties. For reference physical values, this assumption may not necessarily be a good one, but 
in the calibration experiments used in this work (chapters 4 and 5), it is. 

The Gaussian PDF for an uncertain parameter + is given by [31]: 

 � (+|�+, �+) = 1�+√2� �− (+−�+)2
2�+2 , (3.58) 

where �+ and �+ are the PDF’s mean (also the best estimate for +) and standard deviation. It is a PDF, which 
means that the probability � (+� ≤ + ≤ +� ) of sampling + between +� and +�  is given by: 

 � (+� ≤ + ≤ +� ) = ∫ _+′ � (+′|�+, �+)+�
+�

. (3.59) 

As is discussed above, the half-width of the 95% confidence interval, in engineering practice, is normally 
used instead of the standard deviation. The two are linearly proportional to each other. To convert between 
the two, we use the normal distribution quantile function Φ−1(*|�+, �+), which is defined as the inverse of 
the normal distribution’s cumulative distribution function (CDF). This means that for a given probability 𝑝𝑝, 
Φ−1(*|�+, �+) gives the value 𝑣𝑣𝐻𝐻 such that: 

 � (−∞ ≤ + ≤ +� ) = *. (3.60) 

In other words, the fraction * of the area under the curve � (+|�+, �+) is between −∞ and Φ−1(*|�+, �+). 
Φ−1(*|�+, �+) is given by: 

 Φ−1(*|�+, �+) = �+ + �+√2erf−1(2* − 1), (3.61) 

where erf−1(&) is the inverse error function. By definition, the 95% confidence interval is the interval 

[+�, +�] such that � (+� ≤ + ≤ +� ) = 95%. Equation (3.58) is symmetric about �+, therefore the CI’s half-
width, $+, is enough to quantify the width of the CI, yielding +� = �+ −  $+ and +� = �+ + $+. Again from 
symmetricity, the corresponding * values for these +� and +�  values are 2.5% and 97.5%, respectively. 
This allows us to relate $+ and �+. Substituting * = 97.5% and +� = �+ + $+ into Eq. (3.61) yields: 
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 �+ + $+ = �+ + �+√2erf−1(2 ⋅ 0.975 − 1), (3.62) 

which yields the ratio: 

 $+ ≈ 1.9600�+. (3.63) 

Below, an uncertain quantity + with a best estimate �+ and a 95% CI half-width $+ will be denoted: 

 + = �+ ± $+. (3.64) 

In summary: in this work, all quantities that serve as inputs to the uncertainty-quantifying calibration algo-
rithms are quantified using independent Gaussian PDFs, with means and 95% confidence interval half-
widths. The 95% confidence internal half-widths are referred to as these quantities’ “uncertainties,” for 
brevity. 
The Monte Carlo-based uncertainty-quantifying modification to the deterministic algorithm for 1-axis sen-
sors is presented in subsection 3.2.1 below. Similar modifications for the one-step and two-step 3-axis de-
terministic algorithms are in subsections 3.2.2 and 3.2.3, respectively. 

3.2.1 Monte Carlo Algorithm for 1-axis Sensors 

As discussed in subsection 3.1.1, the deterministic calibration algorithm for 1-axis sensors takes the Q  
voltages {+} and the Q  reference physical values {*} as inputs. The uncertainty-quantifying version of this 
algorithm also requires the corresponding sets of uncertainties {$+} and {$*}, for the voltages and reference 
physical values, respectively. Both {$+} and {$*} are also of size Q  each. 
There exist well-defined algebraic rules for propagating uncertainties in independent random variables 
through closed-form expressions, summarized in section 2.4. However, the algorithm presented at the end 
of subsection 3.1.1 (both fminsearch- and mldivide-based approaches) is not a closed-form expression. 
Therefore, uncertainties in {+} and {*} cannot be easily propagated through it using the above-mentioned 
uncertainty propagation rules. 
The most general method for propagating uncertainties through arbitrary nonlinear functions is Monte 
Carlo-based uncertainty quantification [43]. The 1-axis deterministic calibration algorithm can be viewed 
as such nonlinear function. In general, it works as follows: 
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1. Sample every uncertain quantity that serves as an input to the nonlinear function, according to their 
PDFs. 

2. Evaluate the nonlinear function using the results of the sampling from step 1, and record the func-
tion’s resulting value. 

3. Repeat steps 1 and 2, enough times to get the function’s value to approach a limiting distribution. 
Assuming the uncertainties are small and independent, this distribution will be Gaussian, as dis-
cussed at the beginning of section 3.2. 

With enough samples, this approach will work on any function and input quantities’ PDFs. However, a very 
large number of samples can be required, which makes this method potentially slow. It is therefore important 
that: 

a) the number of input quantities is sufficiently low, 
b) the function is sufficiently smooth, and 
c) the function can be quickly evaluated, since it needs to be evaluated once per iteration. 

Fortunately, our problem meets these 3 criteria: 
a) Q  will generally not be above a few hundred, as it’s prohibitively time-consuming to construct a 

larger dataset for calibration. 
b) Eq. (3.6) is a sum of 2nd-order polynomials, so it is smooth. 
c) As will be shown in chapter 4, a single pass-through of the 1-axis deterministic calibration algo-

rithm is sufficiently rapid. 

To quantify the uncertainties in 1-axis sensor calibration parameters, I therefore propose the following un-
certainty-quantifying Monte Carlo calibration algorithm. Recall, that it uses all of the assumptions dis-
cussed in section 3.2: 

1. Accept the voltage best estimate set {+}, the voltage uncertainties set {$+}, the reference physical 
value best estimate set {*}, the reference physical value uncertainties set {$*}, and the number of 
simulations �, as inputs. The sets must be of the same size Q ≥ 2. As shown in chapter 4, taking 
� = 100,000 with realistic data tends to be enough for convergence. 

2. Seed the random number generator that will be used throughout the program. This step is techni-
cally optional, but is recommended, to ensure complete reproducibility of results. 

3. Initialize the simulation counter 3 to 1. 
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4. For each M = 1 … Q , use Eq. (3.63) to convert from the 95% CI half-widths to corresponding stand-
ard deviations. 

5. For each M = 1 … Q , sample +M ± $+M and *M ± $*M. To sample a Gaussian PDF with mean 0 and 
standard deviation 1 (known as “standard normal distribution”), a variety of high-performance 
random number generators exist, such as MATLAB’s randn function. Let such (normalized) sam-

ple for the variable +M, in simulation 3, be denoted +M̃(3). To convert from a standard normal distri-
bution sample to a Gaussian sample with mean �+M and standard deviation �+M, the following ex-
pression may be used: 

 +M(3) = �+M + �+M+M̃(3). (3.65) 

6. Apply the deterministic calibration algorithm for 1-axis sensor (subsection 3.1.1) to the sampled 

voltage set {+(3)} = {+1(3) … +Q(3)} and the sampled reference physical value set {*(3)} =
{*1(3) … *Q(3)}. This will yield the sensor inverse sensitivity !(3) and offset "(3) for simulation 3. 

Record them, and discard {+(3)} and {*(3)}. 
7. Increment simulation counter 3 by 1, and go back to step 5 above. Repeat steps 5–7 until running 

�  simulations. 
8. With �  large enough, and {$+} and {$*} small enough, the distributions of {!(3)} and {"(3)} 

should converge to the limiting Gaussian distributions. At this stage, ! ± $! and " ± $", which con-
stitute the outputs of the algorithm, can be computed. The best estimates are computed by calculat-
ing the means of the corresponding distributions, and the 95% CI half-widths can be computed as 
follows (for $!): 

a. Evaluate the 2.5% percentile of {!(3)}, denoting it !�. 
b. Evaluate the 97.5% percentile of {!(3)}, denoting it !� . 
c. Evaluate $! as: 

 $! = !� − !�2 . (3.66) 

To compute percentiles, MATLAB Statistics and Machine Learning Toolbox function prctile can be used. 
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Note, that step 6 in this algorithm will work regardless of the approach used in the deterministic 1-axis 
algorithm. However, this step is also run � times, for a large � , and so it is preferable to use the fastest 
approach available, which, as is discussed in subsection 3.1.1, is the mldivide-based approach. 
The 3-axis version of the above algorithm is presented in the following subsection. 

3.2.2 Monte Carlo One-step Algorithm for 3-axis Sensors 

As discussed in subsection 3.1.2, the one-step deterministic calibration algorithm for 3-axis sensors takes 
the Q  voltage vectors {0⃗} and the Q  reference physical values {-⃗} as inputs. The uncertainty-quantifying 
version of this algorithm also requires the corresponding sets of uncertainties {$0⃗} and {$-⃗}, for the volt-
ages and reference physical values, respectively. Both {$0⃗} and {$-⃗} are also of size Q  each. 
By the assumptions described at the beginning of section 3.2, a single voltage measurement vector 0⃗M, and 
a single reference physical value vector -⃗M, are treated in this work as triplets of independent uncertain 
variables each. This means that in a Monte Carlo simulation, +M&, +M' and +M( can be sampled independently 
from each other; same with *M&, *M' and *M(. 
Similarly, the outputs, which consist of 12 variables (9 elements of #, 3 of %⃖⃗), are also treated as independent 
uncertain variables. 
Under these assumptions, to quantify the uncertainties in 3-axis sensor calibration parameters, I therefore 
propose the following uncertainty-quantifying Monte Carlo calibration algorithm: 

1. Accept the voltage best estimate set {0⃗}, the voltage uncertainties set {$0⃗}, the reference physical 
value best estimate set {-⃗}, the reference physical value uncertainties set {$-⃗}, and the number of 
simulations �, as inputs. The sets must be of the same size Q ≥ 4. As shown in chapter 4, taking 
� = 100,000 with realistic data tends to be enough for convergence. 

2. Seed the random number generator that will be used throughout the program. This step is techni-
cally optional, but is recommended, to ensure complete reproducibility of results. 

3. Initialize the simulation counter 3 to 1. 
4. For each M = 1 … Q , use Eq. (3.63) to convert from the 95% CI half-widths to corresponding stand-

ard deviations. Note, that each vector has 3 components, and each component has an associated 
uncertainty (i.e., $+M&, $+M' and $+M( for 0⃗M, and $*M&, $*M' and $*M( for -⃗M), and all of them must be 
converted. 
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5. For each M = 1 … Q , and each axis K = &, ', (, sample +MK ± $+MK  and *MK ± $*MK . See step 5 of the 
algorithm in subsection 3.2.1 for details on how to sample a Gaussian PDF for each of these varia-
bles. This will yield the dataset for simulation 3: ({0⃗(3)}, {-⃗(3)}). 

6. Apply the one-step deterministic calibration algorithm for 3-axis sensor (subsection 3.1.2) to the 

sampled voltage set {0⃗(3)} = {0⃗1(3) … 0⃗Q(3)} and the sampled reference physical value set {-⃗(3)} =
{-⃗1(3) … -⃗Q(3)}. This will yield the sensor coefficient matrix #(3) and offset vector %⃖⃗(3) for simulation 

3. Record them, and discard {0⃗(3)} and {-⃗(3)}. 
7. Increment the simulation counter 3 by 1, and go back to step 5 above. Repeat steps 5–7 until running 

� simulations. 
8. With � large enough, and {$0⃗} and {$-⃗} small enough, the distributions of each element of #(3) 

and %⃖⃗(3) should converge to the limiting Gaussian distributions. At this stage, # ± $# and %⃖⃗ ± $%⃖⃗, 
which constitute the outputs of the algorithm, can be computed. The best estimates are computed 
by calculating the means of the corresponding distributions, for each element. The 95% CI half-
widths can be computed the same way they are in step 8 of the algorithm in subsection 3.2.1: by 
computing the 2.5% and 97.5% percentiles for each element of the output, and dividing their differ-
ence by 2. 

As with the 1-axis Monte Carlo uncertainty-quantifying calibration algorithm, step 6 in this algorithm will 
work regardless of the approach used in the one-step deterministic 3-axis algorithm. This step is also run 
� times, for a large �, and so it is preferable to use the fastest approach available, which, as is discussed in 
subsection 3.1.2, is the mldivide-based approach. 
The two-step Monte Carlo algorithm for 3-axis sensors, which is reliant on data from method 4 from section 
2.2, is described in the following subsection. 

3.2.3 Monte Carlo Two-step Algorithm for 3-axis Sensors 

As discussed in subsection 3.1.3, the two-step deterministic calibration algorithm for 3-axis sensors takes 
two sets of inputs: the set of Q  voltage vectors {0⃗} from step 1 of the two-step accelerometer calibration 
experiment, and the voltage sets {0⃗}&, {0⃗}' and {0⃗}( of sizes Q&, Q' and Q( from step 2 of the two-step 
experiment. The uncertainty-quantifying version of this algorithm also requires the corresponding sets of 



3.2 Uncertainty-Quantifying Calibration Algorithms 

47 
 

uncertainties {$0⃗}, {$0⃗}&, {$0⃗}' and {$0⃗}(, also of sizes Q , Q&, Q' and Q(, respectively. Additionally, 
it requires orientation uncertainty angles $x&, $x' and $x(, to quantify the potential orientation error in step 
2 of the two-step calibration method. 
By the assumptions described at the beginning of section 3.2, any single voltage measurement vector 0⃗M is 
treated in this work as a triplet of independent uncertain variables. This means that in a Monte Carlo simu-
lation, +M&, +M' and +M( can be sampled independently from each other. This applies to both the voltages from 
step 1, and from step 2. 
Similarly, the outputs, which consist of 12 variables (9 elements of #, 3 of %⃖⃗), are also treated as independent 
uncertain variables. 
The uncertainty sets {$0⃗}, {$0⃗}&, {$0⃗}' and {$0⃗}( account for the potential errors due to noise in the 
voltage signals. For step 1, there actually is no other possible contribution to uncertainty, assuming that it 
is known that gravitational acceleration (or ambient magnetic field, for 3-axis magnetometers) stays com-
pletely fixed, which generally is the case in a stationary laboratory. However, in step 2, besides the uncer-
tainties due to voltage noises, there is the added uncertainty due to the orientation error of the gravity vector, 
relative to the axis of rotation. Specifically: while rotating the sensor about body axis K, it is not necessary 
to know what the angle between the rotation body axis K, and the vertical, is, but it is necessary to keep it 
constant. The goal of the uncertainty-quantifying Monte Carlo calibration algorithm in this section is there-
fore to account not only for the effects of voltage noise on the calibration parameters, but also for the orien-
tation errors during the 3 rotation substeps. 

When rotating about a body axis K, a number of measurements 0⃗MK  are made. The product -⃗M!K = @(0⃗MK − %⃖⃗) 
yields the corresponding acceleration in the orthogonalized sensor frame. These products comprise the 
columns of \K , as per Eq. (3.45). An orientation uncertainty associated with this vector simply means that, 
in a given Monte Carlo simulation, the vector should be kept the same length (1)), but be sampled from a 

cone of possible directions, centered at -⃗M!K , and with a half-aperture of $xK. 
To sample a cone like this, we can use spherical coordinates. First, we sample the zenith angle (i.e., the 
polar angle, the angle between the vector and the (-axis), which here plays the role of the half-aperture 
angle. By the above assumptions, it is described by a Gaussian PDF with mean 0 and 95% CI half-width 
$xK. Next, we sample the azimuth angle (the angle between the &-axis and the projection of the vector onto 
the &'-plane, in the right-hand sense about the (-axis), which is described by a uniform PDF between 0 and 
360°. 
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Lastly, we have to rotate the resulting sampled vector, such that the (-axis that it was just sampled about, 

becomes aligned with -⃗M!K . The mathematics for this rotation can get somewhat complicated, but they are 
efficiently handled by MATLAB Simulink 3D Animation functions vrrotvec and vrrotvec2mat. vrrot-
vec provides an (axis, angle) pair that specify a rotation, that would transform one given vector to another. 
vrrotvec2mat converts this (axis, angle) pair to a 3×3 rotation matrix. The two functions robustly handle 

special cases (i.e., when -⃗M!K ⋅ �(̂ = 0, meaning -⃗M!K  is parallel or antiparallel to (-axis), and they will be used 
in this work. 

In short, after sampling a vector �⃗⃖M!K,(3) about the (-axis, as described above, scale it by the length of -⃗M!K  
(should be 1), but may be slightly different, due to the uncertainties in step 1), construct a rotation matrix 

from �(̂ to -⃗M!K  and apply it to  �⃗⃖M!K,(3), to obtain the sampled -⃗M!K,(3) for simulation 3. This vector will have a 

95% probability to be directed within $xK of -⃗M!K = @(0⃗MK − %⃖⃗), and it will have the same length. 
The rest of the procedure is similar to the one in the previous subsections: Monte Carlo sampling is used to 
perturb each row of \K  for each K, followed by the application of the deterministic calibration algorithm of 
the second step (subsection 3.1.3). 
Under the above assumptions, and using the above method for accounting for orientation uncertainty in 
each measurement of step 2, to quantify the uncertainties in 3-axis sensor calibration parameters, I therefore 
propose the following uncertainty-quantifying Monte Carlo calibration algorithm: 

1. Accept as inputs: the voltage best estimate set {0⃗}, the voltage uncertainties set {$0⃗}, the voltage 
best estimate sets {0⃗}&, {0⃗}' and {0⃗}(, the voltage uncertainties sets {$0⃗}&, {$0⃗}' and {$0⃗}(, 
the orientation uncertainty triplet {$x&, $x', $x(} and the number of simulations �. {0⃗} and {$0⃗} 
come from step 1 of the two-step accelerometer calibration experiment, and are of size Q  each. 

({0⃗}&, {$0⃗}&), ({0⃗}', {$0⃗}') and ({0⃗}(, {$0⃗}() come from step 2 of the two-step accelerome-
ter calibration experiment, and are of sizes Q&, Q' and Q(. {$x&, $x', $x(} also characterize step 
2 of the calibration experiment. The following requirements apply: Q ≥ 9, and QK ≥ 3 for all K =
&, ', (. Each element of each set must be a 3-dimensional voltage vector. Lastly, � = 100,000 with 
realistic data tends to be enough for convergence. 

2. Seed the random number generator that will be used throughout the program. This step is techni-
cally optional, but is recommended, to ensure complete reproducibility of results. 

3. Initialize the simulation counter 3 to 1. 
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4. For each M = 1 … Q , use Eq. (3.63) to convert from the 95% CI half-widths to corresponding stand-
ard deviations. Note, that each vector has 3 components, and each component has an associated 
uncertainty, and all of them must be converted. 

5. For each M = 1 … Q , and each axis K = &, ', (, sample +MK ± $+MK  from the ({0⃗}, {$0⃗}) dataset. See 
step 5 of the algorithm in subsection 3.2.1 for details on how to sample a Gaussian PDF for each of 
these variables. This will yield the dataset {0⃗(3)} for step 1 of simulation 3. 

6. Apply steps 2–4 of the two-step deterministic calibration algorithm for 3-axis sensor (subsection 

3.1.3) to the sampled voltage set {0⃗(3)} = {0⃗1(3) … 0⃗Q(3)}. This will yield the sensitivity and orthog-

onalization upper triangular matrix @(3) and offset vector %⃖⃗(3) for simulation 3. 
7. For each body axis K = {&, ', (}: 

a. For each M = 1 … QK , and each axis � = &, ', (, sample +M�K ± $+M�K  from the ({0⃗}K , {$0⃗}K) 

dataset. This will yield the dataset {0⃗}K,(3) for body axis K of step 2 of simulation 3. 

b. For each M = 1 … QK , using @(3) and %⃖⃗(3) from step 6 above, compute �⃗M!K,(3) =
@(3)(0⃗MK,(3) − %⃖⃗(3)).  

c. For each M = 1 … QK , sample a Gaussian PDF to obtain the zenith angle set {x((3)}K =
{x(1K,(3), … , x(QK

K,(3)}. Here x(MK,(3) is the angle by which �⃗M!K,(3) will be perturbed, and it is sam-

pled from a Gaussian PDF with mean 0 and 95% CI half-width $xK. 
d. Similarly, for each M = 1 … QK , sample a uniform PDF from 0 to 360° to obtain the azimuth 

angle set {�(3)}K = {�1K,(3), … , �QK
K,(3)}. Here �MK,(3) is the azimuthal angle that decides the 

direction in which  �⃗M!K,(3) will be perturbed. MATLAB function rand samples uniformly 
from 0 to 1, so to sample from 0 to 360°, simply multiple the outcome by 360 (or by 2�, if 
a result in radians is desired). 

e. For each M = 1 … QK , construct a vector �⃗⃖M!K,(3): 

 �⃗⃖M!K,(3) = ‖�⃗M!K,(3)‖
⎣⎢⎢
⎢⎢⎡
sin(x(MK,(3)) cos(�MK,(3))sin(x(MK,(3)) sin(�MK,(3))cos(x(MK,(3)) ⎦⎥⎥

⎥⎥⎤. (3.67) 
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f. For each M = 1 … QK , supply �(̂ and �⃗M!K,(3) to MATLAB functions vrrotvec and vrrot-

vec2mat, to obtain the rotation matrix AMK,(3) from the (-axis (in orthogonalized sensor 

frame) to the �⃗M!K,(3) vector. 
g. For each M = 1 … QK , compute the sampled orthogonalized sensor frame gravity vectors 

-⃗M!K,(3): 
 -⃗M!K,(3) = AMK,(3) �⃗⃖M!K,(3). (3.68) 

This will yield finally yield the orthogonalized sensor frame gravity vector set {-⃗!,(3)}K =
{-⃗1!K,(3), … , -⃗QK

!K,(3)}. 

h. Construct the coefficient matrix \K,(3), by replacing the rows in Eq. (3.46) with {-⃗!,(3)}K: 

 \K,(3) =
⎣⎢⎢
⎢⎡(-⃗1!K,(3))T

⋮
(-⃗QK

!K,(3))T⎦⎥⎥
⎥⎤. (3.69) 

i. Apply steps 5.b–5.f of the two-step deterministic calibration algorithm for 3-axis sensor 
(subsection 3.1.3) to \K,(3), to obtain v⃖⃗⃖K,(3). 

8. Using v⃖⃗⃖&,(3), v⃖⃗⃖',(3) and v⃖⃗⃖(,(3) obtained in step 7.i above, and @(3) from step 6 above, apply steps 6–
9 of the two-step deterministic calibration algorithm for 3-axis sensor (subsection 3.1.3) to finally 
obtain the full calibration matrix #(3) for simulation 3. Record it, and %⃖⃗(3). 

9. Increment the simulation counter 3 by 1, and go back to step 5 above. Repeat steps 5–8 until running 
�  simulations. 

10. With �  large enough, and the uncertainties small enough, the distributions of each element of #(3) 
and %⃖⃗(3) should converge to the limiting Gaussian distributions. At this stage, # ± $# and %⃖⃗ ± $%⃖⃗, 
which constitute the outputs of the algorithm, can be computed. The best estimates are computed 
by calculating the means of the corresponding distributions, for each element. The 95% CI half-
widths can be computed the same way they are in step 8 of the algorithm in subsection 3.2.1: by 
computing the 2.5% and 97.5% percentiles for each element of the output, and dividing their differ-
ence by 2. 
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This concludes the summary of the uncertainty-quantifying calibration algorithms, developed as part of this 
work. These algorithms are used in chapters 4 and 5 to process the calibration datasets gathered through 
several different calibration experiments, for 3-axis accelerometers and 1-axis gyroscopes. 
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Chapter 4 
Accelerometer Calibration via “Box” 
Experiments 

This chapter presents the results of the two “Box” experiments for accelerometer calibration: one-step and 
two-step methods. Its purpose is two-fold: 

1. To study the performance of the calibration algorithms from chapter 3, and 
2. To produce calibration parameter sets for a pair of MEMS accelerometers. 

Section 4.1 details the equipment used, and describes the experiments. Section 4.2 lists the results from the 
one-step “Box” experiment, and uses them to analyze the performance of various aspects of the algorithms 
from chapter 3. The computed calibration parameters for the two accelerometers from the one-step “Box” 
experiment are also presented. Section 4.3 presents and discusses the results from the two-step “Box” cali-
bration experiment. The conclusions drawn from both “Box” experiments are summarized in section 4.4. 

4.1 EXPERIMENTAL SETUP AND DESCRIPTIONS OF EXPERIMENTS 

4.1.1 Experimental Setup 

Experimental setup for “Box” experiments includes: 
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Fig. 4.1. Accelerometers mounted on the rectangular parallelepiped wooden “Box” 

 
Fig. 4.2. “Box” experiment in a 45° orientation, supported by steel angles 
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• Rectangular parallelepiped wooden block, aka the “Box” after which this chapter is named. 
• Professional bubble level tool, Qooltek LASER LEVELPRO3. 
• Benchtop data acquisition device, National Instruments (NI) DAQ 6341. 
• Two analog accelerometers, Analog Devices ADXL335. 
• A desktop personal computer (PC). 

All experimental equipment used in this work, including the equipment listed above, is detailed in Appendix 
A. During both “Box” experiments, the accelerometers are attached to the wooden block, such that the &'-
axes (body frame) are parallel to the sides of the wooden block. Figure 4.1 above illustrates how the accel-
erometers are mounted on the box. 
To read the data from the accelerometers in each orientation, the two accelerometers are plugged into the 
analog ports of the NI DAQ 6341. The accelerometers are powered by the DAQ via a voltage divider due 
to lack of voltage regulator on accelerometers’ breakout. The DAQ is connected to a desktop PC through a 
USB 2.0 port. 
I developed a special LabVIEW Virtual Instrument (VI) to sample the analog data from the accelerometers 
via the DAQ, plot it, optionally filter it, and record it in plain text into an .lvm file. The data can then be 
processed in MATLAB, Microsoft Excel, Python, or another application; all data processing in this thesis 
was performed using MATLAB. 
Because the “Box” experiment uses only static positions, for each measurement, the box with the accel-
erometers was held stationary for 1 minute, with the DAQ and LabVIEW VI continuously recording the 
data at 1 kHz. 
The other details experimental details varied depending on the experiment. The following two subsections 
present these details. 

4.1.2 One-step “Box” Experiment Description 

In this section, the one-step “Box” experiment, which uses the general principles listed as method 3 (“one-
step static calibration”) in section 2.2, is described. 
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Fig. 4.3. 12 orientations of the accelerometers for one-step “Box” experiment 

(from Ref. [7]) 

In the one-step “Box” experiment, the accelerometers are simply subjected to 12 known (within an uncer-
tainty) orientations, illustrated on Fig. 4.3 above. These orientations were recommended by Zhang, et al. 
[7]. 
Unlike for step 1 of the two-step “Box” experiment, in the one-step version, precise orientation is very 
important, because not only the magnitudes, but also the orientations, are used for calibration, as described 
in subsections 3.1.2 and 3.2.2. To ensure precise orientation, in every one of the 12 positions, the Qooltek 
LASER LEVELPRO3 bubble level tool is used to verify that the box is correctly positioned. If needed, the 
level of the box is corrected by placing index cards under the box. It is important to use a level tool, or some 
other similarly precise instrument, for the one-step “Box” experiment, because otherwise the uneven surface 
of the table or the floor can introduce additional errors in gravity orientations. 
In the last 6 orientations in Fig. 4.3, the accelerometers (and therefore the box) are placed at 45º angles to 
the vertical. As is shown in Fig. 4.2 above, steel angles were used for such orientations. Also, as seen in 
Fig. 4.2, the bubble level tool was equipped to provide 45º incline as well, adjusted, once again, by placing 
index cards under the steel angles. 
In this experiment, the uncertainties in the reference values arise from orientation errors, and the uncertain-
ties in voltage from the Gaussian noise. In the first 6 of the 12 orientations, one of the accelerometer’s axes 
is vertical, and the other two are horizontal. In this situation, any horizontal orientation error does not affect 



4.1 Experimental Setup and Descriptions of Experiments 

57 
 

the reference value, but a tilt from the vertical does. By the specification of the LEVELPRO3 level tool, for 
these orientations, I estimated the error interval between the accelerometer’s and true vertical axis to be 
±0.5°. For these orientations, this results in the uncertainty of ±sin(0.5°) ) along the horizontal axes, and 
of ±[1 − cos(0.5°)]) along the vertical axis. 
The last 6 of the 12 orientations are more complicated. In those, one axis is horizontal, and the other two 
are at 45° to the vertical. It is more difficult to precisely position the wooden block at exactly this orientation: 
steel angles are used, but I still estimate the orientation errors to be more significant than in the first 6 
orientations. The error interval about the horizontal axis is still estimated to be ±0.5°. The error interval 
about the non-horizontal axes – which is a function of not only the block’s position, but also the orientation 
of the accelerometer about the axis normal to the surface it is mounted on – is estimated to be wider, at 
±2.0°. There are therefore several contributions to the error on each axis. 
Consider the illustration in Fig. 4.4 below. This corresponds to orientation 11 in Fig. 4.3, but the idea here 
is simply to project, and appropriately combine, the potential errors on each axis due to imprecise orienta-
tion; when applying the errors, the appropriate axes should be affected instead. Here, axes & and ' are at 
x( = 45° incline to the horizontal, and axis ( is horizontal. 

 
Fig. 4.4. Summary of notation for uncertainty derivations for the 45° orientations of the “Box” experiment 
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First, we note, that the orientation error about horizontal axis ( affects & and ' equally. Specifically, if x( =
45° is the best fit, and $x( is the error in it, then the difference in projection magnitudes between the best fit 
value, and the value with error, becomes: 

 $*&( = $*'( = )[sin(45° + $x() − sin(45°)], (4.1) 

with $*K� as the error in *K  due to an error in orientation about axis �. 
By the above assumptions, $x( = 0.5°, which yields: 

 $*&( = $*'( = ) [sin(45.5°) − 1√2]. (4.2) 

Next, we recognize that &- and '-axes are symmetric with regards to the gravity vector, and with regards to 
the (-axis, and each other. The uncertainties in orientations about them are also equal: $x& = $x' = 2°. So, 
the error on &-axis due to an orientation error about the '-axis would have the same expression as an error 
on '-axis due to an orientation error about the &-axis: 

  $*'& = $*&', (4.3) 

and 

 $*(& = $*('. (4.4) 

To calculate these quantities, it is enough to express the proper gravitational acceleration vector (+) on Fig. 
4.4) as: 

 ¡⃗ = ) [sin(x()cos(x()0 ] = )
⎣⎢
⎢⎢
⎡1 √2/1 √2/0 ⎦⎥

⎥⎥
⎤. (4.5) 

Next, to express the error in ¡⃗ due to an orientation error about &, we build a rotation matrix A& that rotates 
¡⃗ by $x& about &-axis, and similarly a rotation matrix A' to calculate the change in ¡⃗ due to rotation about 
the '-axis. The errors then simply become: 

 $*'& =  |[A&¡⃗ − ¡⃗]'|, (4.6) 



4.1 Experimental Setup and Descriptions of Experiments 

59 
 

and similarly: 

 $*(& =  |[A&¡⃗ − ¡⃗](|. (4.7) 

Equivalent expressions $*&' and $*(' can be built using A'. Building the above matrices and going through 
the algebra yields (with x( = 45°): 

 $*'& =  g 1 − cos($x&)√2 , (4.8) 

which with $x& = $x' = 2° means: 

 $*'& = $*&' =  g 1 − cos(2°)√2 . (4.9) 

Similarly: 

 $*(& =  g sin($x&)√2 , (4.10) 

which with $x& = $x' = 2° means: 

 $*(& = $*(' =  g sin(2°)√2 , (4.11) 

Together, Eqs. (4.2), (4.9) and (4.11) quantify the individual contributions to the uncertainties in reference 
value in this orientation (and, by trivial extension, to all of the last 6 orientations). However, we first need 
to combine them. 
To ensure that the uncertainty is not underestimated, to quantify the uncertainties to reference values 
throughout this work, I will use the more conservative, potentially-systematic uncertainty propagation meth-
ods from section 2.4. For a sum, this simply means that uncertainties add: 

 $-⃗ =  g
⎣⎢
⎢⎢
⎢⎢
⎡sin(45.5°) − cos(2°)√2sin(45.5°) − cos(2°)√2√2 sin(2°) ⎦⎥

⎥⎥
⎥⎥
⎤
. (4.12) 
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Again, consult Fig. 4.4 above for reference on how to apply this to the other 5 of the last 6 orientations. This 
describes how the uncertainties in the 12 reference accelerations were quantified. The uncertainties in volt-
ages were simply taken as the 95% CI half-widths from the voltage readings collected over the 1 minute 
that the accelerometers were held stationary. As subsection 4.2.1 will show, the voltage noise is approxi-
mately Gaussian, therefore this is a reasonable method. Most of this noise presumably comes from minute 
thermal fluctuations, both in the DAQ and in the accelerometers. 
After conducting the experiment, as described above, its data was used to calibrate the two accelerometers, 
and to test the calibration algorithms. Both sets of results are in the section 4.2. 

4.1.3 Two-step “Box” Experiment Description 

In this section, the two-step “Box” experiment, which uses the general principles listed as method 4 (“two-
step static calibration”) in section 2.2, is described. 
The experimental specification for this method consists of two steps. During the first, the accelerometer 
must simply be exposed to at least 9 different static orientations, without regard for what these orientations 
are. I therefore reuse the data from the 12 orientations one-step “Box” experiment, ignoring the reference 
accelerations. 
However, for the second step, a new experiment must be conducted: the box with the accelerometers 
mounted on it must be rotated about each of the 3 body axes (which, as was described in subsection 4.1.1, 
are mounted in parallel to the box’s edges). 
For this step, I have chosen to keep the axis of rotation horizontal, for reasons discussed in subsection 3.1.3: 
this provides the best possible data. This also, however, enforces me to use the overdetermined homogene-
ous linear algebraic system-based approach (i.e., based on Eqs. (3.50)–(3.52)), because the angle between 
the axis of rotation and gravity is 90°. 
The measurement procedure is the same as in subsection 4.1.1. The wooden block is placed in such way 
that the &-axis is horizontal, readings of all 3 axes are recorded for 1 minute using the DAQ and the PC 
with LabVIEW controlling the DAQ, then the box is rotated about the &-axis, and the results are similarly 
recorded for 1 minute. This happens 6 times, for 6 different orientations (4 lying flat, and 2 more at 45 
degree angles, to ensure the best possible spread of data about the circle in Fig. 3.1). Next, this procedure 
is repeated for the '-axis, and then the (-axis. 
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The uncertainties in step 1 arise only from the voltage noises, which are quantified the same way as in 
subsection 4.1.2. The uncertainties in step 2 arise from voltage noises as well, and also due to the potential 
orientation errors about the theoretical axis of rotation. Subsection 3.2.3 describes, how this uncertainty is 
accounted for using orientation uncertainty angles $xK, one for each axis. These uncertainties are estimated 
to be $x& = $x' = $x( = 2°. 
The data from the two-step experiment was used to calibrate the two accelerometers, with the results pre-
sented in section 4.3. 

4.2 RESULTS AND DISCUSSION FOR ONE-STEP “BOX” EXPERIMENT 

4.2.1 Sensor Noise Analysis 

Prior to running the calibration algorithms, we can take the physical voltage signal from a stationary (there-
fore, constant proper acceleration) accelerometer, and use it to confirm the assumption made in section 3.2: 
that the noise of a voltage signal for an inertial sensor is Gaussian. Figure 4.5 below, built from several 
seconds of a typical voltage signal from one of the accelerometers, clearly confirms this. 
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Fig. 4.5. Representative voltage signal noise bin histogram 

4.2.2 Selection of Computational Approach 

All accelerometers that are used in this thesis are 3-axis. Therefore, 3-axis data was collected during both 
“Box” calibration procedures. However, one of the goals of this experiment was also to study the behavior 
of the 1-axis algorithms, and confirm that these algorithms are working. To do this, we can split the 3-axis 
data into 3 datasets of 1-axis data, and test the 1-axis algorithms on those. 
1-axis and one-step 3-axis algorithms in chapter 3 all have two versions: MATLAB fminsearch-based, and 
MATLAB mldivide-based. As is described in subsections 3.2.1 and 3.2.2, either can be used for running 
multiple Monte Carlo simulations on the datasets with uncertainties. Running multiple simulations on the 
constantly varying data is also beneficial, because it provides a more accurate estimate of the time a single 
calculation takes, due to repetition. Table 4.1 below presents a comparison between the two approaches to 
1-axis calibrations, based on 100,000 Monte Carlo simulations. 
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Table 4.1. Comparison of 1-axis calibration algorithm approaches 

ACCELEROMETER APPROACH AXIS TIME PER 
SIMULATION [ms] 

COST OF BEST 
ESTIMATE 

1 fminsearch & 3.450 0.0325 
1 mldivide & 0.052 0.0325 
1 fminsearch ' 3.318 0.0183 
1 mldivide ' 0.023 0.0183 
1 fminsearch ( 3.433 0.0220 
1 mldivide ( 0.022 0.0220 
2 fminsearch & 3.411 0.0054 
2 mldivide & 0.024 0.0054 
2 fminsearch ' 3.403 0.0040 
2 mldivide ' 0.023 0.0040 
2 fminsearch ( 3.520 0.0038 
2 mldivide ( 0.037 0.0038 

 
Table 4.2 below presents the same results, but for the 3-axis calibration algorithms, also with 100,000 sim-
ulations. 

Table 4.2. Comparison of 3-axis calibration algorithm approaches 

ACCELEROMETER APPROACH TIME PER 
SIMULATION [ms] 

COST OF BEST 
ESTIMATE 

1 fminsearch 89.599 0.0728 
1 mldivide 0.216 0.0246 
2 fminsearch 52.119 0.0104 
2 mldivide 0.195 0.0077 

 
As we can see from both tables, approach 2 (mldivide) is superior to approach 1 (fminsearch) in time per 
simulation for both 1-axis and 3-axis datasets. Results from cost function for 1-axis datasets don’t have any 
difference in the approaches, however results from cost function for 3-axis datasets have significant im-
provement with approach (mldivide). This demonstrates, that for 3-axis datasets, mldivide algorithm gives 
better fit to compare with fminsearch algorithm. This is actually expected: mldivide, being a direct 
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method, is guaranteed to find the exact solution to the overdetermined algebraic linear problem, while 
fminsearch is iterative, and therefore only converges within a certain tolerance. 
From this point, all subsequent work for 1-axis and one-step 3-axis sensor calibrations, will make use of the 
mldivide-based calibration algorithms. 

4.2.3 Monte Carlo Convergence Study 

It is well-understood that Monte Carlo algorithms must be run with a sufficient number of Monte Carlo 
simulations, otherwise they do not converge. It is also understood that due to the stochastic nature of the 
method, convergence may not necessarily be smooth, particularly at low simulation counts. We therefore 
need to assess a good number of simulations � , that can be considered enough for the Monte Carlo algo-
rithms in section 3.2. 
Below, a quantity will be considered “converged” if it is less than 1% different from the same quantity at 
106 simulations. 
First, we study the convergence of the 1-axis inverse sensitivity parameters. Figure 4.6 below shows their 
convergence for both accelerometers. On it, we can observe: (a) while the accelerometers are of exactly the 
same model, their parameters are clearly different, and (b) their calibration parameters converge very rap-
idly. 
Applying the 3-axis convergence algorithms to the same datasets yields the results in Figs. 4.7 and 4.8 
below. We note, that the 3-axis parameters remain different, and also that the off-diagonal (i.e., misalign-
ment-affecting) elements of # take slightly longer to converge. 



4.2 Results and Discussion for One-step “Box” Experiment 

65 
 

 
Fig. 4.6. Convergence of all elements of ! and " for 1-axis data: accelerometers 1 (left) and 2 (right) 

 
Fig. 4.7. Convergence of all elements of # for 3-axis data: accelerometers 1 (left) and 2 (right) 

The products of an uncertainty-quantifying calibration algorithm are both the best fit sensor calibration 
quantities, and their uncertainties. Both quantities must be converged to judge a Monte Carlo calibration 
algorithm converged. Figure 4.9 below demonstrates the convergence of the 1-axis sensitivity and its un-
certainty. 
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Fig. 4.8. Convergence of the offset vectors: accelerometers 1 (left) and 2 (right) 

 
Fig. 4.9. Convergence of fractional errors of ! and $! for 1-axis data: accelerometers 1 (left) and 2 (right) 

As we can see from Fig. 4.9, it takes 100,000 simulations for the fractional error in uncertainties to drop 
below 1%. We also note, that uncertainties converge significantly slower than the best fits. 
Convergence of fractional errors of elements of the matrix # for 3-axis data is in Fig. 4.1 below. We can 
see, that the fractional error again drops below 1% with 100,000 simulations. These plots also illustrate that 
off-diagonal elements of # converge slightly slower. 
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Fig. 4.10. Convergence of fractional errors of # for 3-axis data: accelerometers 1 (left) and 2 (right) 

 
Fig. 4.11. Convergence of fractional errors for $#: accelerometers 1 (left) and 2 (right)  

The convergence of fractional errors of $# for 3-axis data is presented in Fig. 4.11 above. It highlights the 
statistical nature of the method, but once again demonstrates that all errors fall below 1% at 100,000 simu-
lations. 
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Fig. 4.12. Convergence of fractional errors of %⃗⃖ and $%⃖⃗ for 3-axis data: accelerometers 1 (left) and 2 (right) 

Lastly, the convergence of fractional errors of the offsets and their uncertainties, from 3-axis data, is pro-
vided in Fig. 4.12 above. Like all the other fractional error convergence studies, this plot again confirms, 
that: (a) uncertainties converge slower than best estimates, and (b) 100,000 simulations is sufficient to re-
duce all fractional errors below 1%. 
At this point, we know that mldivide is the superior approach, and that 100,000 simulations are enough. 
We can finally use this knowledge, to compute the calibration parameters for both accelerometers (from the 
one-step “Box” experiment data), and to evaluate the quality of the resulting fit, with uncertainties. 

4.2.4 Evaluation of Quality of Fit 

Applying the uncertainty-quantifying calibration algorithm from subsection 3.2.2, we obtain the 3-axis cal-
ibration parameters for the two accelerometers, with uncertainties. The quality of the resulting calibration 
(i.e., “quality of fit”) can be evaluated quantitatively, simply by evaluating the 3-axis cost function 
(Eq. (3.22)). The issue with this evaluation is that it does not evaluate the quality of the uncertainty quanti-
fications that the Monte Carlo algorithm produces. Another way to evaluate the fit is to simply plot it, with 
uncertainties, and analyze whether, together with the uncertainties, the fit accurately accounts for the phys-
ical measurements it was based on. 
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Fig. 4.13. Quality of fit plot for accelerometer 1, using one-step “Box” experiment data 

A 3-axis calibration relates 6 different variables – the 3 physical axes, and the 3 voltages. It is therefore not 
possible to plot them all, as is commonly done when evaluating 2-variable regressions. Instead, we may 
construct our plots as follows: 

1. Select a single reference physical value magnitude, such as ‖-⃗‖ = 1.0). This is obviously the best 
choice for the “Box” experiments, because all measured values should have this magnitude. 

2. By inverting Eq. (3.2), find the voltages that the best fit transducer function would accept to result 
in the best fit reference physical values. These will be referred to as the “best fit reference voltages.” 

3. Using Monte Carlo sampling, and the inverted form of Eq. (3.2), propagate the uncertainties in #, 
%⃖⃗ and {-⃗} to the best fit reference voltages. Alternatively, propagate the uncertainties determinis-
tically, using the procedures in section 2.4. 

4. Plot the ellipsoidal surface, on the (+&, +', +() axes, that the best fit transducer function produces 
with the above fixed reference physical value magnitude. 



CHAPTER 4. ACCELEROMETER CALIBRATION VIA “BOX” EXPERIMENTS 

70 
 

5. Plot the best fit reference voltages, with uncertainties, and the corresponding measured voltages, 
with uncertainties, on the same axes. The uncertainties are shaped as rectangular parallelepipeds. 

 
Fig. 4.14. Quality of fit plot for accelerometer 2, using one-step “Box” experiment data 

Figures 4.13 and 4.14 above provide these two quality of fit plots, one for each accelerometer. 
While there are a couple measurements that fall just out of range of the estimated uncertainties, overall, the 
plots clearly demonstrate, that the uncertainties are adequate: the best fit uncertainties (green) clearly pri-
marily overlap the measurements’ uncertainties (red). This provides a qualitative (i.e., graphical) confirma-
tion, that the one-step 3-axis Monte Carlo calibration algorithm was successful for the 3-axis accelerome-
ters, using one-step “Box” experiment data. 
3-axis calibration is generally more complicated than 1-axis. It is therefore worth assessing, whether it is 
necessary to account for the potential sensor misalignments, considering that they are near zero in modern 
MEMS sensors, and that a 1-axis calibration experiment would generally be much faster. Figures 4.15 and 
4.16 plot the qualities of fit for these simplified, misalignment-ignoring calibrations. 



4.2 Results and Discussion for One-step “Box” Experiment 

71 
 

 
Fig. 4.15. Quality of fit plot for accelerometer 1, using one-step “Box” experiment data, and ignoring misalignments 

These plots, particularly when compared to Figs. 4.13 and 4.14 above, clearly illustrate, that despite being 
small, misalignments may not be ignored: the fits are notably worse. Particularly for the (less well-aligned) 
accelerometer 1, each of the points falls out of confidence intervals. This indirectly confirms an important 
fact: that of the necessity of per-sensor calibration. Kalman filter, for example, cannot do anything to correct 
a misalignment error, because such error results in a bias, and not a loss of precision, and datasheets do not 
generally report misalignments. 

Table 4.3. Quality of fit quantification, using one-step “Box” experiment data 

 COST OF BEST ESTIMATE 
CALIBRATION PARAMETERS ACCELEROMETER 1 ACCELEROMETER 2 
Without misalignment angles 0.0728 0.013 
With misalignment angles 0.0246 0.008 
Advantage 2.9579 1.709 
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As stated above, to quantitatively assess a quality of fit for a dataset, the cost function can be used. Table 
4.3 above quantifies qualities of fit for the two accelerometers, with and without misalignments. 
This data quantitatively confirms what was demonstrated qualitatively above: that accounting for misalign-
ments produces a notable, useful improvement in the quality of fit. 

 
Fig. 4.16. Quality of fit plot for accelerometer 2, using one-step “Box” experiment data, and ignoring misalignments 

4.2.5 Final 3-axis Accelerometer Calibration Parameters from One-step “Box” Experiment 

In this section, calibration parameters, obtained from the one-step “Box” experiment, and processed with 
the 3-axis uncertainty quantifying algorithm from subsection 3.2.2, are presented. 
Accelerometer 1 full sensor calibration matrix #: 

 # = [3.454 0.07 0.22−0.15 3.359 −0.15−0.19 0.09 3.278] )V ± [0.026 0.04 0.040.036 0.019 0.040.04 0.04 0.020] )V. (4.13) 

Accelerometer 1 offset voltages %⃖⃗: 
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 %⃖⃗ = [1.4861.4841.547] V ± [0.0020.0020.002] V. (4.14) 

Accelerometer 1 (direct, not inverse) sensitivities vector £⃗⃖, obtained by inverting the diagonal of #, from 
Eqs. (2.3) and (2.4): 

 £⃗⃖ =  [290298305] mV) . (4.15) 

Accelerometer 1 misalignment angles, obtained from # and Eq. (2.4): 

 

9&( = −2.5°9&' = 3.4°9'( = −1.2°9'& = 1.6°9(' = 3.6°9(& = 2.5°.
 (4.16) 

Accelerometer 2 full sensor calibration matrix 𝐀𝐀: 

 # =  [3.347 0.04 0.05−0.07 3.407 0.030.08 −0.07 3.392] )V ± [0.022 0.04 0.040.04 0.021 0.040.04 0.04 0.022] )V. (4.17) 

Accelerometer 2 offset voltages %⃖⃗: 

 %⃖⃗ =  [1.4971.4851.531] V ± [0.0020.0020.002] V. (4.18) 

Accelerometer 2 (direct, not inverse) sensitivities vector £⃗⃖: 

 £⃗⃖ = [299294295] mV) . (4.19) 

Accelerometer 2 misalignment angles: 
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9&( = −1.2°9&' = −1.3°9'( = −0.6°9'& = −1.2°9(' = −0.9°9(& = −0.5°.
 (4.20) 

All of these values fall well within the stated ranges from the accelerometer datasheets, as expected. 

4.3 RESULTS AND DISCUSSION FOR TWO-STEP “BOX” EXPERIMENT 

The quality of fit plots with calibration parameters obtained from two-step “Box” experiment, with the 
uncertainty-quantifying Monte Carlo algorithm from subsection 3.2.3, are presented below, on Fig. 4.17 for 
accelerometer 1 and on Fig. 4.18 for accelerometer 2. 

 
Fig. 4.17. Quality of fit plot for accelerometer 1, using two-step “Box” experiment data 

The calibration parameters obtained are also presented below. 
Accelerometer 1 full sensor calibration matrix #: 



4.3 Results and Discussion for Two-step “Box” Experiment 

75 
 

 # = [ 3.420 0.063 0.085−0.15 3.335 −0.296−0.087 0.275 3.278 ] )V ± [0.009 0.016 0.0170.016 0.007 0.0160.017 0.015 0.013] )V. (4.21) 

Accelerometer 1 offset voltages %⃖⃗: 

 %⃖⃗ = [1.4861.4851.544] V ± [0.0010.0010.001] V. (4.22) 

Accelerometer 1 sensitivities vector £⃗⃖: 

 £⃗⃖ =  [292300300] mV) . (4.23) 

Accelerometer 1 misalignment angles: 
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9&( = −2.5°9&' = 1.5°9'( = −1.1°9'& = 4.7°9(' = 1.4°9(& = 5.0°.
 (4.24) 

 
Fig. 4.18. Quality of fit plot for accelerometer 2, using two-step “Box” experiment data 

Accelerometer 2 full sensor calibration matrix 𝐀𝐀: 

 # =  [ 3.370 −0.049 0.007−0.025 3.385 −0.213−0.001 0.193 3.392 ] )V ± [0.009 0.016 0.0140.015 0.009 0.0160.014 0.015 0.011] )V. (4.25) 

Accelerometer 2 offset voltages %⃖⃗: 

 %⃖⃗ =  [1.4961.4851.532] V ± [0.0010.0010.001] V. (4.26) 

Accelerometer 2 (direct, not inverse) sensitivities vector £⃗⃖: 
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 £⃗⃖ = [297295295] mV) . (4.27) 

Accelerometer 2 misalignment angles: 

 

9&( = −0.4°9&' = 0.0°9'( = 0.8°9'& = 3.3°9(' = 0.1°9(& = 3.6°.
 (4.28) 

We can see from both the plots, and the numerical results, that the two-step experiment yielded significantly 
higher misalignment angles, particularly for accelerometer 1. The estimated uncertainties, however, are 
lower. Overall, this appears to be a calibration of inferior quality to the one-step method: there are clearly 
significant mismatches on the quality of fit plots, and the misalignment angles are unexpectedly high. 
It is likely that the method suffered from the same caveat that Bonnet, et al. noted, to explain the imperfec-
tions in their experiments: the two-step method appears to be very sensitive to orientation imperfections 
during step 2 [9]. 
The one-step “Box” experiment clearly provides a better fit for the available data. This may be explained 
by the following: while the one-step method does rely on knowing orientations more explicitly, it does not 
require any strict relations between different orientations. Step 2 of the two-step method, clearly, does. This 
may result in a systematic error that the one-step experiment avoids, thus resulting in a superior fit. 
Overall though, even though the two-step method seems to be inferior, it is not a failure: the fit it provided 
is fairly close to that of the one-step method, so the method did not diverge – it just provided a worse 
calibration. 

4.4 SUMMARY 

The one-step and two-step static calibration experiments were executed on a pair of accelerometers, and the 
Monte Carlo uncertainty-quantifying algorithm developed in chapter 3 was applied to it. The following 
results were demonstrated: 

1. Voltage noise was confirmed to be Gaussian, justifying an assumption that went into the Monte 
Carlo uncertainty-quantifying calibration algorithms. 
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2. For one-step calibration methods, both 1-axis and 3-axis, mldivide-based calibration algorithms 
performed strictly better than fminsearch-based algorithms: faster, and more accurate. This is no-
table, because fminsearch-based (and other optimization-based approaches, even for systems that 
can be viewed as overdetermined linear algebraic systems) approaches appear prevalent in literature 
[7] [40]. 

3. 100,000 Monte Carlo simulations were shown to be more than enough to get the fractional error of 
less than 1% for all calibration parameters, including uncertainties. Therefore, � = 100,000 is a 
good “magic number” to use in the future. 

4. The need for appropriate misalignment angle estimation for 3-axis accelerometers was confirmed. 
This is important, because misalignment calibration is more complicated than offset and sensitivity, 
and because datasheets almost never provide nonzero misalignments. This also implicitly justifies 
the effort of the first half of this thesis: calibration was demonstrated to be very important to match 
the sensor measurements to physical results. 

5. Both accelerometers used throughout the project were confirmed to be within the technical specifi-
cation. However, even though the obtained calibration parameters are close, they are still not exact 
typical values stated in the technical specification, due to the complexity of MEMS manufacturing 
process, and temperature dependence. 

6. Two-step static calibration was shown to be notably slower than one-step calibration (up to a factor 
of 1000 for some simulations), due to the need for a nonlinear calibration at each Monte Carlo step. 
It also clearly did not provide superior results: quality of fit plots, and questionable misalignment 
angle estimates, clearly demonstrated the superiority of one-step calibration. This appears to be 
explainable by the same justification as given by the method’s authors: step 2 of the method is 
surprisingly sensitive to orientation errors, likely because it relies on a strict geometric relationship 
between the 3 datasets of step 2. One-step static calibration does not suffer from this: it does rely 
on knowing orientations, which can introduce errors, but because it does not rely on any geometric 
relationships between these orientations, occasional orientation errors do not seriously damage the 
results. 

In short, this chapter demonstrated both the need for an uncertainty-quantifying calibration algorithm for 
3-axis accelerometers, and the effectiveness of one of proposed ones. 
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Chapter 5 
Accelerometer and Gyroscope 
Calibration via “Turntable” Experiments 

This chapter is similar to chapter 4: it presents the results of the turntable experiment. Two important results 
should arise: (1) is there a tangible benefit to accelerometer calibration via turntable vs box, and (2) which 
is better for accelerometer calibration: varying speeds, or varying radii. Neither choice exists for gyroscope 
calibration. 
Section 5.1 details the equipment used, including some built for these experiments. Accelerometer calibra-
tion using the turntable is described in section 5.2, and a comparison of all 3 accelerometer calibration 
methods, tested in this work, is given in subsection 5.2.4. Gyroscope calibration using the turntable is given 
in section 5.3. 

5.1 EXPERIMENTAL SETUP 

Experimental setup for “Turntable” experiments includes: 
• Tiger Motor U8-16 100kv U-Power Professional Motor. 
• Rotating laser-cut wooden platform (“turntable” surface), mounted on the motor. 
• Benchtop data acquisition device, National Instruments (NI) DAQ 6341. 
• Benchtop programmable power supply unit, B&K Precision DC power supply 9115. 
• Two analog accelerometers, Analog Devices ADXL335. 
• Two analog gyroscopes, Cytron RB-Cyt-141. 
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• A desktop personal computer (PC). 
• “Hopper” robot’s mainboard, to control the turntable motor’s angular velocity. 
• 90° steel angles to mount the sensors perpendicular to the turntable’s surface. 

 
Fig. 5.1. Horizontal sensor placement on the turntable for accelerometer &- and '-axis calibration 

The turntable built for this experiment is show in Figs. 5.1 and 5.2 below. The laser-cut wooden disk is 
mounted on the motor, which is controlled using the Hopper robot’s mainboard [44]. Steel angles are at-
tached to the rotating wooden platform at different radii, in mirrored placement. The angles are present to 
allow the operator to mount sensors perpendicular to the platform, thus allowing, for example, the calibra-
tion of the 1-axis gyroscope (its sensitive axis is parallel to the PCB it is mounted on). 
The accelerometers are powered by the DAQ via a voltage divider due to lack of voltage regulator on ac-
celerometers’ breakout. The gyroscopes are powered by the DAQ directly, without a voltage divider, be-
cause the Cytron RB-Cyt-141 PCB has a voltage regulator on breakout. 
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Fig. 5.2. Vertical sensor placement on the turntable for accelerometer (-axis and gyroscope calibration 

The motor’s onboard microcontroller is able to output time-dependent positioning data from its encoders. 
The motor is powered by a programmable power supply with 16 V / 10 A. 
All of the equipment used in this experiment, and others in this work, is detailed in Appendix A. 

 
Fig. 5.3. The laboratory setup for data acquisition in “Turntable” experiment 

Figure 5.3 above illustrates the general equipment configuration used in the turntable experiment. The mo-
tor’s encoder is used to estimate, with an uncertainty margin, the turntable’s rotating velocity, and to ensure 
that the encoder-provided velocity is not appreciably different from the theoretical velocity controlled by 
the mainboard. 
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As in chapter 4, the sensors’ signals were read via DAQ analog channels, plotted (and optionally, smoothed) 
by a LabVIEW VI, and recorded to a plain text file. 
A substantial difficult with the turntable experiment arose from the fact that, because the sensors were wired 
with multi-wire cables (leading from the DAQ to the sensors), the cables twisted as the turntable rotated. 
The twist could provide an additional, unaccounted for, resistance, which would be very damaging to an 
analog sensor. Therefore, the turntable was only launched in short bursts (20-30 seconds), such that the 
cable did not become appreciably twisted until the very end of the time interval. Still, the unclear resistive 
effects of the stressed wires may have negatively impacted the experiments. 
The rest of the experimental details are experiment-specific, provided in sections 5.2 (accelerometers) and 
5.3 (gyroscopes) below. 

5.2 3-AXIS ACCELEROMETER CALIBRATION BY VARYING SPEEDS 

5.2.1 Description of Experiment 

One significant benefit of the turntable is that it is able to subject the accelerometer to a range of accelera-
tions, beyond the ±1) that static calibration methods can impose. To calibrate 3-axis accelerometers via the 
turntable, the experiment was set up as follows: 

1. Accelerometers are placed on the turntable, precisely (with a ±2 mm placement uncertainty) at the 
radius of 13.8 cm, with the +&-axis pointing toward the center of rotation. 

2. The turntable is rotated with a constant velocity, for about a 20 to 30 second period. If the cable is 
unexpectedly twisted, and visibly pulls/dislodges the accelerometer, the turntable is stopped, and 
the trial discarded. (This generally happened ever 4–5 trials). 

3. During rotation, the encoder position history, and accelerometer readings, were simultaneously 
read, plotted and written to plain text file via a LabVIEW VI. 

4. At this same velocity, the experiment was repeated 5 times, to attempt to reduce potential errors. 
5. Then, another constant velocity was set, and steps 2–4 repeated. This was done for a total of 7 

different velocities. 
6. After finishing with the entire velocity set, the accelerometers were reoriented, now with the +'-

axis pointing toward the center of rotation. Steps 2–5 repeated. 
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7. Then, same procedure was repeated for the +(-axis, and all 3 negative axes. 

Throughout the experiment, the radius is held constant, except for the −( direction, when the accelerometers 
had to be mounted on the other sides of the steel angles, which increased the radius by 2 mm. 
Consider the following orientation: +( pointing upward, +& pointing horizontally toward the axis of rota-
tion, and −' pointing horizontally, transversely along the direction of travel (i.e., tangent to the accelerom-
eter’s trajectory). In this orientation, the reference proper acceleration that the accelerometer experiences, 
with uncertainties, is given by: 

 -⃗ = [¤¥2−¤9) ] ± [
¥2$¤ + 2¤|¥|$¥ + ) sin($x()|9|$¤ + ¤$9 + ) sin($x()1 − cos($x() ], (5.1) 

in which ¤ is the radius at which the accelerometers are placed, $¤ is the placement error (visually estimated), 
¥ is the angular velocity, $¥ is the angular velocity error (estimated from numeric derivative of the encoder 
position history), 9 is the angular acceleration (theoretically zero, but still accounted for from the encoder 
history), $9 is the angular acceleration uncertainty (same as $¥, estimated by analyzing the second numeric 
derivative of the encoder position history), and $x( is the uncertainty in vertical orientation (estimated based 
on bubble level). 
The following geometric uncertainty estimates were used: $x( = 1° for ±& and ±' orientations (i.e., sensors 
horizontally mounted) and $x( = 2° for ±( orientations (sensors mounted perpendicular to the turntable). 
$¤ = 2 mm, visually estimated through several placements. $¥ and $9, as described above, are trial-specific, 
estimated from each individual signal. 
After obtaining the data, the time history files were trimmed to get the values for 3-axis accelerometers only 
when the motor is working at a constant velocity. The encoder data is trimmed too, low-passed, then differ-
entiated to get velocity in radians/sec and compared with theoretical velocity for validity of the trimmed 
signal. It was then differentiated again, to get 9 and $9. 
Equation (5.1) clearly illustrates that one-step 3-axis calibration algorithm, with uncertainty quantification, 
may be used here. The following subsection presents results for the two accelerometers. 
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5.2.2 Experimental Results 

The surface plots for transducer function at magnitudes 1.01) , 1.04)  and 1.32) are presented accordingly 
on Figs. 5.4, 5.5 and 5.6 below for accelerometer 1 (on the left) and accelerometer 2 (on the right). 
The plots clearly show broad uncertainties, that still sometimes fail to capture the measurements. Presum-
ably, the uncertainties are so high because of the potential issues due to the wire twist, as well as sensor 
misplacement. 
Note though, that the fit does improve at higher accelerations. This is expected: the cost function is biased 
toward providing a better fit at higher accelerations. 

 
Fig. 5.4. Quality of fit plots for transducer functions at magnitude 1.01); accelerometers: 1 (left) and 2 (right) 
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Fig. 5.5. Quality of fit plots for transducer functions at magnitude 1.04); accelerometers: 1 (left) and 2 (right) 

 
Fig. 5.6. Quality of fit plots for transducer functions at magnitude 1.32); accelerometers: 1 (left) and 2 (right) 

The computed calibration parameters, with uncertainties, are presented below. 
Accelerometer 1 full sensor calibration matrix #: 
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 # = [ 3.53 −0.060 −0.1690.12 3.341 −0.148−0.41 0.054 3.536 ] )V ± [0.08 0.027 0.0280.06 0.022 0.0220.05 0.022 0.023] )V. (5.2) 

Accelerometer 1 offset voltages %⃖⃗: 

 %⃖⃗ = [1.4801.4931.562] V ± [0.0010.0010.001] V. (5.3) 

Accelerometer 1 (direct, not inverse) sensitivities vector £⃗⃖, obtained by inverting the diagonal of #, from 
Eqs. (2.3) and (2.4): 

 £⃗⃖ =  [284299283] mV) . (5.4) 

Accelerometer 1 misalignment angles, obtained from # and Eq. (2.4): 

 

9&( = 2.1°9&' = 6.6°9'( = 1.0°9'& = 0.9°9(' = −2.8°9(& = 2.5°.
 (5.5) 

Accelerometer 2 full sensor calibration matrix 𝐀𝐀: 

 # =  [ 3.16 0.019 0.102−0.08 3.365 0.0430.18 −0.164 3.501] )V ± [0.05 0.024 0.0200.05 0.022 0.0190.04 0.022 0.018] )V. (5.6) 

Accelerometer 2 offset voltages %⃖⃗: 

 %⃖⃗ =  [1.4931.4991.545] V ± [0.0010.0010.001] V. (5.7) 

Accelerometer 2 (direct, not inverse) sensitivities vector £⃗⃖: 

 £⃗⃖ = [317297285] mV) . (5.8) 

Accelerometer 2 misalignment angles: 
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9&( = −1.4°9&' = −3.0°9'( = −0.3°9'& = −2.7°9(' = −1.9°9(& = −0.7°.
 (5.9) 

5.2.3 Discussion 

Uncertainties are higher for the “Turntable” calibration method than for both “Box” experiments. This is 
most likely because of the higher chance of misplacing sensors on the rotational platform, as well as the 
errors from differentiation of the encoder’s readings for calculating reference angular velocity. Overall, the 
offsets and the inverse sensitivities are close to technical specification, but not exactly the typical values. 

5.2.4 Comparison of “Box” One-step, “Box” Two-step and “Turntable” Calibration Methods 

Sections 4.2 and 4.3, and subsection 5.2.2, contain results for the static one- and two-step methods, and the 
turntable method, for 3-axis accelerometer calibration. In this subsection, I will now compare the three 
methods, and draw a conclusion about the best one. 
Table 5.1 below contains the main advantages and disadvantages of all three calibration methods. It assumes 
that all 3 procedures are then processed using the appropriate uncertainty-quantifying algorithms in section 
3.2. 

Table 5.1. Comparison of the three calibration methods for 3-axis accelerometers 

PROCEDURE ADVANTAGES DISADVANTAGES 
“Box” Experiment One-step • Simplest algorithm 

• Guarantees best possible fit if no 
reference value errors 

• Accurate 
• Solvable entirely with mldivide 

• Limited range (only ±1)) 
• Requires precise alignment 

with gravity 

“Box” Experiment Two-step • Second simplest algorithm 
• Does not require precise align-

ment with gravity 
• Accurate 

• Requires nonlinear optimiza-
tion (measurably slower) 

• Requires precise rotation 
about an axis 
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“Turntable” Experiment • Able to subject accelerometers to 
full range of values 

• Actual dynamic calibration 

• Least accurate (most likely 
orientation errors underesti-
mated) 

• Far more complex 
 
It should be noted, that none of the 3 methods could be considered a complete failure: they all provided 
results that are close to the datasheet values, with the most significant variations in the misalignment angle 
sets. Judging by the quality of fit plots, the one-step “Box” experiment calibrated the misalignment angles 
the best, the two-step “Box” experiment, second best, and “Turntable,” the worst. This could be considered 
expected: aligning the sensors on the turntable is substantially harder than aligning the wooden rectangular 
parallelepiped block. 
As Table 5.1 suggests, the “Turntable” is, theoretically, the best calibration experiment, because it provides 
more control over reference velocities, and is also simply closer to the accelerometers’ actual use case (i.e., 
they are used to track a moving robot). Unfortunately, the wire twist issues, and the difficulty of consistent 
placement, coupled with the uncertainties due to the encoder signals, make the turntable uncertainties too 
high, and likely also overestimate the misalignment angles. 
The two-step experiment, surprisingly, also yielded higher misalignment angles, particularly for accelerom-
eter 1. From quality of fit plots, we can also see, that its calibration did not appear to precisely match the 
reference values (even the ones used in its first step). This method probably suffered from the same caveat 
that Bonnet, et al. noted: the method is very sensitive to orientation precision during step 2. 
Algorithmically, the two-step static method and the “Turntable” experiment are substantially more complex 
than the one-step static method, but this alone is not a compelling argument against them. 
To summarize: I recommend the one-step “Box” experiment, as the best calibration method for 3-axis ac-
celerometers, that I have tested. The turntable, though, is not useless – it is still the best way to calibrate not 
only gyroscopes, but also combined (i.e., IMU) devices. 
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5.3 1-AXIS GYROSCOPE CALIBRATION BY VARYING SPEEDS 

5.3.1 Description of Experiment 

Gyroscope calibration is similar to the velocity-based calibration for accelerometers. However, unlike ac-
celerometers, gyroscopes are sensitive to the direction of rotation (accelerometers really only see centripetal 
acceleration and gravity, which are not dependent on the direction of rotation). 
The experiment is essentially the same: gyroscopes are rotated with 7 different velocities, 5 trials per ve-
locity, and the data is acquired by NI DAQ 6341 and processed via LABVIEW VI. The placement radius 
on the rotational platform is the same for all gyroscopes experiments – 13.8 cm, although this is actually 
unimportant: the angular rate is not a function of position on the surface. 
Since for gyroscopes, the placement on the wood platform doesn’t matter, the only source of uncertainty 
(other than the voltage noise) is the noise in encoder speed, computed via differentiation of encoder signal, 
as well as the mismatch between encoder average speed and the theoretical speed. Basically, the larger of 
the two should be the effective uncertainty for the angular speed – potentially different for each measure-
ment. (In practice, however, encoder speed has a substantially higher noise amplitude than the difference 
between encoder average speed and theoretical speed). 
The gyroscopes used in this work are 1-axis sensors, therefore the uncertainty-quantifying algorithm from 
subsection 3.2.1 should be used to process the data. 

5.3.2 Experimental Results and Discussion 

Running stochastic algorithm described in 3.2.1, we get the results shown on Fig. 5.7, where red bars show 
measurement uncertainty and green bars show reference uncertainty. The figure clearly shows a pretty much 
perfect linear fit, thus indicating that the calibration was completely successful. 
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Fig. 5.7. Linear regressions with uncertainty quantifications for gyroscopes 1 (left) 2 (right) 

The computed calibration parameters, with uncertainties, are presented below. 
Gyroscope 1 inverse sensitivity !: 

 ! = 26.3 rad/sV ± 0.7 rad/sV . (5.10) 

Gyroscope 1 offset voltage ": 

 " = 1.431 V ± 0.005 V. (5.11) 

Gyroscope 1 calculated (best estimate) sensitivity 3: 

 3 = 0.663 mV°/s . (5.12) 

Gyroscope 2 inverse sensitivity !: 

 ! = 25.9 rad/sV ± 0.7 rad/sV . (5.13) 

Gyroscope 2 offset voltage ": 

 " = 1.351 V ± 0.005 V. (5.14) 

Gyroscope 2 calculated (best estimate) sensitivity 3: 
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 3 = 0.674 mV°/s . (5.15) 

All of the above results are nearly identical to the datasheet values, with the exception of the difference in 
offsets. This is unexpected but the gyroscopes, otherwise, clearly work, so this should not be a problem. 
This calibration also shows, that the turntable performed fine for gyroscope calibration. Gyroscope signals 
are much cleaner than accelerometers, and the references are not placement-dependent, so it is expected, 
that the calibration would be more successful, with lower uncertainties (mostly from reference velocities). 
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Chapter 6 
External Measurement System Testing 
on a “Hopper” Robot 

The External Measurement System for robot testing, developed in this work, consists of a selection of sen-
sors, with associated data acquisition systems, and carefully specified uncertainty-quantifying calibration 
processes for them. The system’s hardware is detailed in Appendix A, the best calibration procedures in 
subsections 4.1.2 and 5.3.1, and the corresponding calibration algorithms in subsections 3.2.2 and 3.2.1. 
The purpose of this chapter, therefore, is to link it all together, and test the resulting EMS on a real robot. 
For comparison, besides the inertial sensor-based EMS, a high-speed motion camera, and the robot’s 
onboard encoders, are used for comparison. 

6.1 EXPERIMENTAL SETUP 

The experimental setup for testing the EMS on a Hopper robot is presented on Fig. 6.1 below. The setup 
consists of: 

• 80/20 aluminum frame for support of the harness. 
• Linear motion guide (LMG). 
• Steel angles for attaching the Hopper to the LMG. The Hopper is designed to be a single leg of a 

larger robot, and so when testing it individually, translational vertical movement is reasonable re-
striction. 
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• Benchtop programmable power supply unit, B&K Precision DC power supply 9115, to power the 
motors. 

• The rest of the EMS (see Appendix A). 
• The Hopper robot itself. 

 
Fig. 6.1. Experimental setup for testing the EMS on the Hopper robot, linked to a vertical slider harness 

The Hopper robot is designed by Ghost Robotics LLC, and is described in Ref. [44]. It is a 2-degree of 
freedom pin-jointed 5-bar linkage, driven by two identical motors (same as the turntable motor in chapter 
5). For 1-dimensional motion, the motors rapidly rotate in the opposite directions, causing the robot to jump. 
Precisely and synchronously tracking the robot’s individual links, while also timing its jump, its rest, and 
its travel distance, is a non-trivial problem. The robot is illustrated on Fig. 6.2 below. 
A ball-bearing LMG was chosen to minimize dynamic friction. The harness and the robot attachment plate 
were designed by me, and the frame of the harness was built by Jacob Baldassini [45]. 
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Fig. 6.2. Hopper robot CAD model 

(provided by Gavin Kenneally of University of Pennsylvania, PA, USA) 

The robot’s motors are powered by the B&K Precision DC power supply 9115. Gyroscope 1 is placed 
directly on one of the motors, to see if the encoders would suffer (i.e., skip) due to the shock the robot 
experiences during liftoff and when it hits the ground. Gyroscope 2 is placed on the link attached to motor 
2, for the same reason. 
Accelerometer 1 is placed on the robot’s main body, with its (-axis pointing vertically upward. Accelerom-
eter 2 is placed on the robot’s foot, with its '-axis pointing vertically upward when the robot is at rest (i.e., 
the stationary standing position). The purpose of accelerometer 1 placement was to see if it would be pos-
sible to accurately track the robot’s main body’s trajectory as a function of time, using only the accelerom-
eter, and without relying on the robot’s dynamic model. The purpose of accelerometer 2 in this setup was 
primarily to try to study the directions and amplitudes of vibrations that the foot experiences on impact, and 
also to precisely time the robot’s resting period (not a theoretical quantity: just because the motors are 
moving does not meant that the foot is, it may be still touching the ground). 
The accelerometers and the gyroscopes are connected in the same fashion they are in the previous experi-
ments in this work. Due to a limited number of ports on the DAQ, the gyroscopes were instead powered by 
an Arduino UNO board (the data is still acquired by the DAQ and processed by the LabVIEW VI). 



CHAPTER 6. EXTERNAL MEASUREMENT SYSTEM TESTING ON A “HOPPER” ROBOT 

96 
 

To provide a “reference” position measurement, a Qualisys Oqus high-speed camera was used. The camera 
works by tracking the positions of reflective markers, which were placed on the robot’s main body, and on 
one of the lower links. 

 
Fig. 6.3. Vertical slider harness for Hopper robot 

(harness and attachment plate designed by me; harness built by Jacob Baldassini [45]) 

The algorithms used to process the data gathered during the tests from the EMS and other sources are 
discussed in section 6.2. 
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6.2 DATA PROCESSING ALGORITHMS 

To get position from an accelerometer signal, a double time integral is needed. Furthermore, initial position 
and velocity are technically required. The Hopper’s motion is periodic, and so as long as our integration 
period starts from a rest interval, we can effectively treat this starting position as ( = 0, and stationary. 
Numeric integration can be done by different methods: e.g., rectangular (i.e., Riemann sum) integration, 
trapezoidal rule, Simpson’s rule. To integrate the acceleration signals, I choose the trapezoidal rule: it’s one 
of the best, and definitely the fastest, method for integrating discrete signals. MATLAB function for trape-
zoidal rule integration is cumtrapz. 
Unfortunately, accelerometers have drift related to the DC bias, which leads to the integration errors. Prior 
to integrating the accelerometer signal at all, it gets filtered by the LabVIEW VI, to apply some smoothing. 
A simple moving average filter is used. After the first integration, we get a ramped signal because of the 
DC bias, and after the second integration of the ramped signal, the error grows quadratically in time. To 
solve the problem of DC bias, high-pass filtering is needed [46]. 
In this MS Thesis, type I Chebyshev high-pass filter is chosen to filter out DC bias. The algorithm to get 
position from acceleration, overall, looks as follows (again, recall that it assumes that the starting state is 
( = 0, (̇ = 0): 

1. The raw discrete data from accelerometers processes via smoothing filter in the LabVIEW VI, in 
real-time, to smooth the high frequency noise that arises due to high sampling frequency. 

2. The data from step 1 is processed via type I Chebyshev high-pass filter with low cutoff frequency, 
to eliminate the DC bias. 

3. The data from step 2 is integrated using the trapezoidal method, to get the velocity signal from the 
acceleration. 

4. The data from step 3 processes via the same filter as described in step 2 – type I Chebyshev high-
pass filter. 

5. The data from step 4 is integrated again, using the trapezoidal method, to obtain the position signal. 

Besides type I Chebyshev, I have attempted a number of other high-pass filters: 
• Butterworth high-pass filter. This filter seriously damaged the signal amplitude, and required com-

pensation after integration. 
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• Elliptic high-pass filter. This filter also gave worse results, but was not as damping as Butterworth 
high-pass. 

• Type II Chebyshev high-pass filter. This filter gave essentially the same results as type I Chebyshev. 

Similarly to the above transition from acceleration to velocity time signal, the acceleration data from the 
high-speed camera is also calculated by double differentiating its position signal. The velocity data is cal-
culated by single-differentiating the position signal. 
Note also, that like the inertial sensors, the high-speed camera also requires calibration. It is calibrated by 
placing a ruler with reflective stickers as far from the camera’s lens as the robot that it is about to track. The 
calibration helps the camera convert the pixel data to physical units of length (its outputs are in centimeters). 
As was discussed in subsection 2.3.2, the camera suffers from occlusions, and also from reflectivity of the 
robot’s metal parts. This necessitates considerable fine-tuning of camera’s configuration, like intensity and 
frame rate. 
The robot’s encoders were sampled in the same fashion the turntable’s motor’s encoder was. Again, one of 
the objectives of the test was to see if the encoders suffered from shock when impacting the ground. To 
compare the gyroscope and encoder data, the encoder’s angular position signal was differentiated to get 
angular velocity, which is also the physical quantity that the gyroscopes measure. 

6.3 EXPERIMENTAL RESULTS 

Figures 6.4 and 6.5 below illustrate the 3 different estimates for the position of the upper body, obtained 
using the 3 different calibration methods’ results, on the same signal, and processing it as described in 
section 6.2. 
All 3 plots clearly show that the “Box” experiment results are essentially identical, with the difference of 
less than 1 mm, which can be attributed purely to noise. The turntable calibration clearly performed worse. 
We can also see that while the accelerometers accurately track the robot as it rises, during the fall the high-
pass filters cause the signal to drop much slower than it should. This is an artifact of high-pass filtering: the 
position drifts, because the “stationary” component of the signal – i.e., the robot standing essentially still – 
is filtered out – is removed. 
We can also see that the uncertainties do not appear to propagate themselves into the position estimate (the 
curves essentially overlap the best estimate). This is actually expected: as is shown later in this section (Fig. 
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6.7), the accelerometer uncertainty margins are nearly constant around the signal. Thus, they can be viewed 
as near-zero frequency components of the acceleration signal – which the high-pass filters immediately 
remove. 

 
Fig. 6.4. Height of main body above rest, using one-step (left) and two-step (right) “Box” calibration methods 

 
Fig. 6.5. Height of main body above rest, using turntable calibration method 
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The position measurements resulting from the better (“Box”) calibrations are clearly accurate enough in the 
amplitude, and in timing, but do not track the position accurately throughout the transient. They would 
certainly be superior for a constant moving part, as the high-pass filter would then not end up removing an 
important component of the signal. Overall, what Figs. 6.4 and 6.5 above show is not an issue with the 
accelerometers, or their calibrations, but rather an issue with the filtering algorithms of section 6.2. This is 
clearly an area with a potential for future improvement. 
Figure 6.6 below provides a comparison of the velocity signals provided by the gyroscopes, and by differ-
entiating the motors’ encoder signals. We can see, for the gyroscope mounted on the motor (motor 1), the 
reading is clearly fairly noisy, and the uncertainties in particular reflect this. The gyroscope mounted on the 
leg itself provides a much cleaner signal, that is actually smoother (and likely more accurate) than the dif-
ferentiated encoder signal, which suffers from numeric differentiation errors. 

 
Fig. 6.6. Angular velocities read by gyroscopes and encoders: motors 1 (left) and 2 (right) 

The vertical acceleration of the main body, obtained from high-speed camera by double differentiation and 
acceleration from accelerometer 1 (using one-step “Box” experiment calibration) are presented on Fig. 6.7 
below.  As we can see from Fig. 6.7, acceleration obtained from high-speed camera is distorted to compare 
with the raw data from accelerometer, due to double differentiation error. 
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Fig. 6.7. Main body vertical acceleration, reported by accelerometer and high-speed camera 

6.4 DISCUSSION 

From results presented in section 6.3, we can conclude the following about the inertial sensor-based external 
measurement system developed in this thesis: 

1. The EMS is clearly best for directly measuring the dynamics of the robot. Position-based instru-
ments, both external (high-speed camera) and onboard (motor encoders) are clearly less precise, 
and far noisier, than the EMS’s sensors, assuming proper calibration was performed. 

2. The EMS is acceptable for tracking position amplitudes (particularly during fast motion), but with 
the signal processing algorithms attempted in section 6.2 (in particular, type I Chebyshev high-pass 
filters), the EMS suffers from not being able to follow zero velocity. This is not a hardware flaw: 
instead, it is an artifact of the numeric double integration, coupled with a high-pass filter. An im-
proved filtering algorithm is likely possible, which would make the EMS significantly more useful 
for position tracking. 
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3. One-step “Box” experiment was again confirmed to be the superior calibration method for accel-
erometer calibration, although two-step was also very good. Turntable calibration was demonstrated 
to be insufficient, at least with the way it was performed in chapter 5. 

4. The high-speed camera, in particular, turned out to suffer badly from differentiation errors: in one 
instance, it overestimated the acceleration by over a factor of 7. This clearly shows, that the camera 
is not, alone, anywhere near sufficient for estimating the stresses a robot experiences, or the robot’s 
dynamics; it was, however, clearly the superior tool for tracking 1-dimensional (and likely, also 2-
dimensional) position, at least with the accelerometer signal processing algorithms that were at-
tempted. 

The EMS was, in fact, helpful for verifying several modeling assumptions, such as the assumption that 
encoders do not suffer from impact shock, and do not “skip.” This is precisely the purpose of the EMS: it 
is intended for testing robots in a laboratory setting, and not for robot control. 
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Chapter 7 
Conclusions and Recommendations for 
Future Work 

7.1 CONCLUSIONS 

One of the main contributions for this MS Thesis is a development a new calibration method that based on 
existing , and modified, sensors calibration methods and Monte Carlo simulations algorithm for uncertainty 
quantification. Based on a developed new calibration algorithm for sensors, we can define not only sensors 
parameters like offsets, sensitivities and misalignment angles but also uncertainties in each of the parame-
ters. Three calibration methods are used for accelerometers: static one- and two-step methods, and dynamic 
turntable-based method. All of these three methods are used with Monte Carlo simulations algorithm. As 
results show, the most accurate procedure turned out to be the one-step static method, however this method 
depends on orientation of gravity vector. The second simplest method is the two-step static method, but it 
depends on nonlinear optimization which slows down the whole algorithm. It also depends on rotation about 
a fixed axis, which can be challenging, and can introduce systematic errors. “Turntable” method is the 
hardest because it requires special equipment like a motor, the rotational platform, and it requires to take 
into account multiple references: centripetal acceleration, gravity and tangent acceleration. However, “Turn-
table” equipment could be used also for gyroscopes calibration, and calibration of both accelerometers and 
gyroscopes could be done simultaneously on the same equipment.   
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External Measurement System that has two 3-axis accelerometers and two 1-axis gyroscopes is tested on a 
Hopper robot. Such robot is planar and jumping only vertically due to a rigid harness - linear motion guide. 
Performance of External Measurement System is compared with high-speed motion camera data and robot’s 
encoders. The results show that External Measurement System has a good potential to be a complimentary 
system for high-speed motion camera. External Measurement System is superior in direct measurements 
(acceleration, angular velocity) compared to differentiated signals from high-speed motion camera and en-
coders. The developed system is good for estimating attitude of a jump of the robot and a period of jump, 
but cannot accurately predict position trajectory versus time, due to drifting properties of accelerometers, 
and the signal processing methods used. 

7.2 RECOMMENDATIONS FOR FUTURE WORK 

To improve the external measurement system, I suggest: 
• Improve the signal processing methods for position tracking. This’ll make the EMS far more useful. 
• Multi-IMU networking instead of the separated accelerometers and gyroscopes. 
• Multi-IMU networking could be a good substitution for the separated sensors, however it needs to con-

sider transmission capability of both available digital protocols for such sensors: SPI and I2C.   
• Artificial Neural Networking (ANN) for learning robot’s dynamics based on sensors’ data fusion. 
• In Ref. [40], authors tried to use artificial neural networking for calibration IMU on turntable. They got 

satisfactory value 67%. Authors believe that ANN has a good potential for calibration sensors.  
• Sophisticated user interface with real-time data processing and displaying the information. 
• LabVIEW VI have a potential to develop the real-time data processing tool, not only for collecting the 

data, but also for processing the data, including of applying filters to all sensors data, conversion from 
voltages/digital values to real physical values, implementing calibrating algorithm and outputting to the 
user the signals’ plots in real-time. 

• Fully automated calibration process: design and build the experimental setup for calibration procedures. 

Fully automatic calibration set up could be build that includes not only as described above LabVIEW VI as 
user interface program, but also could include fully-automatic platform for calibration of the sensors with 
automatic data processing. Such calibration platform should have multiple degrees of freedom to calibrate 
multi-axis sensors. 
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Appendix A. List of Equipment Used 

1. B&K Precision, Multi-Range Programmable DC Power Supply, Model 9115. 
2. National Instruments, Data Acquisition Tool, Model NI DAQ USB-6341. 
3. U-POWER, Tiger Motor U8-16, 100kv. 
4. 2 × Analog Devices, MEMS accelerometer ADXL335. 
5. 2 × Cytron, Single axis Gyroscope SN-ENC03R. 
6. Qualisys, Motion capture camera Oqus. 
7. Ghost Robotics, Hopper robot. 
8. Qooltek, Multipurpose Laser Level Measurement Tool, LASER LEVELPRO3. 
The bolded entries are the hardware components of the EMS, necessary either for operation, or for calibra-
tion. 
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