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1 Motivation and State–of–the–Art

Parsimonious dynamical models for legged locomotion are
piecewise–defined. The state flows in continuous–time ac-
cording to an ordinary differential equation (ODE) until a
touchdown or liftoff event occurs, triggering an instantaneous
reset at a discrete time instant [5]. We’ve shown that models
for periodic gaits with footfalls isolated in time (e.g. bipedal
walk or run, quadrupedal walk or gallop) reduce to classical
dynamical systems—smooth ODEs on smooth manifolds [3].
However, footfalls are not isolated for general behaviors.

During other typical gaits (pace, trot, hop, pronk, alternating
tripod), footfalls occur simultaneously. In recent work [2], we
developed analytical and computational tools that can accom-
modate arbitrary event times in nonsmooth dynamical sys-
tems whose states evolve continuously in time. However, as
discussed in detail in other recent work [5], legged locomo-
tors encounter both nonsmooth and discontinuous transitions
during footfalls. In the present work, we are working to ex-
tend the analytical and computational tools in [2] to apply to
the dynamics of multi–legged locomotion in [5].

2 Our Approach and Results

We represent a given locomotor’s gait as a periodic orbit in a
hybrid dynamical system [3, 5]. To assess stability and con-
trollability of the gait, it is common to employ the Poincaré
map associated with the orbit. Specifically, standard compu-
tational techniques for assessing stability and controllability
of the gait utilize the (Fréchet or Jacobian) derivative of the
Poincaré map: eigenvalue properties determine (exponential)
stability of the orbit, and rank properties determine (local)
controllability. If footfalls occur at isolated instants in time
along the gait’s periodic orbit, the associated Poincaré map
is smooth [3, §III-B] and these techniques apply; if multiple
footfalls occur simultaneously, the Poincaré map is generally
nonsmooth [2, §4.2] and hence these techniques are inappli-
cable. We provide new computational techniques for assess-
ing stability and controllability applicable in the presence of
simultaneous footfalls.

Although the Poincaré map P : S→Σ associated with a multi–
legged gait like a trot is generally not classically differen-
tiable, it is nevertheless piecewise–differentiable in a sense
discussed in detail in [2, §4.2]. This implies that, although
there does not exist a single linear map (i.e. a matrix) that pro-
vides a first–order approximation for the behavior of the map

near its fixed point, there does exist a piecewise–linear map
(i.e. a collection of matrices) that provides a first–order ap-
proximation. This collection of matrices can be computed by
augmenting the classical variational equation with discontin-
uous updates1 that occur at touchdown and liftoff events; this
idea was originally introduced for the case of isolated events
in [1], conjectured to extend to two simultaneous events in [4],
and rigorously proven to apply in the presence of an arbitrary
number of simultaneous events in [2]. We report here on how
to apply of this computational procedure to assess stability
and controllability of multi–legged gaits.

For concreteness, Fig. 2 illustrates a trot gait for the model
represented in Fig. 1. Given a gait with known footfalls
and liftoffs like this trot, we construct updates to the varia-
tional equation associated with each simultaneous touchdown
or liftoff event. Each update corresponds to a possible se-
quence ω ∈ Ω of limb touchdown or liftoff transitions, and
contributes one “piece” DPω(α) to the piecewise–linear first–
order approximation to P at its fixed point α . To assess stabil-
ity of the gait, we can employ [2, Prop 14] by finding a norm
with respect to which the induced norm of each DPω(α) is
a contraction.2 To assess instability of the gait, we can em-
ploy [4, Prop. 4] by finding a footfall sequence ω ∈ Ω such
that DPω(α) has an unstable eigenvector in its “piece” of the
tangent space Tα Σ. To assess controllability of the gait, we
can employ an implicit function Theorem [6, Corollary 20]
using the derivatives of each Pω with respect to a finitely–
parameterized family of control inputs.

We will present concrete results applying the stability, in-
stability, and controllability tests described above to the
saggital–plane quadruped model illustrated in Fig. 1, and dis-
cuss how to generalize these tests and apply them to other
locomotors and gaits.
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1provided by so–called saltation matrices [1]
2In the case where footfalls occur at isolated instants in time, Ω = {ω},

i.e. P is differentiable at α , hence this stability criterion is equivalent to the
commonly–employed eigenvalue test.
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Figure 1: Schematic of saggital–plane quadruped model with
three mechanical degrees–of–freedom (x,y,θ); for clarity,
only two limbs shown.
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Figure 2: Illustration of periodic trot gait for the model in
Fig. 1 undergoing simultaneous limb touchdown and liftoff
transitions. (a) center–of–mass trajectory in horizontal (x) and
vertical (z) position coordinates; gray region indicates stance
interval when both feet are on the ground. (b,c) show portion
of the trajectory (indicated with a vertical arrow) near touch-
down (b) and liftof (c) transitions in height (z) and pitch (θ )
coordinates; colored regions indicate where different subsets
of feet are on the ground.


