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Despite recent innovations in exoskeleton design and control, predicting
subject-specific impacts of exoskeletons on gait remains challenging. We
evaluated the ability of three classes of subject-specific phase-varying (PV)
models to predict kinematic and myoelectric responses to ankle exoskeletons
during walking, without requiring prior knowledge of specific user charac-
teristics. Each model—PV, linear PV (LPV) and nonlinear PV (NPV)—
leveraged Floquet theory to predict deviations from a nominal gait cycle
due to exoskeleton torque, though the models differed in complexity and
expected prediction accuracy. For 12 unimpaired adults walking with bilat-
eral passive ankle exoskeletons, we predicted kinematics and muscle activity
in response to three exoskeleton torque conditions. The LPV model’s predic-
tions were more accurate than the PV model when predicting less than
12.5% of a stride in the future and explained 49–70% of the variance in
hip, knee and ankle kinematic responses to torque. The LPV model also pre-
dicted kinematic responses with similar accuracy to the more-complex NPV
model. Myoelectric responses were challenging to predict with all models,
explaining at most 10% of the variance in responses. This work highlights
the potential of data-driven PV models to predict complex subject-specific
responses to ankle exoskeletons and inform device design and control.
1. Introduction
Ankle exoskeletons are used to improve kinematics and reduce the energetic
demands of locomotion in unimpaired adults and individuals with neuro-
logical injuries [1–5]. Customizing exoskeleton properties to improve an
individual’s gait is challenging and accelerating the iterative experimental
process of device optimization is an active area of research [6,7]. Studies exam-
ining the effects of exoskeleton properties—sagittal-plane ankle stiffness or
equilibrium ankle angle for passive exoskeletons and torque control laws for
powered exoskeletons—on kinematics, motor control and energetics have
developed design and control principles to reduce the energetic demand of
walking and improve the quality of gait [1,6,8,9]. Predicting how an individ-
ual’s gait pattern responds to ankle exoskeletons across stance may inform
exoskeleton design by enabling rapid evaluation of exoskeleton properties not
tested experimentally. Additionally for powered exoskeletons, which prescribe
torque profiles using feedforward or feedback (e.g. kinematic or myoelectric)
control laws, predicting responses over even 10–20% of a stride may improve
tracking performance or transitions between control modes [4,10–12]. However,
predicting subject-specific responses to exoskeletons remains challenging for
unimpaired individuals and those with motor impairments [2,12,13].

Common physics-based models, including simple mechanical models and
morephysiologicallydetailedmusculoskeletalmodels, useprinciples fromphysics
and biology to analyse and predict exoskeleton impacts on gait. For example, one
lower-limbmechanical walkingmodel predicted that an intermediate stiffness in a
passive exoskeleton would minimize the energy required to walk, a finding that
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was later observed experimentally in unimpaired adults [1,14].
More physiologically detailed musculoskeletal models have
been used to predict the impacts of exoskeleton design on
muscle activity during walking in children with cerebral palsy
and running in unimpaired adults [15,16]. While these studies
identified hypothetical relationships between kinematics and
the myoelectric impacts of exoskeleton design parameters,
their predictions were not evaluated against experimental data.

Challenges to accurately predicting responses to ankle
exoskeletons with physics-based models largely stem from
uncertainty in adaptation, musculoskeletal physiology and
motor control, which vary between individuals and influence
response to exoskeletons. While individuals explore different
gait patterns to identifyan energeticallyoptimal gait, exploration
does not always occur spontaneously, resulting in sub-optimal
gait patterns for some users [17]. Popular physiologically
detailed models of human gait typically assume instantaneous
and optimal adaptation, which do not reflect how experience
and exploration may influence responses to exoskeletons, poss-
ibly reducing the accuracy of predicted responses [18,19].
Additionally, when specific measurement sets are unavailable
formodel parameter tuning, population-average based assump-
tions about musculoskeletal properties and motor control are
required [17,20–22]. However, musculoskeletal properties and
motor control are highly uncertain for individuals with motor
impairments, today’s most ubiquitous ankle exoskeleton users
[19,20,22,23]. Musculotendon dynamics and motor complexity
are known to explain unintuitive exoskeleton impacts on gait
energetics, suggesting that uncertain musculotendon par-
ameters and motor control may limit the accuracy of predicted
changes in gait with ankle exoskeletons [19,21,24]. Predictions
of exoskeleton impacts ongaitusingphysiologicalmodels, there-
fore, require accurate estimates of adaptation, musculotendon
parameters and motor control.

Conversely, data-driven approaches address uncertainty
in user–exoskeleton dynamics by representing the system
entirely from experimental data. For instance, human-in-
the-loop optimization provides a model-free alternative to
physics-based prediction of exoskeleton responses by auto-
matically exploring different exoskeleton torque control
strategies for an individual [6,7]. This experimental approach
requires no prior knowledge about the individual: optimiz-
ation frameworks identify torque control laws that decrease
metabolic rate relative to baseline for an individual using
only respiratory data and exoskeleton torque measurements.
However, experimental approaches to exoskeleton optimiz-
ation require the optimal design to be tested, potentially
making the search for optimal device parameters time-
intensive. Alternatively, machine learning algorithms, such
as the random forest algorithm, have used retrospective
gait analysis and clinical examination data to predict changes
in joint kinematics in response to different ankle–foot orthosis
designs in childrenwith cerebral palsy [8]. This study reported
good classification accuracy, though predictions may not
generalize to new orthosis designs. Unlike physiologically
detailed or physics-basedmodels, human-in-the-loop optimiz-
ation and many machine learning models are challenging to
interpret, limiting insight into how a specific individual’s
physiology influences the response to exoskeleton torque. A
balance between physiologically detailed and model-free or
black-box data-driven approachesmay facilitate the prediction
and analysis of responses to ankle exoskeletons without
requiring extensive knowledge of an individual’s physiology.
In this work, we investigated a subject-specific data-driven
modelling framework—phase-varying (PV) models—that may
fill the gap between physiologically detailed model-based
and model-free experimental approaches for predicting gait
with exoskeletons. PV models typically have a linear structure
whose parameters are estimated from data, enabling both pre-
diction and analysis of gait with exoskeletons [25,26]. Unlike
physiologically detailed models, PV models do not require
knowledge of the physics or control of the underlying system.
Unlike experimental approaches, the model-based framework
enables the prediction of responses to untested exoskeleton
designs or control laws.

PV models leverage dynamical properties of stable gaits
derived from Floquet theory, which ensures that the conver-
gence of a perturbed trajectory to a stable limit cycle may
be locally approximated using time-varying linear maps
[27]. Similar principles have been shown to generalize to
limit cycles in non-smooth or hybrid systems, such as
human walking [28]. Moreover, PV modelling principles
have been applied to biological systems, identifying linear
PV (LPV) dynamics to investigate gait stability and predict
changes in kinematics in response to perturbations
[25,26,29–31]. Responses to ankle exoskeleton torques may
be similarly defined as perturbations off an unperturbed
(i.e. zero-torque) gait cycle, suggesting that the principles
of PV models will generalize to walking with exoskeletons.
To the best of our knowledge, PV models have never been
used to study walking with exoskeletons and the extent to
which the principles underlying PV models of locomotion
generalize to walking with exoskeletons is unknown.

To determine if PV models represent useful predictive tools
for locomotion with exoskeletons, the purpose of this research
was to evaluate the ability of subject-specific PV models to pre-
dict kinematic and myoelectric responses to ankle exoskeleton
torque during walking. We predicted responses to exoskeletons
in unimpaired adults walking with passive ankle exoskeletons
under multiple dorsiflexion stiffness conditions. We focused
on three related classes of PV models with different structures,
complexity and expected prediction accuracies: a PV, an LPV
and a nonlinear PV (NPV) model. Since passive exoskeletons
typically elicit small changes in joint kinematics and muscle
activity, we expected the validity of Floquet theory for human
gait to extend to gait with exoskeletons, indicating that the
LPV model should accurately predict responses to passive
exoskeleton torque [1,25–27,29]. We, therefore, hypothesized
that the LPV models would predict kinematic and myoelectric
responses to torque more accurately than the PV model and as
accurately as the NPV model. To exemplify the potential utility
of subject-specific PVmodels in gait analysis with ankle exoske-
letons, we show how varying the length of model prediction
timehorizonmay informmeasurement selection forexoskeleton
design and control. To assess the viability of data-driven PV
models in gait analysis settings, we evaluated the effect of
limiting the size of the training dataset on prediction accuracy.
2. Methods
2.1. Experimental protocol
We collected kinematic and electromyographic (EMG) data
from 12 unimpaired adults (six female/six male; age = 23.9 ±
1.8 years; height = 1.69 ± 0.10 m; mass = 66.5 ± 11.7 kg) during
treadmill walking with bilateral passive ankle exoskeletons at a
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Figure 1. (a) Data were collected during treadmill walking with bilateral ankle exoskeletons that used linear springs to resist dorsiflexion. Increasing exoskeleton
stiffness (K0–K3) increased exoskeleton torque (texo, yellow). (b) (1) Purple dashed arrows represent responses to exoskeleton torque, which were defined as
deviations from the average zero-torque gait cycle (K0). (2) Response data from the training set were used to fit each model. Input variables included joint
kinematics, muscle activity, their time derivatives and exoskeleton torque. (3) Models were validated by predicting responses from the held-out torque condition
using the models fit in (2). (b, bottom) The three PV models were fit and evaluated on the same training and validation sets. MD,f = generic model function of
prediction horizon and phase; X = experimental inputs; Y = experimental outputs; Ŷ = predicted outputs; ϕ = phase; D = prediction horizon; A = linear function;
f, g = nonlinear functions; u = joint kinematics; α = muscle activation; texo = exoskeleton torque.
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self-selected speed. Each participant performed two sessions on
separate days within a one week span. In the first session, we
modified the exoskeletons for fit and comfort and performed a
20-min practice session. Additional detail regarding experimen-
tal set-up, input variable calculations, modelling algorithms
and statistical analyses can be found in electronic supplementary
material, S1.

Data were collected during the second session. We monitored
changes in kinematics using a modified Helen-Hayes marker set
[32] and a 10-camera motion capture system (Qualisys AB,
Gothenburg, SE), and measured muscle activity using 14 wire-
less EMG sensors (Delsys Inc., Natick, USA). The EMG sensors
were placed bilaterally on the soleus, medial gastrocnemius,
tibialis anterior, vastus medialis, rectus femoris, lateral ham-
strings and gluteus medius following SENIAM guidelines [33].
Participants performed four randomized trials on a split-belt
instrumented treadmill (Bertec Corp., Columbus, USA) under
different exoskeleton conditions (figure 1). Unlike many clinical
exoskeletons (ankle–foot orthoses), whose torque profiles are
smooth functions of ankle angle, the passive exoskeletons used
in this study generated ankle plantarflexion torques as a piece-
wise-linear function of the user’s ankle angle, and the
exoskeleton’s neutral angle and rotational stiffness. The exoskele-
tons did not resist plantarflexion, similar to other experimental
devices [1,3]. The four exoskeleton conditions were set to sagit-
tal-plane stiffness values: K0 (0 Nm deg−1), K1 (1.17 Nm deg−1),
K2 (3.26 Nm deg−1) and K3 (5.08 Nm deg−1), a range known to
alter kinematics and myoelectric signals during gait (figure 1)
[1]. Participants walked for 6 min per trial, the last four of
which were recorded, and could rest between trials.

The marker trajectories were low-pass filtered at 6 Hz using a
zero-lag fourth-order Butterworth filter [5]. We computed joint
kinematics by scaling a generic 29 degree-of-freedom skeletal
model to each participant’s skeletal geometry and body mass
using the inverse kinematics algorithm in OpenSim 3.3 to convert
marker trajectories into joint kinematics [18,34]. To compute
linear EMG envelopes, we high-pass filtered the EMG data at
40 Hz, rectified the data and low-pass filtered at 10 Hz [9].
Kinematic and EMG data were pre-processed using custom
scripts in MATLAB (MathWorks, Natick, USA).
2.2. Gait phase and PV models
Unlike the typical gait cycle definition—the percentage of time
between successive foot contact events—we used a gait phase
based on kinematic posture, which we expected to improve
predictions of a system’s response to perturbations from the
exoskeletons [35]. Using a posture-based gait phase groups
kinematically similar measurements at a specific phase, reducing
variance in the data at any point in the cycle, and ensuring that
similar postures across exoskeleton conditions were used during
model fitting and prediction. Moreover, Floquet theory ensures
that phase is well-defined using any periodically varying
measurements [27]. We used the Phaser algorithm, which
estimates a system’s phase using arbitrary input signals con-
sidered to be phase-locked, to generate gait phase estimates as
a function of left and right leg hip flexion angles, similar to a
phase variable proposed to control robotic prostheses [30,35].
Following gait phase estimation, we modelled gait using three
subject-specific models of response to exoskeletons.

2.2.1. PV model
The PV model was our simplest model and predicts outputs
purely as a function of gait phase. Rather than taking exoskeleton
torque as an input, PV model predictions are similar to guessing
the average of the training data at a certain gait phase (table 1)
[30,36]. The PV model takes a phase estimate as an input and
returns a prediction of the system’s outputs, Ŷf [ RM, where
M is the number of outputs. The PV model was parameterized
using a seventh-order Fourier series as a function of phase and
served as a lower bound on prediction accuracy.

2.2.2. LPV model
The LPV model is a discrete-time model that predicts system
outputs at a future phase based on measurements at an initial
phase (table 1). For any phase, ϕ, from 0% to 100% of a stride
and a prediction horizon, Δ, the LPV model estimates a map
Af,D [ RM�Nþ1, from the initial phase to the final phase, where
N + 1 denotes the number of input variables (N ) plus a constant
term. At 64 initial phases spaced equally over the gait cycle,



Table 1. Summary of model structures and expected prediction accuracies. F, model functions parameterized by a Fourier series; G, feedforward neural network
model; ϕ, phase; Δ, prediction horizon; X, inputs; Ŷ , predicted outputs.

model functional form linear terms nonlinear terms expected prediction accuracy

phase-varying (PV) Ŷf ¼ FPV(f) none phase low

linear phase-varying (LPV) ŶfþD ¼ FLPV,D(f)Xf inputs phase moderate

nonlinear phase-varying (NPV) ŶfþD ¼ GNPV,D(f,Xf) none phase inputs moderate–high
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we fit discrete maps between the initial and final phases using
weighted least-squares regression [25,26,29]. We weighted each
observation based on the proximity of its phase estimate to the
prescribed initial phase using a Gaussian weighting scheme.
For each prediction horizon, the LPV model was represented as
a continuously PV function, FLPV,Δ(ϕ)≈Aϕ,Δ, parametrized by a
Fourier series. We expected the LPV model’s prediction accuracy
to exceed that of the PV model [27].
 17:20200487
2.2.3 NPV model
While the LPV model should approximate nonlinearities
in the dynamics of response to torque, we selected an NPV
model that serves as an upper bound on prediction accuracy.
Specifically, we used a three-layer feedforward neural net-
work—a universal function approximator (table 1) [37]. Neural
networks are considered state-of-the-art predictors and are
used in numerous domains, including image recognition and
robotics [38]. The NPV model’s parameters were tuned for each
prediction horizon and included phase as an input. We expected
the NPV model’s prediction accuracy to meet or exceed that of
the LPV model.
2.3. Inputs and output variables
To reflect clinically relevant measurements and the dynamics of
the neuromusculoskeletal system, we selected input variables
expected to encode musculoskeletal dynamics and motor control:
3D pelvis orientation and lower-limb and lumbar joint angles,
processed EMG signals and their time derivatives at an initial
phase, ϕ [1,2,39]. We appended 10 time-history exoskeleton
torque samples per leg—uniformly distributed between the
initial and final phases—to the inputs, resulting in N = 80
inputs [6,12]. Our decision to use exoskeleton torque samples
was motivated by Floquet theory, according to which an
individual’s posture at a future time is a linear function of their
initial posture and the exoskeleton torque signal between initial
and final times [27]. Model outputs (M = 20) included right and
left leg sagittal-plane hip, knee and ankle kinematics, and EMG
signals from each muscle at a future phase, ϕ + Δ, offset from
the initial phase by prediction horizon Δ. While PV models
may also predict joint moments, we omitted the prediction of
kinetic outcomes due to the presence of sporadic poor force
plate strikes for some gait cycles in our dataset. We modelled
response to exoskeleton torque as the deviation from the unper-
turbed gait cycle (i.e. the zero-torque, K0 condition) by
subtracting the phase-averaged zero-torque gait cycle from
each exoskeleton condition [26,29]. All data were de-meaned
and scaled to the unit variance of the training set. Additional
detail regarding the selection of torque as model inputs and
experimental ground reaction forces can be found in electronic
supplementary material, S2.

We first computed each model’s ability to predict responses
to torque within the range of exoskeleton stiffness levels used
to train the models (interpolation) by training each model
using the K0, K1 and K3 datasets and validating by predicting
outputs from the held-out K2 dataset using inputs from
the same dataset at an initial gait phase. While ‘what-if’
predictions—predicting responses to ‘untested’ (held-out)
torques using nominal kinematics and EMG from a ‘tested’ con-
dition (e.g. K0)—are needed for predictions to inform passive
exoskeleton design, we chose to predict using the held-out
inputs to provide an unambiguous interpretation of each
model’s prediction accuracy. In ‘what-if’ predictions, errors
stem from both poor model fit and poor matches between the
‘tested’ and ‘untested’ input data at the initial phase. By instead
predicting using ‘untested’ inputs, our predictions errors reflect
only the models’ fits to each participant’s dynamics and provide
upper bounds on the potential accuracy of ‘what-if’ predictions.
We selected the K2 condition for validation in our experimental
design because responses in this intermediate torque condition
should be encoded by the K0, K1 and K3 conditions. During
validation, experimental outputs from the K2 condition were
compared to the corresponding model predictions.

We quantified each model’s prediction accuracy using the rela-
tive remaining variance (RRV) of model predictions compared to
the held-out experimental data [25]. The RRV is calculated as the
ratio of the variances of the prediction error and the experimental
data. An RRV value of zero implies a perfect prediction, while
unity RRV values can be achieved by predicting the mean of the
validation data. Since we de-meaned the data and predicted devi-
ations from the zero-torque condition, RRV values below unity
indicate that predictions are more accurate than guessing constant
(e.g. zero) responses to exoskeleton torque. We computed RRV
values for each output using a bootstrapping procedure with
200 iterations [25]. We computed RRV values for each model
over the entire validation time series of approximately 240 strides.
During analysis, the right and left leg RRV values for each output
variable were averaged, as we expected nearly symmetric
responses from our unimpaired participants.

We evaluated the LPV and NPV models’ prediction accu-
racies for the K2 condition over a range of prediction horizons,
in increments of 6.25% (1/16th of a stride), between 6.25 and
100% of a gait cycle. When optimizing exoskeleton torque pro-
files, predicting responses using measurements at an initial
phase (e.g. initial contact of the foot with the ground) to achieve
a desired outcome at some final phase may be of interest, such
as improving midstance knee kinematics in children with cer-
ebral palsy [2,3]. However, as the prediction horizon increases,
coherence between measurements at the initial and final
phases decreases due to nonlinearities in musculoskeletal
dynamics, resulting in prediction accuracies reducing to those
of the average prediction (i.e. the PV model), rather than a
stride-specific prediction [39–41]. Identifying the maximum pre-
diction horizon at which initial measurements improve
predictions at a final phase may inform exoskeleton control
laws or design criteria. Therefore, we identified the largest pre-
diction horizon lengths at which RRV values were significantly
less than those of the PV model, which were constant across
prediction horizons.

The amount of data required to accurately predict response to
exoskeletons will restrict the settings in which PV models are
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Figure 2. (a) Average kinematic (left) and EMG (right) data for one participant who exhibited large, repeatable responses to exoskeleton torque and high model
prediction accuracies (P03). Black lines show the zero-torque condition (K0) that was subtracted from all conditions to reflect responses to exoskeleton torque.
(b) Average (±1 s.d.) kinematic and myoelectric responses for all participants in each torque condition. Brackets denote significant differences between exoskeleton
conditions according to post hoc paired t-tests (α = 0.05) and a Holm–Sidak step-down correction. Thin grey lines represent individual legs.
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practical, such as in clinical gait analysis where datasets typically
contain only a few gait cycles [2,8]. We quantified the impact of
training set size on prediction accuracy by determining the
amount of training data needed for prediction accuracies of the
K2 condition to approach to their values when models were fit
using the entire training set (RRVfull). We iteratively reduced the
training set size by 10% of the full size (approximately 24 strides
per exoskeleton condition), removing data from the end of each
torque condition in the training set, providing a range of 24–240
strides of training data per condition. For all training set sizes,
we evaluated models using the full-length validation set.

To test each model’s generalizability across a range of exoske-
leton torque conditions, we separately predicted responses to
torque in the K1, K2 and K3 datasets, termed held-out conditions,
at a 12.5% stride prediction horizon (1/8th of a stride). Predic-
tions over these conditions evaluated both the models’ ability
to interpolate (K1 and K2) and extrapolate (K3) responses to exo-
skeleton torques included in the training set. For each held-out
condition (K1, K2 or K3), we trained the models using kinematic,
EMG and exoskeleton torque inputs from the zero-torque (K0)
condition and the two non-zero-torque exoskeleton conditions
not held out for validation. We evaluated each model by predict-
ing output variables from the held-out exoskeleton condition
using input data at an initial gait phase in the same condition.
We compared prediction accuracies across held-out conditions.

To compare differences in performance across the three
models, we identified differences in the models’ prediction accu-
racies using repeated-measures analysis of variance tests at a
significance level of α = 0.05. When significant differences between
models emerged, we identified pair-wise differences between
models using post hoc paired t-tests (α = 0.05) and a Holm–Sidak
step-down correction for multiple comparisons [9,42]. We report
per cent reductions in RRV values compared to the PV model
and per cent differences between the LPV and NPV models.
3. Results
The ankle exoskeletons had the largest impact on ankle kin-
ematics, smaller impacts on knee and hip kinematics, and
variable impacts on muscle activity (figure 2). Compared to
the K0 condition, the peak ankle dorsiflexion angle during
single-limb support decreased significantly in the K2

(36.7%) and K3 (40.0%) conditions ( p < 0.020). Average inte-
grated EMG increased slightly, but not significantly in the
hamstrings and tibialis anterior ( p > 0.066) in the K2 and K3

conditions compared to the K0 condition.
When validating on the held-out K2 condition, all three

models predicted kinematic but not myoelectric responses
to exoskeleton torque (figure 3, dashed lines). At a prediction
horizon of Δ = 12.5% of a stride, the LPV model’s prediction
accuracy at the ankle—where the largest responses to
torque were observed—was 41.6 ± 16.0% more accurate
than the PV model ( p < 0.001) but not the NPV model
( p = 0.130; figure 4 and table 2). Similarly, the LPV model’s
prediction accuracy at the hip was 41.7 ± 12.7% better than
the PV model ( p < 0.001). However, as the prediction horizon
increased, the average LPV and NPV model prediction
accuracies of all outputs except the ankle approached those
of the PV model. Changes in knee and hip kinematics
were predicted more accurately than the baseline PV model
for prediction horizons shorter than Δ = 18.75% of a stride
( p < 0.001) in the LPV model and Δ = 12.5% of a stride
( p < 0.001) in the NPV model (figure 5). At the ankle, the
LPV model predicted kinematics 29.1–60.0% more accurately
than the PV model for all prediction horizons ( p < 0.001). The
NPV model’s predictions were significantly more accurate
than those of the PV model for all prediction horizons
except 25.0% and 75.5–81.3% of a stride ( p < 0.001).

Predictions ofmyoelectric responses were poor (RRV≈ 1.00)
across all muscles and models, except at the shortest prediction
horizon (Δ = 6.25%). At the shortest prediction horizon, both
the LPV and NPV models’ predictions for the hamstrings,
rectus femoris and gastrocnemius were 10.7–15.0% more
accurate than those of the PV model (p< 0.001; figure 5).

The LPV and NPV models’ prediction accuracies
improved with increasing training set size. As expected, the
PV model’s prediction accuracy was nearly constant across
training set sizes ( p > 0.005; figure 6). For a prediction horizon
of Δ = 12.5% of a stride, the LPV model’s hip (RRV = 0.81) and
knee (RRV = 0.78) prediction accuracies were significantly
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worse than RRVfull when using less than 50 strides of training
data per exoskeleton condition ( p < 0.001). Similarly, the NPV
model’s hip and knee prediction accuracies approached
RRVfull with approximately 50 strides of training data per
condition ( p < 0.001). The LPV model required more data—
up to 150 strides per condition—for prediction accuracies to
approach RRVfull at the ankle, gastrocnemius and tibialis
anterior ( p < 0.001), though predictions were only 0.02–0.05
RRV points greater than RRVfull with 75 strides of training
data per condition. The NPV model’s myoelectric prediction
accuracies approached RRVfull, in 25–75 strides of training
data per condition ( p < 0.001; figure 6).
When validating on the held-out K1, K2 and K3 conditions,
the LPV and NPV model predictions reflected experimental
changes in response between conditions (figure 3). For all
models at a 12.5% stride prediction horizon, predictions of
responses in the held-out K1 condition (interpolation) were
0.10–0.28 RRV points at the ankle and 0.04–0.09 points in the
hamstrings less accurate thanpredictions of theK2 orK3datasets
(p < 0.001). Conversely, no statistical differences in prediction
accuracies of the held-out K2 (interpolation) and K3 (extrapol-
ation) conditions were identified (figure 4). Improvements in
kinematic prediction accuracy of the LPV model compared to
the PV model were identified across the held-out K1, K2 and



Table 2. Average (±1 s.d.) RRV values for kinematic and myoelectric
predictions at a 12.5% prediction horizon. LPV, linear phase-varying model;
NPV, nonlinear phase-varying model; PV, phase-varying model.

output PV LPV NPV

ankle anglea,b 0.50 ± 0.14 0.30 ± 0.14 0.33 ± 0.14

knee anglea,b 0.62 ± 0.24 0.45 ± 0.20 0.41 ± 0.19

hip anglea,b 0.77 ± 0.15 0.44 ± 0.13 0.51 ± 0.12

tibialis anterior 0.90 ± 0.08 0.97 ± 0.28 0.95 ± 0.15

soleus 0.86 ± 0.21 1.02 ± 0.66 1.04 ± 0.64

gastrocnemius 0.89 ± 0.12 0.91 ± 0.16 0.93 ± 0.19

vastus medialis 0.92 ± 0.12 0.93 ± 0.15 0.98 ± 0.20

rectus femoris 0.87 ± 0.21 0.91 ± 0.38 0.94 ± 0.42

lateral hamstrings 0.93 ± 0.08 0.91 ± 0.13 0.93 ± 0.12

gluteus medius 0.95 ± 0.08 0.96 ± 0.10 0.98 ± 0.10
aSignificant difference in prediction accuracy between the PV and LPV models.
bSignificant difference in prediction accuracy between the PV and NPV models.
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K3 conditions (p < 0.001). Differences between the NPV and PV
models’ kinematic prediction accuracies in the held-out K1

condition did not reach significance at the knee or ankle.
4. Discussion
We evaluated the ability of subject-specific PV models to
predict kinematic and myoelectric responses to ankle exoske-
leton torques during treadmill walking. When predicting
across three exoskeleton torque conditions, both linear and
nonlinear models predicted kinematic responses to exoskele-
tons without knowledge of the specific user’s physiological
characteristics, supporting their potential utility as predictive
tools for exoskeleton design and control. To our knowledge,
this is the first study to predict kinematic and myoelectric
responses to ankle exoskeletons using PV models. Consistent
with Floquet theory and prior models of human locomotion,
LPV models appear appropriate for predicting responses to
exoskeleton torque over short prediction horizons, evidenced
by its similar prediction accuracy to the more complex
NPV model and improved prediction accuracy over the less
complex PV model [25–27,29].

The small and variable responses to exoskeleton torque
exhibited by the unimpaired adults in this work highlight
the challenge of altering kinematics with passive ankle exo-
skeletons. We found that even stiff exoskeletons (K3 = 5.08
Nm deg−1) only altered ankle kinematics on average by 6°
and integrated muscle activity by 14%. These small changes
may correspond to larger changes in joint powers or meta-
bolic demands and indicate that the present study is a
rigorous test case [1,2,5,24]. Despite small changes in gait,
the LPV model’s predictions explained more of the variance
in kinematic responses to exoskeletons than the PV model,
regardless of whether predictions interpolated (K1 and K2)
or extrapolated (K3) relative to the training set. The LPV
model’s ability to predict kinematics within and slightly
beyond the available training data supports its potential uti-
lity for predicting responses to untested exoskeleton designs
or control laws. However, predictions of the held-out K1 con-
dition highlight the importance of selecting experimental
conditions that encode complex responses to torque.

Our hypothesis that the LPV model would predict kin-
ematic and myoelectric responses more accurately than the
PV model and as accurately as the NPV model was partially
supported. The LPV model’s kinematic and myoelectric pre-
dictions were more accurate than those of the PV model only
for prediction horizons less than 18.75% and 6.25% of a
stride, respectively, but the LPV and NPV models exhibited
similar prediction accuracies across prediction horizons. The
LPV and NPV models’ similar predictions support research
demonstrating that nonlinear spring-loaded inverted pendula
(SLIP) have similar predictive accuracy to linear models of
human movement [25]. Compared to a nonlinear SLIP, the
NPV model’s feedforward neural network imposed fewer
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restrictions on the model structure enabling greater differ-
ences in prediction accuracy compared to a linear model.
Therefore, the similarity of LPV and NPV model predictions
supports the extension of Floquet theory to gait with exoske-
letons and indicates that, for rhythmic locomotion at a
constant speed over level ground, LPV models have a suffi-
ciently complex structure to predict kinematic responses to
exoskeletons [25–27,29].

We observed comparable kinematic prediction accuracy to
studies using physics-based and data-driven models of loco-
motion. Maus et al. evaluated multiple models’ abilities to
predict centre-of-mass heightduring runningand reported accu-
racies ranging from RRV≈ 0.15 at a 15% prediction horizon to
RRV≈ 0.85 beyond an 80% stride prediction horizon, for an
exemplary participant [25]. Within a similar range of prediction
horizons, the LPV model predicted kinematics across partici-
pants with average accuracies ranging from (0.30 < RRV< 0.45)
at a 12.5% prediction horizon to (0.34 < RRV< 0.77) at an
81.3% prediction horizon. Similarly, Drnach et al. [43] used a
hybrid linear model to predict response to functional electrical
stimulation, reporting median RRV values (transformed from
a fitness score) ranging from approximately 0.11 to 1.04. How-
ever, the average unperturbed gait cycle was not subtracted
from the data before computing the fitness score in ref. [43].
Theaverage unperturbed cycle accounts fora substantial portion
of the variance in the perturbed signals, providing a less conser-
vative prediction accuracy statistic than the RRV presented here.
For example, if the unperturbed cycle had not been subtracted
from the data in the present study, the LPVmodel’s ankle predic-
tions forone participantwho exhibited large responses to torque
would be RRV= 0.08 rather than the more conservative
0.21 reported. Comparable prediction accuracies to prior work
indicate that PV models are potentially useful predictive tools
for locomotion with ankle exoskeletons and may have similar
predictive power to physics-based models of locomotion.

The convergence of LPV and NPV models’ prediction
accuracies to an approximately constant value at large predic-
tion horizons (e.g. RRVLPV≈0.70 for knee kinematics at
Δ > 25.0% of a stride) may be useful when selecting measure-
ments for device design or control. The LPV and NPV
models’ kinematic prediction accuracies decreased rapidly
from 6.25% to 18.75% stride prediction horizons, before
reaching an approximately constant value. Ankle predictions
remained better than those of the PV model across prediction
horizons. Higher prediction accuracy at the ankle was unsur-
prising due to large responses to exoskeletons and the ankle’s
direct piecewise-linear relationship to passive exoskeleton
torque. Since we trained on multiple exoskeleton conditions,
the dynamics predicting future ankle kinematics are higher-
dimensional than the simple exoskeleton torque-ankle angle
relationship, suggesting that accurate predictions of ankle
kinematics over large prediction horizons are likely for pow-
ered exoskeletons as well. Unlike the ankle, hip and knee
kinematics were indirectly impacted by exoskeleton torque
and their RRV values approached those of the PV model
for prediction horizons above 18.75% of a stride. This result
indicates that stride-specific initial posture and exoskeleton
torque were predictive of indirect exoskeleton impacts on
kinematics only for short prediction horizons. At large pre-
diction horizons, measurements at an initial phase did not,
on average, improve predictions of future posture. However,
some participants’ hip and knee kinematics were predicted
up to 0.30 RRV points more accurately by the LPV and
NPV models than the PV model across prediction horizons,
suggesting that the prediction horizon at which stride-specific
measurements no longer improve predicted responses to
exoskeletons depends on the magnitude of the individual’s
response. The LPV and NPV models’ accurate predictions
over short prediction horizons make them primarily useful
for exoskeleton control [10,11]. For individuals that exhibit
large responses to exoskeletons, however, LPV model-based
predictions over stance may inform passive exoskeleton
parameter selection. Guided adaptation and extended prac-
tice sessions [1,17] or powered ankle exoskeletons [5,6]
may elicit larger responses than those observed in this
study and increase the maximum prediction horizons at
which measurements at an initial posture improve predicted
responses to torque, potentially expanding the settings in
which model predictions are useful.

A major limitation of all three models was their inability
to predict myoelectric responses. The LPV and NPV models
predicted myoelectric signals more accurately than the PV
model only for the shortest prediction horizon (Δ = 6.25%).
While exoskeleton torque and stiffness are known to impact
average plantarflexor activity, we found that the average
unperturbed gait cycle accounted for only 30–60% of the var-
iance in the K2 data, compared to 60–95% in kinematic signals
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[1,9,12]. Consequently, poor prediction accuracy may be par-
tially attributed to small changes in muscle activity between
the exoskeleton conditions. Alternatively, kinematic and myo-
electric input variables may fail to encode nonlinear
musculotendon dynamics, which are impacted by ankle exos-
keletons, between the initial and final phases [21,40]. Studies
predicting muscle activity using physiologically detailed
models accounted for 60–99% of the variance in myoelectric
signals, though they evaluated predictions on unperturbed
walking conditions only [44,45]. Still, the difference in predic-
tion accuracy between the PV models and physiologically
detailed models indicates that encoding musculotendon
dynamics in the input variables is likely needed to improve
myoelectric predictions for data-driven PV models and
represents an interesting area of future research.

Another limitation of subject-specific data-driven models,
compared to physiologically detailed models, is the amount
of training data required to predict changes in gait with exos-
keletons, which impacts models’ utility in settings where
minimizing data collection duration is critical to mitigating
physical and logistical burdens on participants and families,
such as in clinical gait laboratories. Improvements in predic-
tion accuracy of the LPV and NPV models were small beyond
75–100 strides of training data per exoskeleton condition. The
LPV model required more training data at the ankle, but a
similar amount at the hip and knee to that used by Drnach
et al., who trained a hybrid linear model using 45 s of data
across two experimental conditions [43]. For unimpaired,
steady-state locomotion, data-driven linear models appear
to require 75–125 strides of training data per condition,
which supports their feasibility only in gait analysis settings
with treadmills or long walkways [6,7]. Additional dimen-
sionality reduction, such as via sparse regression, may
reduce the LPV model’s complexity and demand for training
data [25,31,46]. However, when only one training condition
or a few strides are collected, as is standard in clinical gait
analysis, PV model predictions will be poor and physiologi-
cally detailed or population-specific models may generate
more accurate predictions [8,19,44,45].

Subject-specific data-driven PV models of gait with exoske-
letons have benefits and limitations compared to predictive
musculoskeletal models. While we investigated only a specific
subset of PV models, we showed that this class of model can
predict kinematic responses to exoskeletons without detailed
knowledge of the physiological and neuromuscular factors
influencing responses to exoskeletons. Conversely, uncertainty
in the mechanisms driving complex responses to exoskeletons
may limit physiologically detailed models’ accuracy [13,24].
While predictive musculoskeletal models may generate ‘what-
if’ predictions without experimental data, data may be needed
to specify initial postures and tune subject-specific parameters.
PV models can similarly perform subject-specific ‘what-if’
predictions when application-specific training data are avail-
able. Unlike physiologically detailed models, this and prior
work exemplify the ability of PV models to take arbitrary
measurements as inputs, enabling their application using a
range of experimental resources [25,26,31]. Extending data-
driven predictions to ‘what-if’ scenarios and improving pre-
dicted myoelectric responses to exoskeletons, combined with
analytical tools for PV systems (e.g. [31]), may facilitate predic-
tion and analysis of individualized exoskeleton impacts on gait
mechanics and motor control.
5. Conclusion
To our knowledge, this is the first study to predict subject-
specific responses to ankle exoskeletons using PV models.
Without making assumptions about individual physiology
or motor control, an LPV model predicted short-time
kinematic responses to bilateral passive ankle exoskeletons,
though predicting myoelectric responses remains challenging.
Results support the utility of LPV models for studying and
predicting response to exoskeleton torque. Improving data-
driven models and experimental protocols to study and pre-
dict myoelectric responses to exoskeletons represents an
important direction for future research. Modelling responses
to exoskeletons or other assistive devices using a PV perspec-
tive has the potential to inform exoskeleton design for a
range of user groups.
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