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Abstract— When limbs are decoupled, we find that trajectory
outcomes in mechanical systems subject to unilateral con-
straints vary differentiably with respect to initial conditions,
even as the contact mode sequence varies.

I. INTRODUCTION

Locomotion with legs entails intermittent contact with
terrain; manipulation with digits entails intermittent con-
tact with objects. Since legged locomotion is self–
manipulation [14, 15], mathematical models for intermit-
tent contact between limbs and environments apply equally
well to both classes of behaviors. Parsimonious models for
the dynamics of intermittent contact are piecewise-defined,
with transitions between contact modes summarized by
abrupt changes in system velocities. Such models are hybrid
dynamical systems whose state evolution is governed by
continuous-time flow (generated by a vector field) punctu-
ated by discrete-time reset (specified by a map). Trajectory
outcomes are the resulting state of the system after flowing
and undergoing necessary resets for a specified period of
time. Trajectory outcomes in hybrid systems generally vary
discontinuously as the discrete mode sequence varies as
in Fig. 1 (left). The point of this paper is to provide
sufficient conditions that ensure trajectories in mechanical
systems subject to unilateral constraints vary (continuously
and) differentiably through intermittent contact, even as the
contact mode sequence varies as in Fig. 1 (right). Since
scalable algorithms for optimization [27] and learning [31]
rely on differentiability, conditions ensuring existence of
derivatives are of practical importance in robotic locomotion
and manipulation.

A. Organization
We begin in Sec. II by specifying the class of dynamical

systems under consideration, namely, mechanical systems
subject to unilateral constraints. Sec. III imposes conditions
on the system dynamics and trajectories that enable us
in Sec. IV to report that trajectories vary differentiably
with respect to initial conditions, even as the contact mode
sequence varies.

B. Relation to prior work
The technical content in Sec. II and Sec. III appeared pre-

viously in the literature and is (more–or–less) well–known;
we collate the results here to contextualize and streamline
our contributions in Sec. IV.
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Fig. 1. Trajectory outcomes after flowing for a uniform time from the initial
conditions away from impacts in mechanical systems subject to unilateral
constraints. (left) In general, trajectory outcomes depend discontinuously
on initial conditions. In the pictured model for rigid–leg trotting (adapted
from [28]), discontinuities arise when two legs touch down: if the legs
impact simultaneously (corresponding to rotation θ(0) = 0), then the post–
impact rotational velocity is zero; if the rear leg impacts before the front
leg (θ(0) > 0) or vice–versa (θ(0) < 0), then the post–impact rotational
velocities are bounded away from zero. (right) When limbs are decoupled
(e.g. through viscoelasticity), trajectory outcomes depend continuously on
initial conditions. In the pictured model for soft–leg trotting (adapted
from [6]), trajectory outcomes (solid lines) are continuous and differentiable.
These figures were generated using simulations of the depicted models.

II. MECHANICAL SYSTEMS SUBJECT TO UNILATERAL
CONSTRAINTS

In this paper, we study the dynamics of a mechanical
system with configuration coordinates q ∈ Q = Rd subject
to unilateral constraints a(q) ≥ 0 specified by a differentiable
function a : Q → Rn where d, n ∈ N are finite. We
are primarily interested in systems with n > 1 constraints,
whence we regard the inequality a(q) ≥ 0 as being enforced
componentwise. Given any J ⊂ {1, . . . , n}, and letting
|J | denote the number of elements in the set J , we let
aJ : Q → R|J| denote the function obtained by selecting
the component functions of a indexed by J , and we regard
the equality aJ(q) = 0 as being enforced componentwise. It
is well–known (see e.g. [2, Sec. 3] or [15, Sec. 2.4, 2.5])
that with J = {j ∈ {1, . . . , n} : aj(q) = 0} the system’s
dynamics take the form

M(q)q̈ = f(q, q̇) + c(q, q̇)q̇ +DaJ(q)>λJ(q, q̇), (1a)
q̇+ = ∆J(q, q̇−), (1b)



where M : Q → Rd×d specifies the mass matrix for the
mechanical system in the q coordinates, f : TQ → Rd
is termed the effort map [2] and specifies1 the internal
and applied forces, c : TQ → Rd×d denotes the Coriolis
matrix determined2 by M , DaJ : Q → R|J|×d denotes
the (Jacobian) derivative of the constraint function aJ with
respect to the coordinates, λJ : TQ → R|J| denotes the
reaction forces generated in contact mode J to enforce the
constraint aJ(q) ≥ 0,

λJ(q) =
(
DaJ(q)M(q)−1DaJ(q)>

)−1
, (2)

∆J : TQ→ Rd×d specifies the collision restitution law that
instantaneously resets velocities to ensure compatibility with
the constraint aJ(q) = 0,

q̇+ = ∆J(q, q̇−) = Id − (1 + γ(q, q̇−))PJ(q)q̇−, (3)

where Id is the (d × d) identity matrix, γ : TQ → [0,∞)
specifies the coefficient of restitution, PJ : Q→ Rd×d is the
projection onto the constraint surface,

PJ = M−1Da>J
(
DaJM

−1Da>J
)−1

DaJ , (4)

and q̇+ (resp. q̇−) denotes the right– (resp. left–)handed
limits of the velocity vector with respect to time.

Definition 1 (contact modes): The constraint functions
{aj}nj=1 partition the set of admissible configurations A =

{q ∈ Q : a(q) ≥ 0} into a finite collection3 {AJ}J∈2n of
contact modes:

∀J ∈ 2n : AJ = {q ∈ Q |aJ(q) = 0,

∀i 6∈ J : ai(q) > 0} .
(5)

For each J ∈ 2n: we let TA = {(q, q̇) ∈ TQ : q ∈ A} and
TAJ = {(q, q̇) ∈ TQ : q ∈ AJ}; if q ∈ AJ then we say
constraints in J are active at q.

Remark 1: In Def. 1 (contact modes), J = {1, . . . , n}
indexes the maximally constrained contact mode and J = ∅
indexes the unconstrained contact mode.

III. ASSUMPTIONS

The point of this paper is to provide conditions that ensure
trajectories of (1) vary differentiably as the contact mode
sequence varies. Without imposing additional conditions,
the seemingly benign equations in (1) admit a range of
dynamical phenomena that preclude differentiability. This
section contains the conditions that will enable us to obtain
differentiable trajectory outcomes in Sec. IV.

1We let TQ = Rd × Rd denote the tangent bundle of the configuration
space Q; an element (q, q̇) ∈ TQ can be regarded as a pair containing a
vector of generalized configurations q ∈ Rd and velocities q̇ ∈ Rd; we
write q̇ ∈ TqQ.

2For each `,m ∈ {1, . . . , d} the (`,m) entry c`m is determined from
the entries of M by the formula
c`m = − 1

2

∑d
k=1 (DkM`m +DmM`k −D`Mkm) [14, Eqn. 30].

3We let 2n = {J ⊂ {1, . . . , n}} denote the power set (i.e. the set
containing all subsets) of {1, . . . , n}.

A. Existence and uniqueness of trajectories

In the present paper, we will assume that appropriate
conditions have been imposed to ensure trajectories of (1)
exist on a region of interest in time and state.

Assumption 1 (existence and uniqueness): There exists a
flow for (1), that is, a function φ : F → TA where
F ⊂ [0,∞) × TA is an open subset (in the subspace
topology) containing {0} × TA and for each (t, (q, q̇)) ∈ F

the restriction φ|[0,t]×{(q,q̇)} : [0, t]→ TQ is the unique left–
continuous trajectory for (1).

Remark 2: The problem of ensuring trajectories of (1)
exist and are unique has been studied extensively; we refer
the reader to [2, Thm. 10] for a specific result, [3, Thm. 5.3]
for a setup using constrained complementarity problems,
and [15] for a general discussion of this problem.

B. Differentiable vector field and reset map

Since we are concerned with differentiability properties of
the flow, we assume the elements in (1) are differentiable.

Assumption 2 (differentiable vector field and reset map):
The vector field (1a) and reset map (1b) are continuously
differentiable.

Remark 3: If we restricted our attention to the
continuous–time dynamics in (1), then Assump. 2 would
suffice to provide the local existence and uniqueness of
trajectories imposed by Assump. 1; as illustrated by [2,
Ex. 2], Assump. 2 is insufficient when the vector field (1a)
is coupled to the reset map (1b).

C. Decoupled limbs

Since continuity is necessary for differentiability, we must
impose a condition that yields continuous outcomes for tra-
jectories of (1). A general condition that is known4 to provide
continuity is that constraint surfaces intersect orthogonally
relative to the mass matrix. Formally,

∀i, j ∈ {1, . . . , n} , i 6= j, q ∈ a−1i (0) ∩ a−1j (0) :

Dai(q)M(q)−1Daj(q)
> = 0.

(6)

Physically, this condition implies that any limb or body
segments that can undergo impact simultaneously must be in-
ertially decoupled. Although this condition ensures trajectory
outcomes are continuous [2, Thm. 20], they generally remain
nonsmooth [26, Thm. 1]. Thus we introduce a stronger
condition that entails decoupling limb forces through a body.

Assumption 3 (limbs decoupled through body): The con-
figuration decouples into (n+1) segments, hence n possible
contact modes, q = (qj)

n
j=0 ∈ Q =

∏n
j=0Qj where

Qj = Rdj so that:
1) the mass matrix is block diagonal, M(q) =

diag (Mj(qj))
n
j=0, where Mj : Qj → R(dj×dj);

2) for limb j ∈ {1, . . . , n} the constraint aj only depends
on qj , aj : Qj → R, the coefficient of restitution γj
only depends on the limb states, γj : TQj → R, and
the effort fj only depends on the states of the limb
and the body, fj : Q0 ×Qj → Rdj ;

4We refer to [2, Thm. 20] for a detailed exposition of this result.



3) the effort f0 applied to the body depends additively
on the states of the limbs and the body, f0 =∑n
j=1 gj + g0, where for j > 0, gj : Q0×Qj → Rd0 ,

and g0 : Q0 → Rd0 .
Remark 4: In the decoupled structure described in the

preceding assumption, the variable q0 ∈ Q0 = Rd0 contains
the “body” degrees–of–freedom, i.e. all coordinates that
cannot undergo impact (and are not inertially coupled to
those that can). A limb may contain several links and as
such have several bilateral constraints corresponding to it.
For instance in [16, Fig. 1(middle)], one limb contains
four rigid bars. Each limb can be coupled through forces
with the body, but can only influence other limbs indirectly
through the body. Note that series compliance [29, 24] and/or
backdrivability [13, 16] contribute to inertial decoupling,
but conditions (1) and (2) of Assump. 3 (limbs decoupled
through body) require inertial decoupling in all degrees–of–
freedom between limb and body.

Remark 5 (discontinuous outcomes in locomotion): The
analysis of a saggital–plane quadruped in [28] provides
an instructive example of the behavioral consequences of
coupling limbs in legged locomotion. As summarized in [28,
Sec 3.1], the model possesses 3 distinct but nearby trot gaits,
corresponding to whether two legs impact simultaneously
or at distinct time instants; the simultaneous–impact trot
is unstable due to discontinuous dependence of trajectory
outcomes on initial conditions.

D. Differentiable constraint activation/deactivation times

Trajectories of (1) are not continuous functions of time
due to intermittent impacts that trigger the reset map (1b).
However, it has been known for some time5 that trajectory
outcomes can nevertheless depend differentiably on initial
conditions away from impact times, so long as the contact
mode sequence is fixed. For this result to hold, the time when
constraints activate (or deactivate) must depend differentia-
bility on initial conditions. We now develop definitions used
to state an admissibility condition at the end of the section
that yields differentiable time–to–activation (and time–to–
deactivation).

Definition 2 (admissible constraint activation/deactivation):
A trajectory initialized at (q, q̇) ∈ TAJ ⊂ TQ activates
constraints I ∈ 2n at time t > 0 if (i) no constraint in I was
active immediately before time t and (ii) all constraints in I
become active at time t; this activation is admissible if the
constraint velocity6 for all activated constraints is negative.
Formally, with (ρ, ρ̇−) = lims→t− φ(s, (q, q̇)) denoting the
left–handed limit of the trajectory at time t,

∀i ∈ I : Dt [ai ◦ φ] (0, (ρ, ρ̇−)) = Dai(ρ)ρ̇− < 0. (7)

5The earliest instance of this result we found in the English literature
is [1]. Subsequently, many authors (ourselves included) have re–proven
this result; a partial list includes [11, 10, 33, 7]. The result follows via a
straightforward composition of smooth flows with smooth time–to–impact
maps; we refer the interested reader to [7, App. A1] for details.

6Formally, the Lie derivative [19, Prop. 12.32] of the constraint along the
vector field specified by (1a).

Similarly, the trajectory deactivates constraints I ∈ 2n at
time t > 0 if (i) all constraints in I were active at time t and
(ii) no constraint in I remains active immediately after time t;
this deactivation time is admissible if, for all deactivated con-
straints: (i) the constraint velocity or constraint acceleration7

is positive, or (ii) the time derivative of the contact force
is negative. Formally, with (ρ, ρ̇+) = lims→t+ φ(s, (q, q̇))
denoting the right–handed limit of the trajectory at time t,
for all i ∈ I :

(i) Dt [ai ◦ φ] (0, (ρ, ρ̇+)) > 0 or

D2
t [ai ◦ φ] (0, (ρ, ρ̇+)) > 0,

or (ii) Dt [λi ◦ φ] (0, (ρ, ρ̇+)) < 0.

(8)

Remark 6: The conditions for admissible constraint deac-
tivation in case (i) of (8) can only arise at constraint acti-
vation times; otherwise the trajectory is continuous, whence
active constraint velocities and accelerations are zero.

Definition 3 (admissible trajectory): The trajectory ini-
tialized at (q, q̇) is admissible on [0, t] ⊂ R if (i) it has a finite
number of constraint activation (hence, deactivation) times
on [0, t], and (ii) every constraint activation and deactivation
is admissible; otherwise the trajectory is inadmissible.

Definition 4 (contact mode sequence): The contact mode
sequence8 associated with an admissible trajectory φ(q,q̇) on
[0, t] ⊂ R undergoing m total activations and deactivations
is the unique function ω : {0, . . . ,m} → 2n such that there
exists a finite sequence of times {t`}m+1

`=0 ⊂ [0, t] for which
0 = t0 < t1 < · · · < tm+1 = t and

∀` ∈ {0, . . . ,m} : φ((t`, t`+1), (q, q̇)) ⊂ TAω(`). (9)
Remark 7: In Def. 4 (contact mode sequence), the se-

quence ω is easily seen to be unique by the admissibility of
the trajectory; indeed, the associated time sequence consists
of start, stop, and constraint activation/deactivation times.

Assumption 4 (admissible trajectories): The trajectory
of (1) initialized at (q, q̇) is admissible on [0, t] for all
(t, (q, q̇)) ∈ F.

IV. DIFFERENTIABILITY THROUGH CONTACT

Under Assumptions 1–4 from Sec. III, previous work
has shown that, when the contact mode sequence is fixed,
trajectory outcomes vary continuously [2, Thm. 20] and
differentiably [1] with respect to variations in initial con-
ditions (i.e. initial states and parameters). This enables the
use of scalable algorithms for optimal control [27] and
reinforcement learning [31] to improve the performance of
a given behavior (corresponding to the fixed contact mode
sequence) using gradient descent. However, these algorithms
cannot be relied upon to select among different behaviors
(corresponding to different contact mode sequences) since
trajectory outcomes are known to depend nonsmoothly on
initial conditions [26, Thm. 1]. In this section we report that
decoupled limbs yield classically differentiable trajectory

7Formally, the second Lie derivative of the constraint along the vector
field specified by (1a).

8This definition differs from the word of [15, Def. 4] in that a contact
mode is included in the sequence only if nonzero time is spent in the mode;
this definition is more closely related to the words of [5, Eqn. 72]



outcomes even as the contact mode sequence varies, enabling
the use of scalable algorithms to select behaviors.

Theorem 1 (differentiability through intermittent contact):
Under Assumptions 1–4 from Sec. III, if t is not a constraint
activation time for (q, q̇), then the flow φ : F → TA for (1)
is continuously differentiable at (t, (q, q̇)) ∈ F.

Remark 8 (proof sketch): Due to space constraints, we
relegate the formal proof of this result to a technical re-
port [25, Thm. 1]. In its stead, we provide an illustration
of the result in Fig. 2, and a sketch of the proof strategy
in what follows. Given a contact mode sequence ω for a
trajectory initialized near (q, q̇), we construct a continuously
differentiable (C1) function φω defined on an open set
containing (t, (q, q̇)) by composing the sequence of flow–
to–activation and flow–to–deactivation functions specified by
ω. Without loss of generality, we only consider constraint
activations.9 Near (q, q̇) in Fig. 2, there are two activation
sequences, corresponding to whether constraint 1 activates
before constraint 2 activates, or vice–versa. For each I ⊂
{1, 2} we let φI denote the C1 flow for (1a),10 and define the
C1 function ΓI(u, (p, ṗ)) = (u, (p,∆I(p)ṗ)). By Assump. 4
(admissible trajectories), there exist C1 time–to–activation
functions τ2{1}, τ

2
∅ for constraint 2 defined over open neigh-

borhoods of (ρ, ρ̇−) and
(
ρ, ρ̇+{1}

)
and similarly there exists

C1 time–to–activation functions τ1{2}, τ
1
{∅} for constraint 1

defined over open neighborhoods of (ρ, ρ̇−) and
(
ρ, ρ̇+{2}

)
.

For each contact mode I ⊂ {1, 2} and constraint j ∈ {1, 2}
undergoing activation (j 6∈ I), we let ϕjI denote the flow–
to–activation,

ϕjI(u, (p, ṗ)) =
(
u− τ jI (p, ṗ), φI(u− τ jI (p, ṗ), (p, ṗ))

)
;

(10)
since ϕjI is obtained via composition from C1 functions, it
is a C1 function. For ω1 = (∅, {1} , {1, 2}), the function φω1

is given by the composition

φω1
= φ{1,2} ◦ Γ{2} ◦ ϕ2

{1} ◦ Γ{1} ◦ ϕ1
∅; (11)

for ω2 = (∅, {2} , {1, 2}), the function φω2
is given by the

composition

φω2
= φ{1,2} ◦ Γ{1} ◦ ϕ1

{2} ◦ Γ{2} ◦ ϕ2
∅. (12)

Since both φω1
and φω2

are obtained via composition from
C1 functions, they are C1 functions. The generalization of
this procedure to arbitrary contact mode sequences is given
in [25, Proof of Thm. 1]. As illustrated in Fig. 2, the tra-
jectory outcome near φ(t, (q, q̇)) ∈ TA{1,2} is differentiable
with respect to the initial condition near (q, q̇) ∈ TA∅, even
as the contact mode sequence changes from ω1 to ω2. For-
mally, we can show that Dφω1

(t, (q, q̇)) = Dφω2
(t, (q, q̇))

by computing these derivatives via the Chain Rule; this
entails taking products of matrices with the general form

9Admissible constraint deactivations do not alter the flow to first order
since the state and vector field are continuous during these transitions.

10These flows are guaranteed to exist over an open subset of TQ
by Assump. 2 (differentiable vector field and reset map).

DΓI(u, (p, ṗ)) =

 1 0 0
0 Id 0
0 Dp(∆I(p)ṗ) ∆I(p)

 , (13)

DϕjI(u, (p, ṗ)) =

[
1 1

FI(p,ṗ)Daj(p)
Daj(p)

0 Id − 1
FI(p,ṗ)Daj(p)

FI(p, ṗ)Daj(p)

]
.

(14)

(q, q̇) ρ̇+ = ∆{1,2}(ρ, ρ̇
−) φ(t, (q, q̇))

TA∅ TA{1,2}

TA{1}

(ρ, ρ̇−)

{a
1 =

0}TA{2}

(ρ, ρ̇+)

{a
1
=

0}

{a
2

=
0}

{a2
=

0}

Fig. 2. Illustration of trajectory undergoing two simultaneous constraint
activations: the trajectory initialized at (q, q̇) ∈ TA∅ ⊂ TQ flows via (1a)
to a point (ρ, ρ̇−) ∈ TA∅ where both constraint functions a1, a2 are
zero, instantaneously resets velocity via (1b) to ρ̇+ = ∆{1,2}(ρ, ρ̇

−),
then flows via (1a) to φ(t, (q, q̇)) ∈ TA{1,2} ⊂ TQ. Nearby trajectories
undergo activation and deactivation at distinct times: trajectories initialized
in the red region activate constraint 1 and flow through contact mode
TA{1} before activating constraint 2—their contact mode sequence is
ω1 = (∅, {1} , {1, 2})—while trajectories initialized in the blue region
activate 2 and flow through TA{1,2} before deactivating 1—their contact
mode sequence is ω2 = (∅, {2} , {1, 2}). Differentiability of trajectory
outcomes is illustrated by the fact that red outcomes lie along the same
submanifold as blue.

V. DISCUSSION

We conclude by discussing implications and routes to
generalizing the theoretical results reported above.

A. Implications for optimization and learning

Optimization and learning algorithms have emerged in
recent years as powerful tools for synthesis of dynamic and
dexterous robot behaviors [22, 32, 17, 20, 18]. Since scalable
algorithms leverage derivatives of trajectory outcomes, their
applicability to the dynamics in (1) has previously (i) been
confined to a fixed contact mode sequence [22, 21] or (ii)
relied on approximations or relaxations of the dynamics [32,
17, 20, 18]. Neither of these approaches is entirely satisfying:
(i) prevents the algorithm from automatically selecting the
behavior (corresponding to the contact mode sequence) in ad-
dition to extremizing its performance; (ii) implies the model
under consideration is no longer a mechanical system subject
to unilateral constraints. The results we report in Sec. IV
provide an analytical and computational framework within
which derivative–based algorithms can be rigorously and di-
rectly applied to the dynamics of mechanical systems subject
to unilateral constraints (1) to select between permutations
of constraint (de)activations.

B. Decoupled limbs

Assump. 3 (limbs decoupled through body) can be in-
terpreted physically as asserting that robot segments that
can undergo impact simultaneously (i.e. limbs) must be



decoupled through another segment not undergoing impact
(i.e. the body). Crucially, this condition is required to ensure
trajectory outcomes vary continuously with respect to initial
conditions [2, Thm. 20]; since continuity is a precondition
for differentiability, this condition is equally necessary for
the result reported in Thm. 1 (differentiability through in-
termittent contact). We note that this condition is violated
by conventional robots constructed from rigid serial chains
and non–backdrivable actuators [23]. In contrast, design
methodologies that incorporate direct–drive actuators [13,
16] or series compliance [29, 24] tend to produce robot loco-
motors and manipulators with limbs that are (approximately)
decoupled. How approximately the limbs are decoupled is the
determining factor on whether Assump. 3 (limbs decoupled
through body) holds, and hence whether the trajectories are
differentiable with respect to initial conditions away from
(de)activations.

C. Grazing contact

Def. 2 (admissible constraint activation/deactivation) pre-
cludes grazing trajectories, i.e. those that activate constraints
with zero constraint velocity, or deactivate constraints with
zero instantaneous rate of change in contact force. The key
technical challenge entailed by allowing constraint activa-
tion (resp. deactivation) we termed inadmissible lies in the
fact that the time–to–activation (resp. time–to–deactivation)
function is not differentiable. This fact has been shown
by others [8, Ex. 2.7], and is straightforward to see in an
example. Indeed, consider the trajectory of a point mass
moving vertically in a uniform gravitational field subject to
a maximum height (i.e. ceiling) constraint. The grazing tra-
jectory is a parabola, whence the time–to–activation function
involves a square root of the initial position.

D. Zeno phenomena

Def. 2 (admissible constraint activation/deactivation) pre-
cludes Zeno trajectories, i.e. those that undergo an infinite
number of constraint activations (hence, deactivations) in
a finite time interval. The key technical challenge entailed
by allowing Zeno lies in the fact that evaluating the flow
requires composing an infinite number of flow–and–reset
functions. Composing a finite number of smooth functions
yields a smooth function, but the same is not generally true
for infinite compositions. Thus although it is possible to show
that the infinite composition results in a differentiable flow
in simple examples like the rocking block [12] and bouncing
ball [2, Sec. 6.1], we cannot at present draw any general
conclusions regarding differentiability of the flow along Zeno
trajectories.

E. Friction

Friction is a microscopic phenomenon that eludes first–
principles understanding [9]. Phenomenological models
of friction are macroscopic approximations; one popular
model11 posits a transition from sticking to sliding when

11Usually attributed to Coulomb, but also due to Antomons [9].

the ratio of normal to tangential force drops below a pa-
rameterized threshold. The system’s flow is discontinuous
at this threshold, as some trajectories slide away from
their stuck neighbors. Even if such transitions are avoided,
the introduction of simple friction models into mechanical
systems subject to unilateral constraints is known to produce
pathologies including nonexistence and nonuniqueness of
trajectories [30].

F. Non–Euclidean configuration spaces

We restricted the configuration space to Q = Rd starting
in Sec. II to simplify the exposition and lessen the notational
overhead. Nevertheless, the preceding results apply to con-
figuration spaces that are complete Riemannian manifolds.12

G. Contact–dependent effort

The dynamics in (1) vary with the contact mode J ⊂
{1, . . . , n} due to intermittent activation of unilateral con-
straints aJ(q) ≥ 0, but the (so–called [2]) effort map f
was not allowed to vary with the contact mode. Contact–
dependent effort can easily introduce nonexistence or
nonuniqueness. Indeed, consider a planar system with q ∈
R2 undergoing plastic impact with the constraint surface
specified by a(q) = q1 subject to contact–dependent effort
that satisfies f∅(q) = (−1,+1) if q1 > 0 and f{1}(q) =
(+1,−1) if q1 = 0. Every trajectory eventually activates
the constraint. Once the constraint is active, the trajectory
becomes ill–defined.

H. Massless limbs

To accommodate massless limbs, one must specify their
unconstrained dynamics. If the unconstrained dynamics dif-
fer from the constrained dynamics, then in effect one has
introduced contact–dependent effort, whence we refer to the
preceding section. If the unconstrained dynamics do not
differ from the constrained dynamics, then in effect one
has introduced bilateral constraints the massless limbs must
satisfy, whence we refer to the subsequent section. The
constrained dynamics of massless limbs are derived in [4].

I. Bilateral constraints

The preceding results hold in the presence of bilateral (i.e.
equality) constraints so long as they do not couple limbs.
Formally, if the bilateral constraints b(q) = 0 are specified
by a differentiable function b : Q→ Rm, there must exist an
assignment β : {1, . . . ,m} → {1, . . . , n} such that for all
bilateral constraints k ∈ {1, . . . ,m}, unilateral constraints
i, j ∈ {1, . . . , n}, i 6= j, and configurations q ∈ b−1(0) ∩
a−1i (0) ∩ a−1j (0):

〈Dai(q), Daj(q)〉M−1 = 0,

〈Dbβ(i)(q), Daj(q)〉M−1 = 0.
(15)

12Since the preceding results are not stated in coordinate–invariant terms,
they are formally applicable only after passing to coordinates.
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One may wish to allow the continuous and/or discrete
dynamics in (1) to vary with time or an external input.
Some common cases can easily be handled. If the dynamics
are time–varying, but time could be incorporated as a state
variable so that the preceding assumptions hold for the
augmented system determined by q̃ = (t, q) ∈ Q̃ = R×Q,

M̃ (q̃) = diag (1,M(q)) , f̃
(
q̃, ˙̃q
)

= (0, f(t, q, q̇)), (16)

then the preceding results apply directly to the augmented
system; a similar observation holds when the value of an
external input is determined by time and state in such a
way that the closed–loop system (possibly augmented as
above to remove the time dependence) satisfied the preceding
assumptions.
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