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ABSTRACT

Human interaction with the physical world is increasingly mediated by automation. This interaction is character-
ized by dynamic coupling between robotic (i.e. cyber) and neuromechanical (i.e. human) decision-making agents.
Guaranteeing performance of such human-cyber-physical systems will require predictive mathematical models
of this dynamic coupling. Toward this end, we propose a rapprochement between robotics and neuromechanics
premised on the existence of internal forward and inverse models in the human agent. We hypothesize that, in
tele-robotic applications of interest, a human operator learns to invert automation dynamics, directly translating
from desired task to required control input. By formulating the model inversion problem in the context of a
tracking task for a nonlinear control system in control-affine form, we derive criteria for exponential tracking and
show that the resulting dynamic inverse model generally renders a portion of the physical system state (i.e., the
internal dynamics) unobservable from the human operator’s perspective. Under stability conditions, we show
that the human can achieve exponential tracking without formulating an estimate of the system’s state so long
as they possess an accurate model of the system’s dynamics. These theoretical results are illustrated using a
planar quadrotor example. We then demonstrate that the automation can intervene to improve performance
of the tracking task by solving an optimal control problem. Performance is guaranteed to improve under the
assumption that the human learns and inverts the dynamic model of the altered system. We conclude with a
discussion of practical limitations that may hinder exact dynamic model inversion.

Keywords: human-cyber-physical system (HCPS), internal model, dynamic inverse model, mixed-initiative
system, autonomous intervention

1. INTRODUCTION

Human-cyber-physical systems (HCPS) are intelligent networked systems with deeply-integrated human, cyber,
and physical elements. In many cases, the human and cyber (autonomous) components jointly control the
dynamic physical plant. The joint behavior that emerges from the tight coupling and reciprocal adaptation
of these elements often cannot be described by naively combining models of their individual contributions.
Although the complementary features of the human and cyber components are intended to improve efficiency
and robustness, improper integration of these components may inadvertently degrade task performance and may
lead to unintended consequences. For instance, enhanced safety features in motor vehicles such as automated
lane-departure warning systems have been associated with increased accident rates.1 Due to the critical function
that many HCPS serve (e.g. in energy, healthcare, defense, transportation, emergency response), the safety and
resilience of these systems is of importance. As the application space for HCPS grows, it is critical to develop
design frameworks with provable performance and safety guarantees.

Existing frameworks for human-machine interaction2–4 provide high-level guidelines for the design, analysis,
and evaluation of HCPS; for instance, Parasuraman and Sheridan3 developed a four-stage model of automation to
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describe the major functions that automation can contribute toward, and proposed evaluation criteria based on
human performance consequences (e.g. workload, situation awareness, complacency). However, such frameworks
do not include mathematical models of the HCPS. This precludes the use of control-theoretic techniques to
analyze stability, reachability, and other quantitative performance metrics.

Predictive mathematical models that directly characterize the coupling of human and cyber-physical subsys-
tems may provide a general means for deriving stability and performance guarantees; yet given the richness of
human behavior, modeling the human contribution in a generalized task is seemingly intractable. While it may
be sufficient to derive models specific to a particular system/task, such as quasi-linear models of piloting behav-
ior,5 we seek a mathematical framework that can be used to design and control nonlinear systems performing
tasks more general than regulation. Toward this end, we are inspired by concepts in the field of neuromechanical
motor control.

Human interaction with the physical world has been investigated for over a century in the field of neurome-
chanical motor control. One popular paradigm posits existence of internal “forward” and “inverse” models that
reduce behavior to a predictable map between input and output. Internal models can be described by both their
forward and inverse formulations. A forward model M is a hypothetical computational network within the sen-
sorimotor system that predicts the output y from motor command input u.6 Conversely, an inverse model M−1

specifies the input(s) u that produce a desired output y. Tracking tasks—for instance, trajectory tracking with
the human hand—can be performed by directly inverting the dynamics of the human body to provide required
motor commands.7 Although motor control and motor learning studies overwhelmingly focus on sensorimotor
control of the human body itself rather than control of a cyber-physical system, valuable insight into human
behavior in the presence of automation can be gained by understanding the principles behind human motor
control.

Experimental evidence supports the use of forward and inverse models for motor control.7–11 Previous
studies suggest that weighted combinations of motor primitives (or muscle synergies)12–14 can be learned, stored
as internal models, and later recalled in order to transform desired limb trajectories into motor commands.15

Shadmehr and Mussa-Ivaldi7 performed multi-joint arm motion experiments with and without a disturbing force
field. Their experiments demonstrated (i) recovery of kinematics after adaptation to the force field, indicating
there was a kinematic plan (desired trajectory) independent of dynamical conditions, (ii) opposite kinematics
upon sudden removal of a force field (after prolonged exposure), suggesting that the dynamics related to the force
field had been inverted, and (iii) aftereffects from adaptation in workspace regions where no exposure to the field
had taken place. Other studies have directly shown an inverse model relationship being generated for stable force
fields (in parallel with impedance control during learning and unstable situations).16,17 There is physiological
evidence that internal models are learned and stored in the cerebellum18–20 and executed in coordination with
motor cortex.21

We hypothesize that human interaction with complex automated systems is also characterized by internal
forward and inverse models. If a human can learn internal models of “simple” external tasks such as limb
movement and tool use,22,23 it is likely that this capability extends to more complex dynamical systems.

Hypothesis: humans learn and invert dynamic models to control cyber-physical systems.

In the present work, we introduce a mathematical framework to describe the result of this dynamic inverse
modeling process for a trajectory tracking task, as would be employed in robotic teleoperation. We assume
that the human is able to exactly learn the input-output relationship of a dynamic automated plant and is able
to construct a state-dependent dynamic inverse model of the plant to implement the desired behavior. Using
standard techniques from control theory, we demonstrate that implementation of the dynamic inverse model is
equivalent to feedback linearization (also known as input-output linearization) of a nonlinear dynamic plant.

While the dynamic inverse model generally renders the physical system state unobservable from the human
operator’s perspective, we show that the human operator can achieve exponential tracking without formulating
an estimate of the system’s state so long as he/she possesses an accurate model of the system’s dynamics.
Additionally, we propose a concept for autonomous interventions, whereby a set of parameters is optimized and
autonomously implemented to minimize a cost function. Assuming that the human then learns to exactly invert



the new dynamic model, performance as defined by the cost function is guaranteed to improve while maintaining
trajectory tracking performance.

Section 2 describes a stabilizing feedback linearization strategy (mathematically representing dynamic model
inversion) for nonlinear control systems in control-affine form, and derives conditions for exponential tracking
using feedback. Section 3 highlights the ambiguities inherent in inverting generalized nonlinear static and dynamic
models, justifying our focus on a particular class of nonlinear systems (those with finite strict relative degree).
Section 4 describes how the human operator might implement a dynamic inverse model when a portion of the
states are unobservable, as well as our concept for autonomous interventions. Lastly, Section 5 discusses how
human characteristics (e.g. approximate modeling, disturbance rejection, motor delay, input saturation, and
physiological state) may affect dynamic-inverse-model-based control.

2. CONTROL-THEORETIC FORMALISM FOR DYNAMIC INVERSE MODELS

The scientific concept of dynamic inverse modeling found in neuromechanical motor control studies can be
described from the perspective of mathematical control theory. Here, we provide mathematical formulations for
forward and inverse models applicable to a class of nonlinear control systems relevant for modeling a broad range
of applications. We focus on the model inversion problem for a tracking task.

First, a nonlinear state-dependent forward model is defined, and a standard coordinate transformation (Eq.
12) is applied to the model, enabling the development of a generalized linearizing feedback law (analogous to a
dynamic inverse model); we discuss the derivation of this transformation in a tutorial manner. We then describe
additional conditions on the input and the physical system that ensure the time-varying feedback prescribed
by the inverse model achieves exponential tracking. This section discusses the derivation and properties of
the dynamic inverse model for single-input, single-output (SISO) systems. An extension to square multi-input,
multi-output (MIMO) systems is straightforward along the lines of Chapter 9 in (Sastry, 1999).24

2.1 Transformation of Forward Model

Consider a forward model that can be represented as a SISO nonlinear system in control-affine form:

ẋ = f(x) + g(x)u

y = h(x) ,
(1)

where∗ x ∈ Rn, f, g ∈ Cr(Rn,Rn), and h ∈ Cr(Rn,R). The forward model of this system is a mapM : X×U → Y
transforming a given input trajectory u : R → R to an output trajectory y : R → R by solving the ordinary
differential equation governing the dynamics of the state variable x.

A change of coordinates, which simplifies the development of a generalized control law, is partially obtained
by taking consecutive time derivatives of the output y. We preface details of the coordinate transformation with
a differentiation of y and a definition of strict relative degree. Differentiating y from Eq. 1 with respect to time,
one obtains

ẏ =
∂h

∂x
f(x) +

∂h

∂x
g(x)u

:= Lfh(x) + Lgh(x)u .
(2)

Lfh(x) : Rn → R and Lgh(x) : Rn → R denote the Lie derivatives of h with respect to f and g. We can
understand Lfh(x) as a function giving the rate of change of h along the flow of the vector field f ; in other
words, it describes how the internal dynamics f manifest themselves in the time derivative of the output.
Likewise, Lgh(x) is the rate of change of h along the flow of the vector field g. If Lgh(x) is bounded away from
zero for all x ∈ Rn, the linearizing feedback law given by

∗ Cr(A,B) denotes the set of r-times continuously differentiable functions from domain A to codomain B.



u =
1

Lgh(x)
(−Lfh(x) + v) (3)

yields the first-order linear system from the artificial input v to the output y:

ẏ = v (4)

From Eq. 3, it is clear that there exist functions a(x) and b(x) such that the feedback law u = a(x) + b(x)v
linearizes the system near the equilibrium x0.

In the instance that Lgh(x) ≡ 0, meaning that ∀x ∈ U,Lgh(x) = 0, it is necessary to differentiate again:

ÿ =
∂Lfh

∂x
f(x) +

∂Lfh

∂x
g(x)u

:= L2
fh(x) + LgLfh(x)u .

(5)

In Eq. 5 above, L2
fh(x) ≡ Lf (Lfh)(x) and LgLfh(x) ≡ Lg(Lfh(x)). If LgLfh(x) is bounded away from zero

for all x ∈ U , the control law given by

u =
1

LgLfh(x)
(−L2

fh(x) + v) (6)

yields the second-order linear system from input v to output y:

ÿ = v (7)

The differentiation procedure may terminate at some finite γ, which is defined as the strict relative degree
of the nonlinear system. Formally, the SISO nonlinear system Eq. 1 is said to have strict relative degree γ at
x0 ∈ U if:

LgL
i
fh(x) ≡ 0 ∀x ∈ U , i = 0, ..., γ − 2 ,

LgL
γ−1
f h(x0) 6= 0 .

(8)

In this generalized case, the control law given by:

u =
1

LgL
γ−1
f h(x)

(−Lγfh(x) + v) (9)

yields the linear γth order system from input v to output y:

y(γ) = v (10)

With these details, we now define a change of coordinates following the development in (Sastry, 1999).24 For
an nth order system with strict relative degree γ, the new coordinates are given by:

φ1(x) = h(x)

φ2(x) = Lfh(x)

...

φγ(x) = Lγ−1f h(x) .

(11)



The φi(x) are the coordinates described by y and the first γ − 1 time derivatives of y. It is a consequence of
the definition of relative degree that the first γ − 1 time derivatives of y do not depend on u. The above system
of equations qualifies as a partial change of coordinates for the system (since γ ≤ n). If Eq. 1 has strict relative
degree γ ∈ N at x0 ∈ Rn,24 then there exists (by Frobenius’ Theorem) a local diffeomorphism Φ ∈ Cr(X,Φ(X))
of the form

Φ(x) =


h(x)
Lfh(x)

...

Lγ−1f h(x)

ζ(x)

 =


ξ1
ξ2
...
ξγ
ζ

 (12)

where ζ ∈ Cr(X,Rn−γ) is a coordinate transformation for the remaining state dimensions not described by ξ,
L`f denotes the `th Lie derivative of h along f , and X ⊂ Rn is a neighborhood containing x0. ζ represent the
remaining n− γ coordinates. This allows us to transform Eq. 1 via Φ:

ξ̇1
ξ̇2
...

ξ̇γ−1
ξ̇γ
ζ̇


=



ξ2
ξ3
...
ξγ

b(ξ, ζ) + a(ξ, ζ)u
q(ξ, ζ)


(13)

where b(ξ, ζ) = Lγfh(Φ−1(ξ, ζ)), a(ξ, ζ) = LgL
γ−1
f h(Φ−1(ξ, ζ)) and q(ξ, ζ) represents Lfζ in (ξ, ζ) coordinates.

The system description Eq. 13 is known as the normal form for the system described in Eq. 1. The re-
parameterized system above remains a forward model of the nonlinear system, mapping the input u to output
y = ξ1. Note the lack of input terms in the differential equations for ζ; this implies the input cannot directly
influence these dynamics.

ζ̇ = q(ξ, ζ) are the system’s internal (unobservable) dynamics associated with the feedback linearization.
When the control input is such that the output y is maintained at zero (with ζ = ζ0), ζ̇ = q(ξ0, ζ) are known as the
zero dynamics of the linearized system. Eq. 1 is locally exponentially minimum phase at x0 if specDζq(ξ0, ζ0) ∈
Co− (the eigenvalues of the system linearized at (ξ0, ζ0) are in the left half of the complex plane); i.e. if ζ0 is a
locally exponentially stable equilibrium of the zero dynamics.

2.2 Trajectory Tracking via Dynamic Model Inversion

As shown in Eq. 10, proper choice of an input u cancels out the internal states and enables direct control of
the γth time derivative of y. This has important implications for trajectory tracking tasks. Consider a SISO
tracking task, in which the human operator generates inputs with the goal of following a desired trajectory. If
the operator learns to invert the dynamics of the system as we have hypothesized, then the dynamic inverse
model M−1, which maps the desired output yd(t) to a desired input u, takes the form of a control law. In the
case that the system has strict relative degree γ, then the linearizing feedback law

u =
1

a(ξ, ζ)
(−b(ξ, ζ) + v) (14)

yields dγ

dtγ ξ1 = ξ
(γ)
1 = v. This control law effectively cancels out the nonlinear plant dynamics described by

functions a(ξ, ζ) and b(ξ, ζ). Note that y = ξ1 and dγ

dtγ ξ1 = v, hence this feedback renders the states ζ unobservable
from the output. Note there is ambiguity in how this control law can be applied (by a human operator) when
the states ζ are unobservable; this will be addressed in Section 4.1.
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Figure 1: Dynamic-inverse-model-based control for exponential tracking, adapted from (Sastry, 1999).24 The
output y and its derivatives are transformed into coordinates ξ and combined with a model of the internal
dynamics ζ̇ = q(ξ, ζ) to obtain the states ζ. The input signal is a combination of the state-dependent inverse
model and error feedback.

Given a desired output trajectory yd, and assuming the initial state can be prepared precisely, the choice of
v = dγ

dtγ yd yields dγ

dtγ ξ1 = dγ

dtγ yd when Eq. 14 is combined with Eq. 13, and therefore y(t) = ξ1(t) = yd(t).

To implement trajectory tracking for arbitrary initial conditions, one could define the tracking error e(t, x) =
y(x)− yd(t), where y(x) = h(x) = ξ1, and choose v as

v(t, x) = y
(γ)
d − αγ−1e(γ−1)(x)− ...− α0e , (15)

The feedback law defined by Eqs. 14 and 15 results in exponential tracking for y and its first γ derivatives so
long as (i) the polynomial sγ + αγ−1s

γ−1 + ... + α1s + α0 is Hurwitz, and (ii) the unobserved states ζ remain
close enough to ζ0 to ensure (ξ, ζ) ∈ X for all time t ≥ t0 (c.f. Remark 1 to Theorem 9.14 in Sastry, 199924).
Thus we are led to consider conditions that will ensure ζ remains near ζ0 under this feedback.

Contraction theory provides an elegant analysis for the behavior of our coupled system, as cascades of
contractive systems are again contractive (Sontag, 2010,25 Theorem 3). Applying the feedback in Eqs. 14 and
15, we obtain a cascaded system governing the closed-loop dynamics[

ξ̇

ζ̇

]
=

[
A(ξ − η(t))
q(ξ, ζ)

]
=: F (t, ξ, ζ) (16)

where the vector η(t) ∈ Rγ is defined by

η(t) =
[
yd(t) ẏd(t) . . . y

(γ−1)
d (t)]

]T
, (17)

F ∈ C1(R× Rγ × Rn−γ ,Rγ × Rn−γ) is the closed-loop vector field, and the matrix A ∈ Rγ×γ is in controllable
canonical form,



A =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
−α0 −α1 −α2 . . . −αγ−1

 (18)

and hence specA ⊂ Co− by construction. If we assume further that Eq. 1 is locally exponentially minimum phase
at x0, then specDζq(ξ0, ζ0) ⊂ Co−. Computing the Jacobian derivative of F with respect to ξ and ζ we obtain

DF (ξ, ζ) =

[
A 0

Dξq(ξ, ζ) Dζq(ξ, ζ)

]
. (19)

Since F is in C1 there exists an open ball B ∈ Rn containing (ξ0, ζ0) for which:

• ξ̇ = A(ξ − η(t)) is infinitesimally contracting25 (since spec A ⊂ Co−);

• ζ̇ = q(ξ, ζ) is infinitesimally contracting when ξ is viewed as a parameter25 (since spec Dζq(ξ0, ζ0) ⊂ Co−
and DF is continuous); and

• Dξq(ξ0, ζ0) is bounded (since DF is continuous).

This enables us to infer (by Sontag, 2010,25 Theorem 3) that the cascaded system in Eq. 16 is infinitesimally
contracting on B with some contraction rate c > 0. Therefore, we conclude (by Sontag, 2010,25 Theorem 1) that
for any reference yd ∈ Y where

Y = {y ∈ Cγ(R,R)|‖y‖Cγ <∞, ∀t ∈ R : (η(t), ζ0) ∈ C} , (20)

all trajectories initialized in B remain in B for all time and achieve exponential tracking,

||h ◦ φt0,(ξ,ζ),ud − yd||Cr(t) ≤ e−c(t−t0)||(ξ, ζ)− (η(0), ζ0)|| , ∀ t ≥ t0, (ξ, ζ) ∈ C, yd ∈ Y (21)

By enforcing the strict relative degree property, there exists a unique input ud that achieves a desired output yd:

Property 1: Uniqueness. As noted in (Sastry, 1999, §9.2.3),24 the input that achieves exact tracking is
unique.

Moreover, since the dynamic inverse model is continuously differentiable, its behavior near the exact tracking
trajectory is governed by its linearization. In other words, the local behavior of the dynamic inverse model
Eq. 16 is determined by the tracking coefficients {αj}γ−1j=0 employed in Eq. 15 regardless of the global (possibly
nonlinear) feedback law employed.

It remains unclear how a human operator might apply the proposed control law when the states ζ are
unobservable. This will be addressed in Section 4.

2.3 Example: Planar Quadrotor Model

Consider a planar model of a quadrotor subject to gravitational acceleration (Figure 2). The quadrotor body
of mass m and inertia I has position (z, x) and angle θ from the horizontal. There are two possible control
inputs: a force u1 = F applied at the center of mass of the quadrotor body in the direction perpendicular to
the quadrotor body (corresponding to equal positive force generated by each rotor), and a torque u2 = τ about
the center of mass of the quadrotor body (corresponding to opposite forces generated by the two rotors in the
plane). The system dynamics are modeled with an equilibrium force mg applied perpendicular to the quadrotor
body, so that f(0) ≡ 0.



2.3.1 Vertical Trajectory Tracking

First, we consider a SISO version of the system designed to follow a vertical trajectory yd(t) = zd(t) while x and θ
are stabilized about the origin. The sole input u is vertical force F . The system can be modeled in control-affine
form:

ẋ =



ż
ẋ

θ̇
z̈
ẍ

θ̈

 =


ẋ1
ẋ2
ẋ3
ẋ4
ẋ5
ẋ6

 =


x4
x5
x6

g(cosx3 − 1)
g sinx3 + kP,xx2 + kD,xx5

kP,θx3 + kD,θx6

+


0
0
0

cosx3/m
− sinx3/m

0

u

y = h(x) = x1 ,

(22)

𝜃
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Figure 2: Simple model for quadrotor confined to the vertical plane in a gravitational field. Two rotors affixed
symmetrically to the rigid chassis apply a net wrench proportional to applied voltages: the voltage sum is
proportional to net force F ; the voltage difference is proportional to net torque τ .

The system can also be described in normal form using the differentiation procedure in Section 3.

Lgh = 0

Lfh = x4
(23)

Since Lgh ≡ 0, we continue to differentiate:

LgLfh = cosx3/m

L2
fh = g(cosx3 − 1)

(24)

LgLfh 6= 0, hence the system has relative degree γ = 2. In normal form, the system of equations is given by:

ξ̇1
ξ̇2
ζ̇1
ζ̇2
ζ̇3
ζ̇4


=


ξ2

L2
fh(ζ2) + LgLfh(ζ2)u

ζ3
ζ4

g sin ζ2 + kP,xζ1 + kD,xζ3
kP,θζ2 + kD,θζ4

 (25)



where we have used the the transformed coordinates ξ1 = x1, ξ2 = x4, ζ1 = x2, ζ2 = x3, ζ3 = x5, and ζ4 = x6.
If the objective is to track a desired output yd, the human operator can apply the feedback control law

u =
1

LgL
γ−1
f h

(
−Lγfh+ v

)
=

m

cos ζ2
(g(cos ζ2 − 1) + v) , (26)

with v in a form similar to Eq. 15,

v = ÿd − α1ė− α0e , (27)

then we obtain the cascaded system: 

ξ̇1
ξ̇2
ζ̇1
ζ̇2
ζ̇3
ζ̇4


=



[
0 1
−α0 −α1

] [
ξ1 − yd
ξ2 − ẏd

]
ζ3
ζ4

g sin ζ2 + kP,xζ1 + kD,xζ3
kP,θζ2 + kD,θζ4

 (28)

Note that the control law assumes knowledge of the state ζ2 = x3 = θ, which is unobservable. In physical
terms, the quadrotor angle—which clearly affects the vertical dynamics—is rendered unobservable to the operator
due to the inverting control input.

2.3.2 Horizontal Trajectory Tracking

Next, we consider a SISO version of the system designed to follow a horizontal trajectory yd(t) = xd(t) while
z and θ are stabilized about the origin. The sole input u is out-of-plane torque τ . In control-affine form, the
system is given by:

ẋ =



ż
ẋ

θ̇
z̈
ẍ

θ̈

 =


ẋ1
ẋ2
ẋ3
ẋ4
ẋ5
ẋ6

 =


x4
x5
x6

g(cosx3 − 1) + kP,zx1 + kD,zx4
g sinx3

0

+


0
0
0
0
0

1/I

u

y = h(x) = x2 ,

(29)

It is clear from the equations of motion that the dynamics are 4th order: the torque input directly affects
angular acceleration, which must be integrated twice to affect horizontal acceleration; horizontal acceleration
must then be integrated twice to affect horizontal position. As per the procedure in Section 3, we obtain:

Lgh = 0

Lfh = x5

LgLfh = 0

L2
fh = g sinx3

LgL
2
fh = 0

L3
fh = x6g cosx3

LgL
3
fh =

g cosx3
I

L4
fh = −x26g sinx3

(30)



LgL
3
fh 6≡ 0, hence the system has relative degree γ = 4. In normal form, the system of equations is given by:

ξ̇1
ξ̇2
ξ̇3
ξ̇4
ζ̇1
ζ̇2


=



ξ2
ξ3
ξ4

L4
fh(ξ3, ξ4) + LgL

3
fh(ξ3)u

ζ2√
g2 − ξ23 − g + kP,zζ1 + kD,zζ2

 (31)

where we have used the the transformed coordinates ξ1 = x2, ξ2 = x5, ξ3 = g sinx3, ξ4 = x6g cosx3, ζ1 = x1,
and ζ2 = x4. If the human operator applies the control law

u =
1

LgL3
fh

(−L4
fh+ v) =

I

g cosx3
(x26g sinx3 + v) =

I√
g2 − ξ23

(
ξ24√
g2 − ξ23

+ v

)
(32)

to track yd, with

v = y
(4)
d − α3

...
e − α2ë− α1ė− α0e , (33)

then the subsequent closed-loop cascaded system can be represented as:

ξ̇1
ξ̇2
ξ̇3
ξ̇4
ζ̇1
ζ̇2


=




0 1 0 0
0 0 1 0
0 0 0 1
−α0 −α1 −α2 −α3



ξ1 − yd
ξ2 − ẏd
ξ3 − ÿd
ξ4 −

...
y d


ζ2

(
√
g2 − ξ23 − g) + kP,zζ1 + kD,zζ2

 (34)

In contrast with the control law for vertical trajectory tracking, the states ζ are not required for the application
of Eqs. 32 and 33 (only ξ3 and ξ4, which can be determined from the output, are required). This is physically
intuitive, as vertical position and velocity should have no effect on the horizontal dynamics of a quadrotor.

3. AMBIGUITIES IN STATIC AND DYNAMIC INVERSE MODELS

According to contemporary theories of forward and inverse modeling, humans invert the causal relationship
between inputs and outputs acquired through a learning process†. At an abstract level, it is straightforward
to describe how a sensorimotor system utilizes internal models: forward models predict sensory consequences of
motor actions, while inverse models compute motor commands that generate desired sensory signals. However,
the structure and properties of these models generally vary with task and environment. Even given a plausible
forward model, there may not be an obvious candidate for the model’s inverse. For instance, a static map
M : U → Y (a map having no internal states) that is injective but not surjective has a well defined inverse
M−1 : M(U) → U defined over the subset M(U) ∈ Y , but this “inverse” yields no prediction for any output
y ∈ (Y \M(U)). If the static map is surjective but not injective, it may be possible to define a (pseudo-)inverse
that selects from the set of inputs that yield the given output, for instance based on optimizing a cost function.

Inverse models with dynamic internal states may contain additional ambiguities because the output is related
to the input only indirectly, through an intermediate dynamical state. In the form proposed by Thoroughman
and Shadmehr,15 the inverse model of Lagrangian dynamics that govern limb movement may be interpreted
as acausal, or whose output at time t depends partly on its input for some later time t + n. In contrast, a

†The question of how the forward and inverse models are learned, though a worthy subject of study in and of itself,
does not affect our conclusions, hence we refer the interested reader to other studies on the subject.26–28
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Figure 3: (a) Illustration of a system with stable dynamic inverse model M−1 : Y → X × U . Suppose we must
determine the appropriate input ud(t) to achieve a desired trajectory yd(t). Assuming no initial tracking error,
the trajectory begins and remains on the surface, bringing the system to equilibrium x0 (note that X may be
multi-dimensional, but is represented in this figure by a single dimension). For arbitrary initial conditions, the
dynamic inverse model is applied in unison with error feedback (Eq. 15) and will simultaneously converge to
the surface and the equilibrium. (b) Implementation of the dynamic inverse model is equivalent to feedback
linearization. Since feedback linearization cancels the nonlinear dynamics, the inverse model can be represented
as a static map M−10 : Y → V , where v represents the artificial input from Eq. 14. For arbitrary initial
conditions, error feedback terms are added to v, causing it to deviate from the pure inverse.

state feedback inverse model proposed in Diedrichsen et al.29 is dependent only on the current estimate of
the state. The model is given by M : X × U → Y , while its inverse is M−1 : Y → X × U . Though not
necessarily incompatible, these two postulated inverse model structures generally yield different predictions for
the sensorimotor system’s behavior.

By requiring that the nonlinear systems have strict relative degree, a property described in the previous
section, the ambiguity due to acausality and redundancy is eliminated. Systems with finite strict relative degree
are feedback linearizable. Under stability conditions about an equilibrium x0, the dynamic map of the feedback
linearized system (originally dependent on the input and state) becomes solely dependent on the artificial input v
so that M0 : V → Y (see Figure 3), where M0(·) = M(x0, ·). As a consequence, the inverse model M−10 : Y → V
is valid in a contraction region B regardless of the state. The implications of this phenomenon for human
teleoperation are discussed in the next section.

4. DYNAMIC INVERSE MODELS IN HUMAN-CYBER-PHYSICAL SYSTEMS

We hypothesize that humans are able to learn forward and inverse models of external systems, and are able to
implement inverse models in the form of a feedback control law. In this section, we describe how a human can
achieve exponential tracking for the class of nonlinear systems from Section 2 without observing the states ζ.
The details of this result have important implications for the design of HCPS. The dynamic inverse modeling
concept also leads us to propose a methodology for autonomous interventions in HCPS trajectory-tracking tasks
(Section 4.2).



4.1 Unobservability and the Virtual Internal Model

Whenever the relative degree of the system is strictly smaller than the dimension of the state, the inverse model
always renders some states unobservable:

Property 2: As noted in (Sastry, 1999, §9.2.2),24 the feedback in Eq. 14 renders the states ζ unobservable.

Since the unobservability of the internal states precludes direct implementation of the feedback law, we describe
the use of a virtual system state to achieve exponential tracking with a stable model pair.

Theorem 1: (exponential tracking with a stable model pair). If the forward model Eq. 1 has strict relative
degree γ ∈ N and is exponentially stable and exponentially minimum phase at an equilibrium f(x0) = 0 then
there exists an open ball B ⊂ Rn containing x0 and a rate c > 0 such that the time-varying feedforward input
obtained by applying Eqs. 14 and 15 along the trajectory initalized from (ξ0, ζ0) achieves exponential tracking
(Eq. 21) at rate c for any desired output yd ∈ Y and its first γ derivatives.

The critical detail here is that the input applied by the human is not obtained from a feedback law utilizing the
physical system state (since the states ζ are unobservable); it is instead obtained by applying the inverse model

to virtual system states ζ̂ initialized at their equilibrium values ζ0. The control law

u =
1

a(ξ, ζ̂)
(−b(ξ, ζ̂) + v), (35)

generates the dynamics

y(γ) = b(ξ, ζ) +
a(ξ, ζ)

a(ξ, ζ̂)
(−b(ξ, ζ̂) + v), (36)

which clearly reduces to y(γ) = v when ζ̂ = ζ.

Stability (specifically, infinitesimal contractivity) of the forward and inverse model pair ensure that the virtual
and physical system states converge to the same trajectory, and this feedforward input achieves exponential
tracking. Figure 4 depicts an example system with a dynamic inverse model M−1(ζ) and its corresponding virtual

model M−1(ζ̂) constructed with equilibrium values ζ0. Applying a feedback signal prescribed by the virtual-
model-based control law yields a different output than exact state feedback; however, because the forward-inverse
model pair is (exponentially) stable and the unobservable states are (exponentially) stable, the trajectories will
exponentially converge to each other (and to yd).

Given that the output is equal to z in the example of a quadrotor following a vertical trajectory (Section
2.3.1), the human does not have access to the states θ = ζ2, θ̇ = ζ4, x = ζ1, and ẋ = ζ3. If we choose the
equilibrium conditions (θ, θ̇, x, ẋ) = (0, 0, 0, 0) to initialize a virtual model of the dynamics, then the control law
is given by

u =
m

cos ζ̂2

(
g(cos ζ̂2 − 1) + v

)
(37)

The desired trajectory is yd(t) = 2 sin(2t). The states and output of the system with virtual-model-based
feedback will initially deviate from that of the system with exact feedback. Simulations of the quadrotor response
to the virtual-model-based control law Eq. 35, both from the human perspective (no knowledge of θ or x
deviation) and in (simulated) reality, are illustrated in Figure 5a. Like the virtual model, the actual system
converges to the desired trajectory. Simulations of the quadrotor comparing exact feedback and feedback using
the virtual model are shown in Figure 5b, illustrating the (minor) difference between output trajectories.

Simulations were performed for various initial conditions with the virtual-model-based control law Eq. 35.
As illustrated in Figure 6a, the trajectories can be seen to converge to one another (and the desired trajectory)
exponentially. Comparison of the output error between initial conditions using exact or virtual model control
in Figure 6b confirms that the trajectories converge to one another (exponential tracking) and there is zero
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Figure 4: (a) Illustration of a system with dynamic inverse model M−1(ζ) and its corresponding virtual model

M−1(ζ̂) constructed with equilibrium values ζ0. Suppose we must determine the appropriate input ud(t) to
achieve a desired trajectory yd(t). If the state is known completely, the operator may execute perfect feedback
linearization (Eq. 14, yellow-orange). However, if one or more states are unobservable, then the operator may
instead implement the virtual-model-based control law (Eq. 35, blue) as if the unobservable states were at their
equilibrium values. (b) The trajectory resulting from virtual-model-based control will generally differ from that
produced by exact state feedback. Nevertheless, if the forward-inverse model pair is (exponentially) stable, and
the unobservable states are (exponentially) stable, then the control law will yield (exponential) convergence to
yd (Theorem 1).

steady-state error. Depending on initial conditions, exact feedback produced less (red and green) or more (blue)
overshoot.

We emphasize that, for the human operator to achieve exponential tracking in the presence of (unobservable)
zero dynamics via inverse modeling, it is necessary for the physical plant to have an exponentially stable for-
ward/inverse model pair. Though few physical systems are intrinsically stable about desirable operating points,
many physical plants can be rendered stable via automated feedback control. Under the assumption that the
human operator can learn to invert the plant’s dynamics under stabilizing feedback, the preceding theory would
apply to a system stabilized through low-level automation. Automated feedback, however, may be useful for
goals beyond stabilization, including performance optimization about a desired trajectory, as described in the
next section.

4.2 Autonomous Interventions

Due to the complexity and uncertain nature of many robotic tasks, high-level planning and/or shared control
from a human (tele-)operator is often required for goal completion. While the human concentrates on planning
and executing trajectories, an autonomous component can adapt the system dynamics in order to optimize
other aspects of performance. However, in general, it is often difficult to predict the impact that alteration to
plant dynamics may have on the system as a whole. For instance, the 2009 Air France disaster was caused
by a poor response to autopilot shutdown—the pilots did not have an appropriate model of the high-altitude
dynamics to recognize that their manual commands were stalling the plane.30 Similarly, in the case of the 1992
YF-22 accident, the pilot transitioned from gear-down to gear-up at low altitude without realizing that this
automatically increased pitch rate gains (intended to improve high-altitude performance), causing immediate
pilot-induced oscillations (also known as aircraft-pilot coupling31) and a subsequent gear-up hard landing.32
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Figure 5: Simulations of a quadrotor performing vertical trajectory tracking. Initial conditions are
{x0, ẋ0, z0, ż0, θ0, θ̇0} = {0, 0, 4.5, 0.05, 0.25, 0.2}; gain values are {KP,x,KD,x,KP,θ,KD,θ} = {0.25, 0.7, 1, 1}.
(a) The dotted curve represents virtual-model-based control if {x, ẋ, θ, θ̇} ≡ {0, 0, 0, 0} as the operator believes,
while the solid curve is the actual result of the operator’s virtual-model-based control law. Grayed-out areas
represent θ < −π/2 and θ > π/2, from which convergence does not occur. (b) The dotted curve represents
inverse-model-based control under complete state knowledge, while the solid curve represents control using the
virtual model. Note that the {x, ẋ} and {θ, θ̇} trajectories are the same for both control laws. This occurs
because the unobservable dynamics in this example ζ̇ = q(ζ) are independent of ξ and therefore completely
unaffected by u; for general systems of the form Eq 13, the trajectories may differ.

We propose a specific methodology for autonomous adaptation based on the properties of the dynamic inverse
model formulation. By applying interventions in a manner that does not change the basic underlying structure
of the plant (e.g. relative degree, stability properties), we expect the human operator can learn to invert the
augmented system’s dynamics, possibly by adapting previously-acquired motor skills as was demonstrated by
Shadmehr and Mussa-Ivaldi for reaching tasks in the presence of force fields.7 In that study, learning to reach in
a force field was mathematically represented as the sum of an original controller (modeling the inertial, Coriolis,
centripetal, viscous, stiffness, and friction terms) used to reach in a null field and an environmental adaptation
term to cancel the programmed force field. Through repeated trials, monotonic convergence to the original
desired trajectory was observed. We envision analogous scenarios where the dynamics of a task are intentionally
altered by the automated/cyber element (in a predictable manner), and the human learns the new dynamics to
recover the desired trajectory.

We propose autonomous interventions that adapt the dynamics of the system through a set of parameters
β to optimize secondary performance criteria (such as stabilizing a payload, minimizing fuel consumption, or
extremizing other statistics) along the specified trajectory. It is expected that the human can learn and implement
the new inverse model with the chosen β∗ and regain the original tracking performance.

Given y∗ : [t0, t1]→ R1 and β ∈ B, let

β∗ = argmin
{
JMy∗ (β) | y∗ ∈ Y

}
(38)

where JMy∗ represents the cost function for desired trajectory y∗ using model M .
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Figure 6: Simulations of a quadrotor performing vertical trajectory tracking using a virtual-model-based con-
trol law, starting from three distinct initial conditions (IC1: {x0, ẋ0, z0, ż0, θ0, θ̇0} = {0, 0, 4.5, 0.05, 0.25, 0.2};
IC2: {−3, 1.4,−2, 0,−0.43, 1}; IC3: {−2, 0.2, 3,−1, 0.6,−0.5}). Gain values are: {KP,x,KD,x,KP,θ,KD,θ} =
{0.25, 0.7, 1, 1}. (a) Evolution of the states and output y = z; (b) Error in trajectory-following with an exact
feedback law (darker) and with a virtual-model-based feedback law 35 (lighter).

The β parameters remain constant throughout the trajectory (until the next intervention), and do not affect
the relative degree of the system, i.e.:

[
ẋ

β̇

]
=

[
f(x;β) + g(x;β)u

0

]
⇐⇒

ξ(γ)1

ζ̇

β̇

 =

 v
q(ξ, ζ;β)

0

 (39)

We summarize the autonomous intervention procedure as follows:

1. Human learns to invert an original model of the system, completes a statistically significant number of
orbits along a (operator-chosen) desired trajectory.

2. Autonomy adjusts parameters β to optimize a cost function along the trajectory; consequently, system
dynamics are altered.

3. Human learns a new inverse model of the altered system. After learning, tracking behavior is equivalent to
that of the previous system under our standing hypothesis, but performance as defined by the cost function
improves.

4. If the environment and/or trajectory changes so that the parameters β are no longer near-optimal, repeat
Steps 1-3.

Since not all orbits will be exactly alike (e.g., due to disturbances), it is not obvious how to select the trajectory
yβ upon which to optimize. Based on the task, it may be sensible to optimize over the average trajectory:



Given observed trajectories
{
y∗j
}N
j=1

,

yβ = argmin

 1

N

N∑
j=1

||yβ − y∗j ||

 , (40)

or, it may instead be prudent to minimize the maximum cost (worst case scenario) or the expected cost over all
sampled trajectories:

yβ = argmin
{

max||yβ − y∗j ||
}
, (41)

yβ = argmin
{
E||yβ − y∗j ||

}
. (42)

4.3 Example: Quadrotor Teleoperation

Consider a system composed of a semi-autonomous quadrotor with a slung payload connected by a spring, as well
as a trained human teleoperator, tasked with building surveillance. We assume that a human operator is required
to define the desired trajectory and to apply control inputs via a remote interface. We further assume that the
human has learned an inverse model of the dynamic system with current parameters β. The task is performed
repeatedly, generating a sample of periodic orbits. With adequate information on the desired trajectory yd
and coefficients α describing the error dynamics of these orbits, the autonomous/cyber component performs an
optimization procedure to select parameters β which minimize a particular cost function. In this example, we
choose the spring stiffness as a parameter, β1 = k. The appropriate cost function may contain a payload jerk
cost and a control effort cost, i.e.

JMy∗ (k) =

∫ t0+T

t0

[
c1(

...
xP (t; k)

2
+

...
y P (t; k)

2
) + c2u(t; k)2

]
dt (43)

When k is adjusted to the optimal setting k∗, the quadrotor dynamics have changed, and the human must
adjust his/her own internal model through learning. Assuming the human can learn and implement the new
dynamic inverse model, the trajectory tracking behavior will mirror the original behavior. Furthermore, per-
formance as defined by the cost function is guaranteed to have improved. In future work, we intend to test
predictions from this theory and protocol experimentally.

Figure 7: Teleoperated tracking of periodic orbit with a quadrotor and a slung payload.



5. DISCUSSION: LIMITATIONS AND FUTURE WORK

There are several practical reasons why a human operator may not exactly learn and invert the dynamics of a
nonlinear plant, even given infinite learning time:

1. Internal/external noise during learning may prevent the exact scaling of combinations of motor primitives,
only achieving an approximate model. For approximate models, it is important to examine the robustness of
the linearization to plant uncertainties to determine the sensitivity of the system to the inexact cancellation
of nonlinearities.33

2. The dynamics of a cyber-physical system often depend on a changing, unpredictable environment; for
instance, an aerial vehicle’s operation can depend on wind disturbances. Internal disturbances affecting
operator input (e.g. neuromotor noise, muscle spasms) may also prevent exact model inversion. The effects
of these disturbances usually cannot be learned and must be compensated online. Although the coefficients
α describing the human tracking behavior are not required for the optimization problem in Section 4.2, it
may be helpful to estimate these parameters to predict sensitivity to disturbances and transient behavior.
These α can be estimated from experimental data prior to the intervention (using system identification
techniques, for example). It has been experimentally demonstrated in a wide range of tasks that in response
to disturbances, humans weigh the costs of motor variability against the consequences to task completion
(the so-called minimum intervention principle34–36), and the resulting behavior resembles the function of
an optimal feedback controller.34,37 Optimal feedback control can be incorporated into our current inverse
modeling paradigm.

3. Time delay is an inherent part of the human sensorimotor loop that is not currently accounted for in our
formulation, but may significantly degrade performance if the system dynamics and/or task require a high
bandwidth response.5 Automation may be employed to stabilize high-frequency dynamics as described in
Section 4.1.

4. Task constraints, interface constraints, and human musculoskeletal kinematic/dynamic constraints38 may
saturate the human input, prohibiting exact inversion.

5. Human performance depends heavily on mental and physiological state. Past studies39–43suggest that fac-
tors such as attentiveness, stress, and fatigue will influence the recall and/or implementation of previously-
learned internal models.

Lastly, autonomous interventions are only practical if learning takes place over a reasonably short duration.
In many cases, minor changes in system parameters may require only minor adjustments in the inverse model
which can be compensated quickly. Future work will investigate methods for estimating adaptation time, which
could be applied as an added cost in the intervention.

6. CONCLUSION

This paper presented a control-theoretic framework for human teleoperation of semi-autonomous dynamic non-
linear systems based on the concept of dynamic inverse models in neuromechanical motor control. For a class of
nonlinear systems (including Lagrangian systems), exponential tracking may be achieved by the human operator
via inversion of an internal model of the system, combined with output error feedback. While implementation
of the dynamic inverse model generally renders some system states unobservable, we show that the operator
can implement a virtual model assuming equilibrium values for the unobservable states of the system dynamics,
since the virtual and physical states exponentially converge if the forward model is both exponentially stable
and exponentially minimum phase.

The proposed inverse modeling framework also led to the formulation of a concept for autonomous interven-
tions, in which the human defines a desired trajectory and a set of parameters is adjusted to optimize desired
performance criteria along that trajectory. If, as we hypothesize, the human learns an inverse model of the



augmented system, then we guarantee that the trajectory learned before autonomous intervention will again be
tracked, hence performance as defined by the cost function will improve.

In future work, we will focus on experimental validation of the dynamic inverse modeling framework proposed
herein, as well as extensions for robustness with respect to approximate modeling, noise, disturbances, time delay,
and human variability.
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