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Abstract— We show that non–degenerate differential Nash
equilibria are generic among local Nash equilibria in games
with smooth costs and continuous strategy spaces, and demon-
strate that such equilibria are structurally stable with respect to
smooth perturbations in player costs. This implies that second–
order conditions suffice to characterize local Nash equilibria
in an open–dense set of games where player costs are smooth
functions. Furthermore, equilibria that are computable using
decoupled myopic approximate best–response persist under
perturbations to the cost functions of individual players.

I. INTRODUCTION

Significant interest has developed around multi–agent
distributed control in biological systems [1], the smart
grid [2], and cyber–physical systems [3]. In these applications,
competition develops between self–interested agents when
resources are scarce. Game theory is an established technique
for modeling this interaction, and it has emerged as an
engineering tool for analysis and synthesis of systems
comprised of dynamically–coupled decision–making agents
possessing competing interests [4]–[6]. We focus on games
with a finite number of agents where the strategy space is
a finite–dimensional differentiable manifold. We emphasize
that this setting is general, encompassing in particular mixed
strategies in finite games [7].

In applications, player behavior is subject to disturbances
from the environment and perturbations due to imperfect
modeling or sensing. This implies that the player costs cannot
be known with arbitrary precision, and hence that techniques
developed to analyze or synthesize game behavior must be
robust to such imperfections. In this setting, we focus on
generic and structurally stable game phenomena that manifest
in all or almost–all games and persist under perturbations or
disturbances.

Previous work on continuous games led to global char-
acterization and computation of Nash equilibria and Pareto
optima [8]–[15] by imposing convexity on player costs or
strategy spaces. However, it is common in applications for
strategy spaces to be non–convex, for example a constrained
set or a differentiable manifold [16], [17]. Further, bounding
the rationality of agents can result in myopic behavior [18],
meaning that agents seek strategies that that are optimal
locally but not necessarily globally.
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Motivated by systems comprised of myopic agents acting
in non–convex strategy spaces, in previous work [19] we
developed a second–order characterization of local Nash equi-
libria that is amenable to computation. Such non–degenerate
differential Nash equilibria are always strict local Nash
equilibria. In this paper we use techniques from differential
topology [20], [21] to show the two equilibrium concepts are
generically equivalent.

Examples demonstrate that global Nash equilibria may fail
to persist under arbitrarily small changes in player costs [14].
A natural question arises: do local Nash equilibria persist
under perturbations? Applying structural stability analysis
from dynamical systems theory [22], [23], we answer this
question affirmatively for non–degenerate differential Nash
equilibria subject to smooth perturbations in player costs.

Genericity and structural stability of non–degenerate dif-
ferential Nash equilibria implies that local Nash equilibria in
an open–dense set of continuous games are non–degenerate
differential Nash equilibria, and furthermore these equilibria
persist under perturbations to player costs. As a consequence,
small modeling errors or environmental disturbances generally
do not result in games with drastically different equilibrium
behavior. For instance, equilibria that are computable using
decoupled myopic approximate best–response persist under
small perturbations.

The paper is organized as follows. In Sections II and III,
we discuss the necessary mathematical preliminaries and
game formulation, respectively. We show that non–degenerate
differential Nash equilibria are generic among local Nash
equilibria in continuous games in Section IV. Subsequently,
in Section V we show that non–degenerate differential Nash
equilibria are structurally stable. Finally, we summarize
the contributions of the paper and discuss future work in
Section VI.

II. MATHEMATICAL PRELIMINARIES

We rely on tools from differential geometry [23] to provide
an intrinsic characterization of equilibrium play in continuous
games, and techniques from differential topology [21] to
establish the genericity and structural stability results.

A. Differential Geometry

A topological m–dimensional manifold M is a topological
space which is Hausdorff, second-countable, and is locally
Euclidean of dimension m, i.e. every point p ∈ M has a
neighborhood U ⊂ M containing p that is homeomorphic
to Rm via a map ϕ : U → Rm. The pair (U,ϕ) is
called a coordinate chart and the component functions



(u1, . . . , um) = ϕ are referred to as local coordinates. We say
two charts (U,ϕ) and (V, ψ) are smoothly compatible if either
U∩V = ∅ or the transition map ψ◦ϕ−1 is a smooth bijective
map with a smooth inverse, i.e. it is a diffeomorphism. A
family of smoothly compatible charts whose domain covers
M is called a smooth atlas for M . A smooth m–dimensional
manifold M is a topological manifold with a smooth atlas. A
smooth manifold without boundary is a topological manifold
with empty boundary. If S is an n–dimensional submanifold
of M , then we say S has co–dimension m− n in M .

A function f : U → Rn defined on an open set U ⊂ Rm

is said to be Ck if all the partial derivatives of f of order
less than or equal to k exist and are continuous functions on
U . A function that is of class Ck for all k ≥ 0 is said to be
smooth. A function f : M → N is Ck if for every p ∈ M
there exist smooth charts (U,ϕ) on M and (V, ψ) on N with
p ∈ U and f(U) ⊂ V such that ψ ◦ f ◦ ϕ−1 is Ck on ϕ(U).
In this case we will write f ∈ Ck(M,N).

Each p ∈ M has an associated tangent space TpM ,
and the disjoint union of the tangent spaces is the tangent
bundle TM =

∐
p∈M TpM . The co-tangent space to M

at p ∈ M , denoted T ∗pM , is the set of all real-valued
linear functionals on the tangent space TpM , and the disjoint
union of the co–tangent spaces is the co–tangent bundle
T ∗M =

∐
p∈M T ∗pM . Both TM and T ∗M are naturally

smooth manifolds. At each p ∈ M there is an associated
linear map (f∗)p : TpM → Tf(p)N called the pushforward. A
1–form on M is a continuous map ω :M → T ∗M satisfying
π ◦ ω = IdM where π : T ∗M →M is the natural projection.
Each f ∈ Ck(M,R) determines a 1–form df : M → T ∗M
that is Ck−1.

Consider topological manifolds M1 and M2 of dimension
m1 and m2 respectively. The product space M1 ×M2 is
naturally a smooth manifold of dimension m1 + m2. In
particular, there is an atlas on M1×M2 composed of product
charts (U1 × U2, ϕ1 × ϕ2) where (Ui, ϕi) is a chart on Mi

for i ∈ {1, 2}. There is a canonical isomorphism at each
point such that the cotangent bundle of the product manifold
splits

T ∗(p,q)(M1 ×M2) ∼= T ∗pM1 ⊕ T ∗qM2. (1)

In addition, there are natural bundle maps πM1
, πM2

:
T ∗(M1 ×M2) → T ∗(M1 ×M2) annihilating the last m2

components and the first m1 components respectively.
Consider a function f ∈ C∞(M1 ×M2,R) and a product

chart (U,ϕ) on M1×M2. Let the local coordinates be denoted
by (u11, . . . , u

m1
1 , u12, . . . , u

m2
2 ). Then we define

Dϕf =
[
Dϕ

1 f1 Dϕ
2 f2
]

(2)

with

Dϕ
1 f =

[
∂(f ◦ ϕ−1)

∂u11
· · · ∂(f ◦ ϕ

−1)

∂um1
1

]
(3)

and we define Dϕ
2 f similarly. The superscript notion indicates

the dependence on chart and we suppress it when its clear
from context. A critical point (p, q) of f is such that
D1f(p, q) and D2f(p, q) are zero covectors in the appropriate

co–tangent spaces. We use the notation D2f to denote the
Hessian of f :M → R and we partition it as

D2f =

ï
D2

11f D2
12f

D2
21f D2

22f

ò
(4)

where D2
12f =

[
∂2(f◦ϕ−1)

∂ui
1∂u

j
2

]
i,j

and similarly for the other

blocks. The Hessian is well–defined (see [21] for a more
detailed exposition).

B. Differential Topology

Consider smooth manifolds M and N of dimension m
and n respectively. An k–jet from M to N is an equivalence
class [x, f, U ]k of triples (x, f, U) where U ⊂M is an open
set, x ∈ U , and f : U → N is a Ck map. The equivalence
relation satisfies [x, f, U ]k = [y, g, V ]k if x = y and in some
(and hence any) pair of charts adapted to f at x, f and g
have the same derivatives up to order k. We use the notation
[x, f, U ]k = jkf(x) to denote the k–jet of f at x. The set of
all k–jets from M to N is denoted by Jk(M,N). The jet
bundle Jk(M,N) is a smooth manifold (see [21] Chapter
2 for the construction). For each Ck map f : M → N we
define a map jkf : M → Jk(M,N) by x 7→ jkf(x) and
refer to it as the k–jet extension.

Definition 1: Let M , N be smooth manifolds and f :
M → N be a smooth mapping. Let Z be a smooth
submanifold of N and p a point in M . Then f intersects Z
transversally at p (denoted f t Z at p) if either f(p) /∈ Z
or f(p) ∈ Z and Tf(p)N = Tf(p)Z + (f∗)p(TpM).

For 1 ≤ k < s ≤ ∞ consider the jet map

jk : Cs(M,N)→ Cs−k(M,Jk(M,N)) (5)

and let Z ⊂ Jk(M,N) be a submanifold. Define⋂
| s(M,N ; jk, Z) = {h ∈ Cs(M,N)| jkh t Z}. (6)

A subset of a topological space X is residual if it contains
the intersection of countably many open–dense sets. We say a
property is generic if the set of all points of X which possess
this property is residual [24].

The following results will be used to prove genericity of
non–degenerate differential Nash equilibria.

Theorem 2.8 in [21] (Jet Transversality) Let M , N be
C∞ manifolds without boundary, and let Z ⊂ Jk(M,N) be
a C∞ submanifold. Suppose that 1 ≤ k < s ≤ ∞. Then,⋂
| s(M,N ; jk, Z) is residual and thus dense in Cs(M,N)

endowed with the strong topology, and open if Z is closed.
Proposition 1: (See [25], Chapter II.4, Proposition 4.2)

Let M,N be smooth manifolds and Z ⊂ N a submanifold.
Suppose that dimM < codimZ. Let f :M → N be smooth
and suppose that f t Z. Then, f(M) ∩ Z = ∅.

The definition of residual set, and hence genericity, implies
a notion of almost all which will be necessary for showing
that local Nash equilibria are generically non-degenerate
differential Nash equilibria. The latter have nice properties;
they are isolated, structurally stable as we will see in
Section V, and hence computable.



The Jet Transversality Theorem and Proposition 1 can be
used to show a subset of a jet bundle having a particular set of
desired properties is generic. Indeed, consider the jet bundle
Jk(M,N) and recall that it is a manifold that contains jets
jkf :M → Jk(M,N) as its elements where f ∈ Ck(M,N).
Let Z ⊂ Jk(M,N) be the submanifold of the jet bundle that
does not possess the desired properties. If dimM < codim Z,
then for a generic function f ∈ Ck(M,N) the image of the
k–jet extension is disjoint from Z implying that there is an
open–dense set of functions having the desired properties.
We will use this argument in Section IV to show that non–
degenerate differential Nash equilibria are generic among
local Nash equilibria.

III. GAME FORMULATION

The theory of games we consider concerns situations in
which several rational agents, generally having different
interests and objectives, interact within their environment.
We refer to the rational agents as players. Competition arises
due to the fact that the players have opposing interests. We
note that the game formulation presented in this section and
the results that follow easily extend to games with any finite
number of players. We choose to present the results for two
player games in an effort to be clear and concise.

Let us begin by considering a game in which we have
two selfish players, Urbain and Victor, with competing
interests. The strategy spaces of Urbain and Victor are
smooth manifolds without boundary M1 and M2 respectively.
The dimension of Mi is mi for each i ∈ {1, 2}, and we
let m = m1 + m2. Urbain and Victor are interested in
minimizing a cost function representing their interests by
choosing elements from their (respective) strategy spaces. We
define Urbain’s cost function to be f1 :M1 ×M2 → R and
Victor’s cost function to be f2 : M1 ×M2 → R such that
f1, f2 ∈ C∞(M1 ×M2,R).

Remark 1: We note that it is only necessary to consider
functions f1, f2 ∈ C2(M1 ×M2,R). We consider C∞ cost
functions only to simplify the notation in the proofs in the
sections that follow.

Definition 2: A strategy (p, q) ∈M1×M2 is a local Nash
equilibrium if there exist open sets W1 ⊂ M1, W2 ⊂ M2

such that p ∈W1, q ∈W2,

f1(p, q) ≤ f1(p′, q) ∀ p′ ∈W1\{p}, (7)

and
f2(p, q) ≤ f2(p, q′) ∀ q′ ∈W2\{q}. (8)

If W1 = M1 and W2 = M2, then (p, q) is a global Nash
equilibrium. Further, if the above inequalities are strict, then
we say (p, q) is a strict local Nash equilibrium.

Definition 3: A differential game form is a differential
1–form ω :M1 ×M2 → T ∗(M1 ×M2) defined by

ω = πM1(df1) + πM2(df2) (9)

and, in coordinates, is defined by

ω =

m1∑
i=1

∂(f1 ◦ ϕ−1)
∂ui1

dui1 +

m2∑
j=1

∂(f2 ◦ ϕ−1)
∂uj2

duj2 (10)

(ϕ1 × ϕ2)(p, q)

f̂2(ϕ1(p), ·) f̂1(·, ϕ2(q))

Rm

Rm1

Rm2

ϕ1 × ϕ2

M1 ×M2

Rf1, f2

U1 × U2

(p, q)

Fig. 1. The map f̂i : Rm → R is the coordinate representation of fi and
it is defined by f̂i = fi ◦ (ϕ1 ×ϕ2)−1 where ϕ1 ×ϕ2 : U1 ×U2 → Rm

is the coordinate map. Player i, whose cost function is fi, can only adjust
his payoff by changing is strategy in directions corresponding to Rmi .
f̂1(·, ϕ2(q)) and f̂2(ϕ1(p), ·) are slices of the coordinate representation of
f1 and f2, respectively.

where (U1 × U2, ϕ) is a product chart on M1 × M2

with the form ϕ = ϕ1 × ϕ2 and with local coordinates
(u11, . . . , u

m1
1 , u12, . . . , u

m2
2 ).

The above definition of a differential game form captures
a differential view of the strategic interaction between the
players. Indeed, ω indicates the direction in which Urbain and
Victor can change their strategies to decrease their individual
cost functions most rapidly. Note that Urbain’s cost function
is dependent on Urbain’s strategy choice as well as Victor’s,
but Urbain can only affect his payoff by adjusting his strategy
(and similarly for Victor).

Definition 4: A strategy (p, q) ∈M1 ×M2 is a differen-
tial Nash equilibrium if ω(p, q) = 0 and D2

iifi(p, q) > 0 for
i ∈ {1, 2}.

The above definition was introduced in [19] and is
motivated by results in nonlinear programming that use first–
and second–order conditions to characterize when a critical
point is a local optimum [26], [27]. The conditions of the
definition of differential Nash equilibrium guarantee the cost
functions are locally convex as is illustrated in Figure 1.

Consider the matrix Dω(p, q) given by

Dω(p, q) =

ï
D2

11f1(p, q) D2
21f1(p, q)

D2
12f2(p, q) D2

22f2(p, q)

ò
. (11)

By Theorem 2 of [19], det(Dω(p, q)) 6= 0 is a sufficient
condition for a differential Nash equilibrium (p, q) to be
isolated. We say a differential Nash equilibria is degenerate
if det(Dω(p, q)) = 0 and non–degenerate otherwise. Both
Definition 4 and the non–degeneracy of a differential Nash
equilibrium (p, q) are coordinate–invariant.

Remark 2: The condition det(Dω(p, q)) 6= 0 is sufficient
but not necessary for (p, q) to be an isolated differential Nash
equilibrium. There can be isolated differential Nash equilibria
such that det(Dω(p, q)) = 0; we will see in the subsequent
section that such equilibria are non–generic.

We now introduce an example we will return to in the
sections that follow. The example illustrates some of the
degeneracies that occur in non–generic games.

Example 1: Let Urbain’s strategy space be M1 = R and
his cost function f1(x, y) = x2

2 − xy. Similarly, let Victor’s



strategy space be M2 = R and his cost function f2(x, y) =
y2

2 − xy. Fix y = q, and calculate

∂f1
∂x

= x− q (12)

Then, Urbain’s optimal response to Victor playing y = q is
x = q. Similarly, Victor’s optimal response to Urbain playing
x = p is y = p. For all x ∈ R\{q}

−q
2

2
<
x2

2
− xq (13)

so that f1(q, q) < f1(x, q) for all x ∈ R\{q}. Similarly, for
all y ∈ R\{p}

−p
2

2
<
y2

2
− yp (14)

so that f2(p, p) < f2(p, y) for all y ∈ R\{p}. Hence, all
the points on the line x = y in M1 ×M2 = R2 are strict
local Nash equilibria (in fact, they are strict global Nash
equilibria).

In the above example, any slice of Urbain’s cost function is
convex in his choice variable. Similarly, Victor’s cost function
at a fixed value for Urbain is convex. Yet, there is a continuum
of local Nash equilibria. As we will show when we return
to this example in Section IV and V, this example is neither
generic or structurally stable.

IV. GENERICITY

In this section, we show local Nash equilibria are gener-
ically non–degenerate differential Nash equilibria; there is
an open–dense set of games whose local Nash equilibria are
non–degenerate differential Nash equilibria. Non–degenerate
differential Nash equilibria can be amenable to computa-
tion since they satisfy first– and second–order conditions
reminiscent of those from nonlinear programming [19]. The
following result is analogous to the fact in dynamical systems
theory that non–degenerate singularities are generic [24].

Theorem 1 (Genericity): Non–degenerate differential
Nash equilibria are generic among local Nash equilibria: for
any smooth boundaryless manifolds M1,M2 there exists
an open–dense subset G ⊂ C∞(M1 ×M2,R2) such that
for all (f1, f2) ∈ G, if (p, q) ∈ M1 ×M2 is a local Nash
equilibrium for (f1, f2), then (p, q) is a non–degenerate
differential Nash equilibrium for (f1, f2).

Proof: Consider a two player game where player i’s cost
function is fi ∈ C∞(M1 ×M2,R). Let J2(M1 ×M2,R2)
denote the second order jet bundle containing 2–jets j2f such
that f = (f1, f2) :M2 ×M2 → R2. Let (U,ϕ) be a product
chart on M1 ×M2 that contains (p, q). The dimensions of
M1 and M2 are m1 and m2 respectively and we define
m = m1+m2. We define S(m) to be the symmetric m×m
matrices as follows

S(m) = {A ∈ Rm×m| A = AT }. (15)

For (A1, A2) ∈ S(m)2, we can partition each Ai as follows:

Ai =

ï
A11

i A12
i

A21
i A22

i

ò
(16)

where Akj
i ∈ Rmk×mj for j, k ∈ {1, 2}. The non–degeneracy

of a differential Nash equilibrium is determined by the
determinant of Dω. Recall that Dω is constructed from
components of the symmetric matrices D2f1 and D2f2, i.e.
the Hessians of f1 and f2. Hence, we partition the space
S(m)2 into two subsets S1(m) and S2(m) defined as follows:

S1(m) =

ßï
A11

1 A21
1

A12
2 A22

2

ò
∈ Rm×m

∣∣∣∣ A1, A2 ∈ S(m)

™
(17)

and

S2(m) =

ßï
A11

2 A21
2

A12
1 A22

1

ò
∈ Rm×m

∣∣∣∣ A1, A2 ∈ S(m)

™
(18)

where S1(m) is the space corresponding to Dω and S2(m) is
the space in which matrices constructed from the other pieces
of the player Hessians that were excluded in the construction
of Dω. Then J2(M1 ×M2,R2) is locally diffeomorphic to

Rm×R2×Rm1+m2×Rm1+m2×R
m(m+1)

2 ×R
m(m+1)

2 (19)

and the 2–jet extension of f = (f1, f2) at a point (p, q) ∈
M1 ×M2, namely j2f(p, q), in coordinates is given by

(ϕ(p, q), ((f1 ◦ ϕ−1)(ϕ(p, q)), (f2 ◦ ϕ−1)(ϕ(p, q))),
Df1(p, q), Df2(p, q), D

2f1(p, q), D
2f2(p, q)).

(20)

Define

Z(m) = {A ∈ S1(m)| det(A) = 0}. (21)

Z(m) is an algebraic set and hence, admits a canonical
Whitney stratification having finitely many algebraic strata
(see Chapter 1, Theorem 2.7 of [28]), i.e. it is the finite
union of submanifolds. By its construction, Z(m) has no
interior points. Hence, it has co–dimension at least 1. Now,
we consider the subset of the jet bundle J2(M1 ×M2,R2)
defined by

G1 =Rm × R2 × {0Rm1} × Rm2 × Rm1 × {0Rm2 }
× Z(m)× S2(m) (22)

where 0Rmi is the zero vector in Rmi . Note that {0Rmi } has
co–dimension mi. Hence, G1 is the union of submanifolds of
co–dimension at least m1+m2+1. By the Jet Transversality
Theorem (see Section II-B or Theorem 2.8 in [21]) and
Proposition 1, since m1 +m2 + 1 > m1 +m2, for generic
f = (f1, f2), the image of the 2–jet extension j2f is disjoint
from G1. Hence, there is an open–dense set of functions
f = (f1, f2) such that for each (p, q) ∈M1×M2, whenever
D1f1(p, q) = 0 and D2f2(p, q) = 0 (i.e. ω(p, q) = 0),
the derivative of the differential game form has non–zero
determinant (i.e. detDω(p, q) 6= 0). Note that the conditions
ω(p, q) = 0 and det(Dω(p, q)) 6= 0 are coordinate–invariant.
Hence, this result is independent of the choice of chart.

Similarly, consider another subset of J2(M1 ×M2,R2)
defined by

G2 =Rm × R2 × {0Rm1} × Rm2 × Rm1 × {0Rm2 }
× Z(m1)× Rm1×m2 × S(m2)

× S(m1)× Rm1×m2 × Z(m2) (23)



where Z(mi) is the subset of symmetric matrices S(mi)
such that for A ∈ Z(mi), det(A) = 0. Since Z(mi) are
algebraic and have no interior points, we may again use the
Whitney stratification theorem to get that each Z(mi) is the
union of submanifolds of co–dimension at least 1. Hence,
G2 is the union of submanifolds and has co–dimension at
least m1 + m2 + 2. Application of the Jet Transversality
Theorem and Proposition 1 yields an open–dense set of
functions f = (f1, f2) such that when ω(p, q) = 0 we have
det(D2

iifi(p, q)) 6= 0 for each i ∈ {1, 2}.
Since the intersection of two open–dense sets is open–

dense, we have an open–dense set of functions f =
(f1, f2) such that for each (p, q) ∈ M1 × M2 whenever
ω(p, q) = 0, det(D2

iifi(p, q)) 6= 0 for each i ∈ {1, 2} and
det(Dω(p, q)) 6= 0 independent of the choice of chart.

Thus, there exists an open–dense set G ⊂ C∞(M1 ×
M2,R2) such that for all f = (f1, f1) ∈ G, if (p, q) ∈
M1 ×M2 is a local Nash equilibrium, then (p, q) is a non–
degenerate differential Nash equilibrium. Indeed, suppose
(f1, f2) ∈ G and (p, q) ∈ M1 × M2 is a local Nash
equilibrium. Then, by Proposition 2 of [19], (p, q) necessarily
satisfies ω(p, q) = 0 and D2

iifi(p, q) ≥ 0 for each i ∈ {1, 2}.
However, since (f1, f2) ∈ G, det(D2

iifi(p, q)) 6= 0 so that
D2

iifi(p, q) > 0. Hence, (p, q) is a differential Nash equilib-
rium. Further, (f1, f2) ∈ G implies that det(Dω(p, q)) 6= 0;
hence, (p, q) is non–degenerate.

Given f1, f2 ∈ C∞(M1 ×M2,R), we define the set of
local Nash equilibria

LN(f1, f2) ={(p, q) ∈M1 ×M2|W1 ⊂M1,W2 ⊂M2

f1(p, q) ≤ f1(p′, q) ∀p′ ∈W1\{p}
f2(p, q) ≤ f2(p, q′) ∀q′ ∈W2\{q}} (24)

and the set of non–degenerate differential Nash equilibria

DN(f1, f2) = {(p, q) ∈M1 ×M2|ω(p, q) = 0,

D2
iifi(p, q) > 0 for each i ∈ {1, 2},det(Dω(p, q)) 6= 0}.

(25)

In [19], we showed that DN(f1, f2) ⊂ LN(f1, f2) for
all f1, f2 ∈ C∞(M1 × M2,R). Theorem 1 shows that
LN(f1, f2) = DN(f1, f2) for all (f1, f2) in an open–dense
subset G ⊂ C∞(M1 ×M2,R). In other words, the set of
local Nash equilibria is generically equivalent to the set of
non–degenerate differential Nash equilibria.

Example 1 (continued): Continuing with Example 1, we
can see that there is a continuum of differential Nash equilibria
at which det(Dω(p, q)) = 0. Indeed, all points on the line
x = y are differential Nash equilibria and

Dω(p, q) =

ï
1 −1
−1 1

ò
. (26)

The presence of such degenerate differential Nash equilibria
indicate that the game in this example is not generic.

Another interpretation of Theorem 1 is that degenerate
local Nash equilibria can become non–degenerate differential
Nash equilibria under an arbitrarily small perturbation to the
game. We will show in the following section that the converse

is not true: non–degenerate differential Nash equilibria persist
under small smooth perturbations to player costs.

V. STRUCTURAL STABILITY

Let f1, f2 :M1×M2 → R be smooth player cost functions,
ω : M1 ×M2 → T ∗ (M1 ×M2) the associated differential
game form (10), and suppose (p, q) ∈ M1 ×M2 is a non–
degenerate differential Nash equilibrium, i.e. ω(p, q) = 0
and Dω(p, q) is invertible. We show that for all f̃1, f̃2 ∈
C∞(M1 ×M2,R) sufficiently close to f1, f2 there exists a
unique non–degenerate differential Nash equilibrium (p̃, q̃) ∈
M1 ×M2 for (f̃1, f̃2) near (p, q).

Theorem 2 (Structural Stability): Non–degenerate differ-
ential Nash equilibria are structurally stable: given f1, f2 ∈
C∞(M1 ×M2,R), ζ1, ζ2 ∈ C∞(M1 ×M2,R), and a non–
degenerate differential Nash equilibrium (p, q) ∈M1 ×M2

for (f1, f2), there exist neighborhoods U ⊂ R of 0 and
W ⊂ M1 × M2 of (p, q) such that for all s ∈ U there
exists a unique non–degenerate differential Nash equilibrium
(p̃(s), q̃(s)) ∈W for (f1 + sζ1, f2 + sζ2).

Proof: Define f̃j :M1 ×M2 × R→ R by

f̃j(x, y, s) = fj(x, y) + sζj(x, y)

and ω̃ :M1 ×M2 × R→ T ∗ (M1 ×M2) by

ω̃(x, y, s) = (D1f̃1(x, y, s), D2f̃2(x, y, s))

for all s ∈ R and (x, y) ∈ M1 × M2. Observe that
D(1,2)ω̃(p, q, 0) is invertible since (p, q) is a non–degenerate
differential Nash equilibrium for (f1, f2). Therefore by the
Implicit Function Theorem (see Theorem 7.8 in [23]), there
exist neighborhoods V ⊂ R of 0 and W ⊂ M1 ×M2 of
(p, q) and a smooth function σ ∈ C∞(V,W ) such that

∀s ∈ V, (x, y) ∈W : ω̃(x, y, s) = 0 ⇐⇒ (x, y) = σ(s).

Furthermore, since ω̃ is continuously differentiable, there
exists a neighborhood U ⊂ V of 0 such that Dω̃(σ(s), s)
is invertible for all s ∈ U . We conclude for all s ∈ U
that σ(s) ∈ M1 ×M2 is the unique Nash equilibrium for
((f1 + sζ1) |W , (f2 + sζ2) |W ), and furthermore that σ(s) is
a non–degenerate differential Nash equilibrium.

We remark that the preceding analysis extends directly to
any finitely–parameterized perturbation.

Example 1 (continued): Again we return to Example 1
and recall that it is of a game admitting a continuum of
differential Nash equilibria. We can show that an arbitrarily
small perturbation will make all the equilibria disappear. Let
ε > 0 be arbitrarily small and consider Urbain’s perturbed
cost function

f̃1(x, y) =
x2

2
− xy + εx. (27)

Let Victor’s cost function remain the same. Then, all Nash
equilibria disappear. Indeed, a necessary condition that a Nash
equilibrium (x, y) ∈ M1 ×M2 must satisfy is ω(x, y) = 0.
Then, D1f̃1 = x − y + ε = 0 and D2f2(x, y) = y − x = 0
must both hold. This can only happen for ε = 0. Hence, any
perturbation of the form εx with ε > 0 will remove all the



Nash equilibria. As we noted in the previous section, this
unperturbed game is not generic since det(Dω(p, q)) = 0 for
every (p, q). We see here that degeneracy leads to structural
instability.

Example 2 (Convergence of Gradient Play): We adopt a
dynamical systems perspective of a two–player game over
the finite–dimensional strategy space U1 × U2 with player
costs f1, f2 : U1 × U2 → R. Specifically, we consider the
continuous–time dynamical system generated by the negative
of the player’s individual gradients:ï

u̇1
u̇2

ò
=

ï
−D1f1(u1, u2)
−D2f2(u1, u2)

ò
= −ω(u). (28)

If (µ1, µ2) ∈ U1 × U2 is a differential Nash equilibrium,
then ω(µ1, µ2) = 0. These dynamics are uncoupled in
the sense the dynamics for each player u̇i do not depend
on the cost function of the other player. It is known that
such uncoupled dynamics need not converge to local Nash
equilibria [29]. However, Proposition 4 in [19] shows that the
subset of non–degenerate differential Nash equilibria where
all eigenvalues of Dω have strictly positive real parts are
exponentially stable stationary points of (28). Theorem 2
shows that convergence of uncoupled gradient play to such
stable non–degenerate differential Nash equilibria persists
under small smooth perturbations to player costs.

VI. CONCLUSION

Given a second–order characterization of local Nash
equilibria, namely the differential Nash equilibrium concept,
we used techniques from differential topology to show
that non–degenerate differential Nash equilibria are generic
among local Nash equilibria. Applying structural stability
analysis from dynamical systems theory, we showed that
non–degenerate differential Nash equilibria persist under
smooth perturbations in player costs. As a consequence of
the genericity and structural stability results, small modeling
errors or environmental disturbances generally do not result
in games with drastically different equilibrium behavior.

We believe that this work is essential for decentralized
control in engineered systems as well as on–line identification
techniques for human agents. Decentralized control involves
the design of control strategies for cooperative or non–
cooperative agents. Genericity and structural stability of
the equilibrium concept allows for modeling errors to have
minimal impact on synthesis of control strategies. Both from
an analysis and synthesis point of view, it is particularly
useful for a designer to be able to accurately estimate agent
cost functions. Again, the notions of genericity and structural
stability of the equilibrium concept result in minimal effects of
uncertainties, whether they are computational or measurement
errors, on the structure of the game, and thereby the estimation
of agents’ cost functions.
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