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Abstract We present an integral feedback controller that
regulates the average copy number of an assembly in a sys-
tem of stochastically interacting robots. The mathematical
model for these robots is a tunable reaction network, which
makes this approach applicable to a large class of other sys-
tems, including ones that exhibit stochastic self-assembly at
various length scales. We prove that this controller works for
a range of setpoints and how to compute this range both an-
alytically and experimentally. Finally, we demonstrate these
ideas on a physical testbed.

Keywords Stochastic self-assembly · Master equation ·
Stochastic hybrid system · Integral control · Chemical
kinetics

1 Introduction

Self-assembly of complex systems and structures promises
many new applications, such as easily combining different
micro-fabrication technologies (Saeedi et al. 2008) or build-
ing arbitrary, complex nano-structures (Rothemund 2006).
While many natural systems are reliably self-assembled
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at vastly different length and time scales, engineered self-
assembled systems remain comparatively simple. The diffi-
culties of engineering complex self-assembling systems are
associated with large configuration spaces, our lack of un-
derstanding the relationship between local and global dy-
namics, and the stochastic or uncertain nature of their dy-
namic models.

In the context of engineering such systems, the interplay
between uncertainty and sensitivity of global to local behav-
ior can often lead to a profound lack of modularity as small
unintended local interactions can drastically alter the behav-
ior from what is expected by composition. In this paper we
partially address this problem by designing a feedback con-
troller that can regulate the expected value of the number of
an arbitrary component type. This approach could be used
for composition in the sense that other subsystems can rely
on the presence of these regulated quantities.

We are guided by the application of stochastic self-
assembly, in which self-assembling particles interact ran-
domly. Such systems abound in engineered settings, such
as in DNA self-assembly (Rothemund 2006), micro and
meso-scale self-assembly (Saeedi et al. 2008; Boncheva et
al. 2003; Onoe et al. 2004; Mastrangeli et al. 2009), and ro-
botic self-assembly (Burden et al. 2006; White et al. 2004).
It is also the prevailing model for self-assembly in biological
systems.

Self-assembly can be either passive or active. Designing
systems that passively self-assemble is a problem of engi-
neering a favorable free energy landscape in configuration
space. Passively self-assembling systems often lack flexibil-
ity since a specific energy landscape can be difficult to adapt
to new tasks. In addition, there are physical limitations to
how much the energy landscape can be manipulated. The
yield of a desired output structure is a function of both the
shape and depth of energy wells. As a result of the physical
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Fig. 1 Schematic representation of robot interactions. The passive ro-
bots P1 and P2 can form heterodimers, which can disassemble sponta-
neously. The active robot A can expend energy to undo bonds. When
the arms of an active robot are retracted, it is charged and can actively
disassemble a dimer. If the arms of an active robot are extended (de-
noted A′) then the it is not charged, but may become charged via the
recharge reaction, the rate of which can be controlled

limits on manipulating the energy landscape, passive self-
assembly generally leads to low yields.

In active self-assembly, energy can be locally injected
into the system. In particular, we focus on the situation
where some particles have the ability to selectively undo
bonds that are formed by passive dynamics. The input
of available energy is global, but how it is used to undo
bonds is decided locally by the self-assembling particles,
similar to the availability of nutrients that power bio-
chemical processes. Active self-assembly can overcome
the lack of flexibility of passively self-assembling system
by making aspects of the system re-programmable while
leaving other areas in the energy landscape untouched.
As a result, the changes in the global dynamics remain
tractable.

The particular model for active self-assembly we investi-
gate is that of a tunable reaction network. We present a sys-
tem of simple stochastically interacting robots that are well
modeled as a tunable reaction network and demonstrate a
feedback setpoint regulation scheme. Figure 1 shows a pic-
torial representation of the tunable reaction network inves-
tigated in this paper. There are three robot types and sev-
eral instances of each (see Fig. 2(a)). The passive robots P1

and P2 are able to bind and form heterodimer complexes
P12, which in turn can spontaneously disassemble. The ac-
tive robots A can dock with heterodimers and disassemble
them. The disassembly reaction leaves active robots in an
uncharged state, denoted by A′. The last reaction in Fig. 1
recharges uncharged robots at a rate that is controlled exter-
nally. It corresponds to the rate at which energy is delivered
to the system globally. The control problem for this system
is to regulate the number of heterodimers P12 in the system
by adjusting the recharge rate. (This problem is re-stated

formally in Sect. 6.) While the tunable reaction network
shown in Fig. 1 is comparatively simple, tunable reaction
networks in general can describe much more complicated
systems.

For example, many biological systems can be viewed
as tunable reaction networks. Inside cells, enzymes are ex-
pressed to control the rates of various metabolic reactions.
Similar to the problem solved here, one of the many func-
tions of the biochemical processes inside cells is maintain-
ing equilibria of chemical species. Regulating the concentra-
tion of chemical species is a particular aspect of homeosta-
sis, which can be viewed as a control problem (El-Samad et
al. 2002).

For the artificial systems depicted in Fig. 1 we propose,
analyze, and implement a feedback controller. The robots
serve as a physical instantiation of a tunable reaction net-
work. Using such a simple system also allows us examine
some of the model assumptions in some detail. However,
the theorem and proof in Sect. 5 do not rely on any special
structure of the example network, so that the results are ap-
plicable to many other systems, including ones with more
species and intermediate assembly steps.

In the context of engineering self-assembling systems,
the proposed feedback controller can be used to pro-
vide stable operating conditions for other self-ass-embling
processes, much like homeostasis in biological systems.
For example, in a hypothetical system with a vat of self-
assembling miniature robots, we might care that the relative
concentration of robot feet and robot legs is fixed in order
to maximize the yield of functioning robots. In general, we
envision the self-assembling systems of the future as having
metabolisms of their own that regulate the various species
of partially assembled objects in the system to maximize the
yield of the desired final assembly.

2 Experimental robotic chemistry

The robots described here fall in the broad class of mod-
ular robots as there are many identical copies of each ro-
bot type comprising the overall system. For an overview of
this vast area of research see, for example Yim et al. (2007).
Specifically, the robots in this paper are stochastic modular
robots as in Burden et al. (2006), White et al. (2004, 2005),
Ayanian et al. (2008), however, they are much simpler both
mechanically and electronically. Also, while many robotic
platforms consist of a homogeneous group of robots, the
robotic testbed described here is a heterogeneous mixture
of three different robot types, Fig. 2(b, c). The assembly of
the two passive robot types P1 and P2 is driven by comple-
mentary shape and embedded magnets. The magnetic force
creates an energy well that tends to pull P1 and P2 robots
together to form a heterodimer. The third, active robot type
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Fig. 2 Hardware of testbed.
(a) Picture of the air-table
showing the robots, the air-jets,
the overhead lamps, and the
overhead camera. (b) Picture of
the two passive component
types showing the tracking
targets and complementary
shapes. (c) The active robot
showing solar cells, contact
sensors, the spinning levers that
pull bound passive heterodimers
apart

can expend energy to disassemble a heterodimer into its con-
stituents.

The energy for this disassembly is supplied to the active
robots via solar panels. Each active robot stores energy from
its solar panel in a capacitor, if the charge in the capacitor
reaches a threshold and an active robot A is bound to a het-
erodimer a motor activates and disassembles it. Disassem-
bling heterodimers depletes the on-board energy storage of
active robots requiring more energy from the solar cells to
disassemble additional heterodimers. Adjusting the amount
of incident light changes the recharge rate of active robots
and thus indirectly affects the rate at which heterodimers are
disassembled.

Although this indirect approach may seem unnecessar-
ily complicated, it possesses a key design feature that we
believe justifies the added complexity: the structural, en-
ergy delivery, and computational functions reside on sepa-
rate components of the overall system. We think of P1 and
P2 as the structural components we want to control, the ac-
tive robots as agents of energy delivery, and the controller
implemented on a computer as the computational compo-
nent. This division of labor is analogous to many biolog-
ical systems where different cellular functions are largely
separated into different types of molecules. We believe that
such a separation of functionality in self-organization is es-
sential to engineering large scale complex systems. Distrib-
uting the functionality in this way can yield much simpler
individual components on average. For example, supply-
ing energy externally allows micro-robots to be simpler in
construction (Donald et al. 2008). In this example, the pas-
sive robots contain no electronic components whatsoever,
and the active robots only contain a simple circuit made
from discrete electrical components, a motor, and a solar
panel.

2.1 Physical characteristics of testbed

The body of each robot is machined from polyurethane pro-
totyping foam and painted black to aid the vision system.
This material is easy to machine, light, and stiff.

The robots float on an air-table shown in Fig. 2(a), which
has a large HVAC blower attached to the bottom of a perfo-
rated board (blower not visible in image). The blower is able
to maintain a high flow-rate of air through the table surface
and allows us to float relatively heavy pieces ≈ 2.5 g

cm2 . The
active area of the table is 60 cm × 60 cm. Mounted along
the perimeter of the table are computer controlled solenoid
valves. These valves can deliver short bursts of pressurized
air from a compressor (30 psi). By randomly activating these
air-jets, robots on the air-table are driven to perform a ran-
dom walk. The bursts are randomized and controlled via a
MATLAB script, which also updates the state of the controller
and adjust the intensity of four overhead lamps. These lamps
determine the amount of incident light to the solar panels,
thereby setting the recharge reaction rate.

Images from the overhead camera are used to extract the
number and position of targets, consisting of small, circular
disks with a pattern of concentric light and dark rings, see
Fig. 2(b). We detect targets in real time and use the data both
in the feedback loop to exert control in Sect. 6 and open loop
to estimate the system reaction rates and diffusion constants
in Sect. 4.

The number of heterodimers is determined by selecting
image processing parameters so that only whole targets reg-
ister. Half of a target is attached each passive robot in such
a way that when a heterodimer forms the two halves from
a complete target, which is picked up by the vision sys-
tem. The rotational symmetry of the targets simplifies the
image processing by reducing the convolution of the target
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kernel from three to two dimensions, allowing sample rates
of ≈1 Hz.

3 The mathematical model

This section describes stochastic chemical kinetics (SCK)
(McQuarrie 1967) and the chemical master equation (CME),
used to model the discrete number of each assembly type
on the robotic testbed. The analogy with chemistry avoids
having to model the configuration space of each robot, here
SE(2), similar to the approach in Hosokawa et al. (1994).
When an input is added to the discrete model, the resulting
system is called a tunable reaction network. This section
also describes a stochastic hybrid system (SHS) model that
extends SCK to include a continuous state variable needed
to model the internal state of the controller of the closed
loop system.

3.1 Stochastic chemical kinetics

The idea is to create a stochastic model that reflects our
understanding of how chemical reactions occur at a micro-
scopic level, as opposed to mass action kinetics, which is
a deterministic model of the evolution of chemical concen-
trations. When the number of molecules involved in a set
of chemical reactions grows, the approximations of mass
action kinetics become very good. The large number of
molecules averages stochastic effects away (Kampen 2007,
Chap. 5.8). However, when only a few molecules are in-
volved, the stochastic nature of chemical reactions domi-
nates the dynamics and requires explicit modeling.

Let S denote the set of chemical species. The copy num-
ber of each species is the number of instances of that par-
ticular species and is denoted by a capital N with the ap-
propriate symbol as a subscript. The state q of the system is
described by a vector of copy numbers and the set of all pos-
sible states is denoted by Q. Events that affect the state q are
called reactions, which are indexed by a set L. If the state of
the system is q ∈ Q before a reaction l ∈ L and q′ ∈ Q after
the reaction, then we have

q′ = q + al ,

where al is a vector that is specific to the reaction l. The
chemical species that correspond to negative entries in al

are called reactants and those that correspond to positive en-
tries are called products. The multiplicity of a reaction l ∈ L

from a given state q ∈ Q, denoted M(al ,q), specifies the
number of different ways the reactants of al can be chosen
from state q. In addition to the al vector, each reaction has
associated with it a rate constant kl , that depends on the un-
derlying stochastic behavior of the interacting species.

In the robotic testbed the set of chemical species (robot
types) is

S = {A,P12,A
′,P1,P2}.

The symbol A stands for an active robot that is charged, A′
is an uncharged active robot. The symbol P1 and P2 are
the two different types of passive robots and P12 is a het-
erodimer of passive robots, see Figs. 1 and 2. The state of
the robotic testbed is given by the vector of copy numbers

q = (NA,NP12,NA′ ,NP1 ,NP2)
T ,

where, for example, the copy number of species A is denoted
by NA.

This paper considers the set of reactions in Fig. 1. For
example, the reaction

P1 + P2

k1

P12

where two different passive robots form a dimer has the as-
sociated a vector

a1 = (0,1,0,−1,−1)T .

Both P1 and P2 are reactants and P12 is a product. The mul-
tiplicity for this reaction is given by

M(a1, (NA,NP12 ,NA′ ,NP1,NP2)
T ) = NP1NP2 ,

since there are NP1 choices for the P1 robot and NP2 choices
for the P2 robot. Determining the rate constants for the sys-
tem of robots is the topic of Sect. 4.2.

Stochastic Chemical Kinetics (SCK) defines a discrete
state, continuous time Markov process with state space Q

and the following transitions rates. The transition rate be-
tween q and q′ is given by

klM(al ,q), (1)

when q′ = q + al and al is applicable in q (i.e. q′ is non-
negative). Given that the process is in state q at time t , the
probability of transitioning to state q′ within the next dt sec-
onds is

klM(al ,q)dt.

This property suffices to define the conditional transition
probabilities of the stochastic process and together with an
initial distribution over the states defines the Markov process
that comprises the SCK model. This model is applicable to
a set of interacting molecules if the system is well mixed
(Kampen 2007; Gillespie 1977). In practice this assumption
is difficult to verify. However, in our system of robots we can
explicitly check the assumptions, since we can observe the
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position of all involved particles. A description of the proce-
dures used to verify the well-mixed assumption is given in
Sect. 4.1.

Conveniently, discrete state Markov Processes can be ex-
pressed via linear algebra in the following way. Fix an enu-
meration of Q and let pi denote the probability of being
in the ith state q ∈ Q. The enumeration is arbitrary but as-
sumed fixed for the remainder of this paper. The dynamics
of the probability vector p are governed by the infinitesimal
generator A defined as follows: All entries of A are zero
except

– If i �= j and qi + al = qj : Aij = klM(al ,qi )

– If i = j : Aii = −∑
m Aim.

By construction the rows of A sum to zero and all off-
diagonal entries are non-negative. Probability mass func-
tions over Q are expressed as row vectors and real valued
functions y : Q → R as column vectors. The dynamics of
an arbitrary probability mass function p is governed by

ṗ = pA, (2)

the Chemical Master Equation (CME).
The convention of distinguishing between row vectors as

probabilities and column vectors as functions highlights that
functions and probabilities naturally operate on each other
via the inner product. A probability distribution applied to
a function produces an expected value. The inner product
(denoted py) is the expected value of a function y : Q → R

with probability mass function p. When p is understood one
we write Ey instead.

The CME can be used to compute the change in expected
value of an arbitrary function y : Q → R, since

dEy

dt
= dpy

dt
= dp

dt
y = pAy = EAy. (3)

This equation gives ordinary differential equations (ODEs)
for the expected value of scaler functions on the state space.
In particular, they can be used to compute the statistical mo-
ments of random variables on Q. This fact and its extension
to SHSs is used in Sect. 5 to prove stability of the proposed
control scheme.

3.2 Tunable reaction networks

Since we are interested in controlling a chemical system we
now turn our attention to inputs. The previous section de-
scribed the ingredients of a reaction network: A list of in-
volved species, a set of reactions, and rate constants. The
first two parameters are not well suited as inputs since they
require adding previously unmodeled elements to the struc-
ture of the network.

This paper treats inputs as adjustments to rate constants.
There are several mechanisms that one might think of as

affecting this change. For example, in biological system a
change in rate could reflect the abundance of an enzyme
that facilitates a reaction, a change in abundance of an in-
hibitor of a reaction, or some environmental parameter such
as salinity or pH that has an effect on the efficiency of a re-
action. In the case of the robotic example presented here,
the rate change corresponds to changing intensities of the
overhead lamps.

Whatever the mechanism, this type of input has some im-
portant features requiring consideration when used as an in-
put for control. First, rate constants cannot be negative. This
situation would correspond to backward reactions whose
rates are depended only on the products but are independent
of the reactants resulting in a non-causal reaction mecha-
nism. Secondly, each of the aforementioned rate adjustment
mechanisms typically saturates. For example, in the case an
inhibitor based rate adjustment the reaction rate will never
be higher than the uninhibited reaction. In the case of over-
head lamps, they burn out when supplied with too much
power.

Since the limits of saturation can be rescaled and ab-
sorbed into the rate constant we consider rate adjustments
that modify some reaction so that (1) is instead given by

kluM(al ,q), (4)

where u ∈ [0,1]. The resulting CME now has input u

ṗ = pA(u), (5)

where u is in the unit interval an modifies some off-diagonal
terms of A linearly with the corresponding change in diago-
nal entries to conserve the zero row-sum property of A.

3.3 Stochastic hybrid system

Adding a continuous random variable whose dynamics de-
pend on the discrete state q of a Markov process results in
an SHS. This section is a brief description of the notation
and some specific mathematical tools available for SHSs,
for more information see Hespanha (2007), Hespanha and
Abhyudai (2005), Davis (1993).

3.3.1 Defining a stochastic hybrid system

The key features of a Stochastic Hybrid System (SHS) is that
the dynamics of the system are stochastic and that the state
are hybrid, meaning the state space of the system has the
form Q × X where Q is some discrete set and X ⊆ R is
continuous. The set of possible discrete states Q is typically
finite or countably infinite. We use z ∈ Z = Q × X as short-
hand for the pair (q, x). Let Q, X , and Z denote the stochas-
tic processes on the various components of the state space.
Note that each element of Q is a vector of copy numbers so
we use a bold face q to denote the elements of Q.
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In each discrete state, the dynamics of X are governed by
a differential equation that can depend on both the continu-
ous and discrete state,

ẋ = f (q, x) f : Q × X → T X. (6)

The dynamics of the discrete state Q are governed by a set
of transitions, indexed by a finite set L. Each transition l ∈ L

has associated with it an intensity function

λl(q, x) λl : Q × X → [0,∞), (7)

and a reset map

(q, x) = φl(q−, x−) φl : Q × X → Q × X. (8)

The intensity function is the instantaneous rate of the transi-
tion l occurring, so that

P(l occurs in (t, t + dt)|Q = q, X = x) = λl(q, x)dt.

The reset map φl determines where the process jumps after a
transition is triggered at (q−, x−) at time t . The minus in the
superscript denotes the left hand limit of q and x at time t .
We think of this limit as the state of the process immediately
before the jump.

To model closed loop tunable reaction networks let the
discrete states of the SHS be the set Q from the SCK de-
scription. The continuous part is used to model the con-
troller state in Sect. 5. The resets maps and intensities of
the SHS correspond to reactions and their associated rates.
For a given reaction without input and index l ∈ L the reset
is given by

φl(q, x) = (q + al , x) (9)

and the intensity is given by

λl(q, x) = klM(al ,q) (10)

whenever al is applicable to q. Similarly, for a reaction with
input and index n ∈ L the reset map is also given by

φn(q, x) = (q + an, x) (11)

while the intensity is

λn(q, x) = knuM(an,q) (12)

whenever an is applicable to q. In both cases the intensities
are zero whenever a reaction is not applicable to a given
state. The diagram in Fig. 3 represents the discrete states of
such an SHS. The dynamics of the continuous state are only
specified up to the function f and that the continuous state
does not change during discrete transitions.

Note that our treatment differs from Hespanha and Ab-
hyudai (2005) which also uses SHS to model SCK. Here
the discrete states are used to denote the copy numbers of
chemical species as opposed to explicitly embedding them
into the continuous state.

Fig. 3 Two discrete states from a larger tunable reaction network. The
grey arrows represent transitions to other states, which are not shown.
The reaction n ∈ L has in input u ∈ [0,1], otherwise the rates follow
the dynamics from SCK. The state variables are related by q + al = q′
and an = −al

3.3.2 The extended generator

This section describes the extended generator L associated
with an SHS. This operator is analogous to the infinitesi-
mal generator of a discrete state Markov process described
in Sect. 3.1. However, in the hybrid case the generator is a
partial differential equation instead of a matrix. It allows the
derivation of ODEs governing the dynamics of the statistical
moments of scaler function on the state variables of an SHS.

Operator L in (13) is the extended generator for an SHS
defined by (6)–(8). Let ψ : Q × X → R be a real valued test
function on the states of an SHS and define

Lψ(z)

≡ ∂ψ(z)

∂x
f (z) +

∑

l∈L

(
ψ(φl(z)) − ψ(z)

)
λl(z). (13)

The operator L relates the time derivative of the expected
value of a test function ψ to Lψ via

d Eψ

dt
= E Lψ (14)

(Hespanha 2007). Note the similarity to the infinitesimal
generator in Sect. 3.1. When the test function ψ only de-
pends on the discrete state

ψ(q, x) = ψ(q),

it can be written in vector form y. In this case the operator
L plays the same role as A in (3). This simplification when
functions only depend on the discrete state is key in the sta-
bility proof of the feedback controller in Sect. 5.1.

The infinitesimal and extended generator for Markov
processes are related, and in the discrete setting they are the
same. However, in the continuous case, such as the continu-
ous part of an SHS, the extended generator is defined for a
larger class of test functions (Davis 1993, Chap. 1.4).

4 The testbed reaction network

The reaction network description for our robotic testbed
consists of four distinct reactions: two describe the sponta-



Auton Robot (2011) 30: 57–71 63

Fig. 4 Observed distribution of
robots on air-table. The top
figure corresponds to active
robots, A or A′, the lower left
plot correspond to passive
robots P1/P2, and the lower
right figure to heterodimers P12.
These plots demonstrate that the
occupancy of parts on the
air-table is roughly uniform on
the table. The area of low
occupancy around the perimeter
is due to the geometry of the
components interacting with the
boundary of the air-table

neous association and dissociation of passive robots P1 and
P2, one describes the disassembly of P12 by active robots,
and the last reaction describes recharging of active robots.
Denote the rate constant for association and dissociation by
the natural dynamics by k1 and k−1, for the disassembly re-
action by k2, and for the tunable recharge reaction by k3. The
rate constant for the tunable recharge reaction corresponds
to the maximal physically possible rate, in this case highest
operating intensity of the overhead lamps. These reactions
are summarized in (15)–(17).

P1 + P2

k1

P12
k−1

(15)

P12 + A
k2

P1 + P2 + A′ (16)

A′
uk3

A. (17)

The discrete state space Q is finite and obeys the conser-
vation equations

C1 ≡ NP1 + NP12 = NP2 + NP12 , (18)

C2 ≡ NA + NA′ , (19)

where C1 and C2 are constants. The first relation (18) holds
when the system has the same number of both types of pas-
sive robots (C1 of each, which we ensure in our experi-
ments), while (19) asserts that there are C2 active robots that
can either be in a charged or discharged state. As a conse-
quence of (18) and (19), NP1 , NP2 , and A′ can be expressed

in terms of NA, NP12 , and the constants C1 and C2. Instead
of five different species we can keep track of only two. For
the remainder of this paper we will assume that

q =
(

NA

NP12

)

∈ N
2

and note that the copy number for the missing species can
be reconstructed from this reduced state.

4.1 Checking the well-mixed condition

There are several equivalent definitions of what it means for
a system to be well-mixed. Basically, all definitions are suf-
ficient conditions for guaranteeing that a process is Markov
and that each possible combination of reactants for a partic-
ular reaction al is equally likely to be involved in the next
reaction. While being well-mixed in this sense is a strong
assumption, it allows for the characterization of a reaction
by a single parameter, the rate constant kl . For the remain-
der of this section we use the definition of well-mixedness
from Gillespie (1977). For alternative conditions see Kam-
pen (2007, Chap. 7.2). The two conditions that must be
checked are that: (a) the reactants are uniformly distributed
throughout the environment and (b) that the reactants diffuse
through the reaction domain faster than they react.

To estimate the distribution of the different types of ro-
bots on the air-table we decomposed it into a 11 × 11 grid
and extracted the occupancy statistics for each grid box from
video data. Figure 4 shows the resulting distributions. The
red area in the center of each plot is roughly at the same
level and indicates a uniform distribution. The area of low
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Table 1 Estimates of rate constants and diffusion coefficients

Parameter Estimate Uncertainty Units

k1 0.0046 reaction
sec number2

k−1 0.00071 reaction
sec number

k2 0.0027 reaction
sec number2

k3 0.08 reaction
sec number

DA/DA′ 0.0018 0.0002 m2 sec
sec

DP1/DP2 0.0015 0.0001 m2 sec
sec

DP12 0.00083 0.00001 m2 sec
sec

occupancy around the perimeter results from the fact the po-
sition of each robot is estimated at its center yet geometric
constraints keep the center away from the air-table border.

The diffusion coefficient for a robot is defined as

D = E r2(t)

4t
,

where r(t) denotes the random displacement of the robot as
a function of time. We used the targets described in Sect. 2
to track the position of different robot types. We averaged
over multiple experiments as well as the instances of each
robot type to compute the expected value. The resulting es-
timates for the diffusion coefficient are given in Table 1. The
subscripts of D indicates what robot type the diffusion coef-
ficient was calculated for. For example, DP12 is the diffusion
coefficient of heterodimers.

Combined with the rate constants measured in Sect. 4.2
we conclude that condition (a) and (b) are approximately
met. The testbed is well-mixed and the SCK model is ap-
propriate.

4.2 Characterizing rate constants

One method to determine rate constants is to measure the
average waiting time between reactions from a known state.
This quantity, together with the known inverse relationship
between the reaction rate and average waiting time, yields
an estimate of the rate (Burden et al. 2006). Although use-
ful in simulation, one drawback of this method is that one
needs to repeatedly re-initialize the system to gather statisti-
cal data, which is tedious and time consuming. An exception
is k3, which was measured in this way. The reason is that the
recharge reaction represents a change in internal state, which
is easy to re-initialize.

For the other rate constants we take a different approach.
We average multiple longer trajectories all starting from the
same initial condition. However, the system is allowed to
continue evolving for a set amount of time, possibly un-
dergoing many reactions. This has the advantage that each

Fig. 5 Curve fitting results used to determine rate constants

re-initialization gives much more information than a single
waiting time. We then fit this empirical average to solutions
of the CME (2).

We determined the remaining rate constants k1, k−1 and
k2 in two steps. First, we gathered trajectories starting from
NP12 = NA = 0 with u = 0 (lights off). This way the disas-
sembly reaction and recharge reaction do not influence the
natural dynamics. We then used MATLAB to numerically fit
the CME solution with the two free parameters k1 and k−1

to the empirical average, minimizing the mean squared er-
ror, see Fig. 5(a).

Using the values previously determined for k3, k1, and
k−1 we then used the same approach (this time with u = 1)
for determining the only remaining parameter in the CME
solution, k2. The resulting curve fit is shown in Fig. 5(b).

5 Integral control for tunable reaction networks

This section describes an integral feedback controller for
tunable reaction networks introduced in Sect. 3.2. The idea
for this control scheme is simple: The integral of the instan-
taneous error is fed back to the input of the tunable reaction
network in a direction that counteracts the cumulative error.
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Difficulties arise both from the fact that the input satu-
rates and that the stochastic nature of a tunable reaction net-
works will randomly move the output function both closer
and further away from any given setpoint. This situation is
in stark contrast with the well developed theory of integral
feedback for LTI systems.

The inherent stochasticity can be addressed by control-
ling the expected value of the output function instead of try-
ing the force the system to stay in a particular set of states.
While this is a much weaker form of control, it is also a
much more feasible given the types of inputs that are typi-
cally available in systems that are well modeled by SCK.

When controlling the expected value of the output instead
of directly controlling the output of the system, one has to
worry about the variance. We do not present theoretical re-
sults concerning the variance around the controlled mean in
general. However, we do present estimates of the variance
for the robotic testbed in Sect. 6.

Because the input saturates, we need to ensure that the
setpoint is actually achievable with the limited control effort
that is available. This restriction results in a controllable re-
gion of setpoints for which the proposed controller works
correctly.

5.1 Integral control

The discrete state q of a tunable reaction network develops
according to (5). Suppose there is some output of the system
that we want to regulate. Let y be the a vector correspond-
ing to an output function y : Q → R. A typical example is
y(q) = NSi

, the copy number of species Si .
The desired setpoint of the output is denoted by y∗ and

the cumulative error from the setpoint by x. The dynamics
of x are given by

ẋ = γ (y(q) − y∗), (20)

where γ is an integrator gain. This equation is the last re-
maining parameter to define an SHS together with the re-
set maps and intensities (9)–(12). This construction gives a
class of SHS that has an input u ∈ [0,1] it inherits from the
dynamics of the discrete states.

In order to model the closed loop system, a way to ex-
press saturation of the input is needed. Let h : R → R be
given by

h(x) =
⎧
⎨

⎩

0, x ≤ 0
x, 0 < x ≤ 1
1, 1 < x.

The dynamics of the closed loop integral feedback controller
are given by setting

u = h(x). (21)

Fig. 6 Block diagram of the proposed integral feedback controller for
tunable reaction networks. The block labeled SCK with an input, to-
gether with the saturation block is a block diagram description of a
tunable reaction network. The other blocks form a simple integral feed-
back controller

A block diagram of the control system is shown in Fig. 6.
The remainder of this section is dedicated to analyzing the
closed loop system.

Our approach to showing that this controller works is to
look at the test function

ψ(q, x) = x.

Since the reset maps (9) and (11) do not modify the contin-
uous component, the sum in (13) evaluates to zero, resulting
in

dEx

dt
= Eγ (y(q) − y∗)) = γ (Ey(q) − y∗). (22)

If the closed loop system is stochastically stable, in the
sense that probability distributions of states approaches a
fixed invariant distribution, then by (22)

Ey = y∗. (23)

The controller works in expected value when the system is
in steady state. Now, the problem of showing correctness
of the controller reduces to showing that the system is sto-
chastically stable or ergodic, i.e. that the system always ap-
proaches a unique steady state distribution.

5.2 Ergodicity

We use a Lyapunov function argument (Meyn and Tweedie
1993, THM 5.1) to show that the closed loop SHS is ergodic.
This allows us to set the LHS in (34) to zero and argue that
the controller works in steady state. We show that the system
is ergodic for some reference values y∗ and give sufficient
conditions for ergodicity for a range of y∗.

Denote the infinitesimal generator matrices of minimum
and maximum input by Am = A(0), AM = A(1) and the cor-
responding steady state probability mass functions by pm

and pM respectively.

Theorem Let A(u) be the generator of a tunable reaction
network and y the vector corresponding to an output func-
tion y : Q → R of the discrete state. The feedback controller
proposed in (21) results in a closed loop system with a sta-
tionary distribution that has Ey = y∗ when y∗ is in the con-
trollable region, pMy < y∗ < pmy.
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Note If pMy > pmy, then the theorem applies with the sign
in (20) and the upper and lower limits of the controllable
region reversed.

Proof Let Z be the SHS corresponding to the closed loop
system. By Meyn and Tweedie (1993, THM 5.1), Z is er-
godic when there exists a function V : Z → R

+ with the
property that V (z) → ∞ as |z| → ∞ and

LV (z) ≤ −f (z) ∀z /∈ C (24)

for some compact region C and positive function f .1

For our system, we define the function V̂ to be

V̂ (q, x) =
{

x + c+(q) for x > 0
−x + c−(q) for x < 0,

where c+ and c− depend on q. Note that the function V̂

is neither differentiable (required to apply L) nor positive
(required by theorem) since the offsets can be negative. To
address this problem, let V be a function that agrees with V̂

when x is outside some interval [vmin, vmax] for all q ∈ Q,
and is both non-negative and twice differentiable. This func-
tion always exists since Q is finite and V̂ increases with |x|
so that V̂ is positive for sufficiently large |x|.

Let the compact region required by the theorem be C =
Q × [min(vmin,0),max(vmax,1)]. Since we are only inter-
ested in V outside C, we look at the cases when the feedback
input is saturated at either u = 0 or u = 1. This situation sim-
plifies the analysis, since the transition intensities λ(q, x)

are independent of x in the saturated regions. We now argue
that for some range of setpoints y∗ we can find c+ and c−
to make V a Lyapunov function in the sense of (24).

Choosing f = ε and considering saturation at u = 1 first,
we rewrite the conditions of (24) in vector from,

y − y∗1 + AMc+ ≤ −ε1. (25)

Let ε̃ be an arbitrary vector with strictly positive entries,
then (25) can be rewritten as

y − y∗1 + AMc+ = −ε̃. (26)

We want to determine when this equation has a solution
for c+. Note that

AMc+ = −ε̃ + y∗1 − y

1The theorem has some technical preconditions, which are fulfilled in
our case, namely that all compact sets are petite see Meyn and Tweedie
(1993). This follows from Meyn and Tweedie (1993, THM 4.1), Davis
(1993, THM 27.6) and the fact that every Feller process is also a
T-process.

has a solution only if (−ε̃ + y∗1 − y) is in the column space
of AM , which we write (−ε̃ + y∗1 − y) ∈ ColAM . Equiva-
lently

(ColAM)⊥ ⊥ (−ε̃ + y∗1 − y) (27)

(NulAT
M) ⊥ (−ε̃ + y∗1 − y) (28)

(pM)T ⊥ (−ε̃ + y∗1 − y) (29)

0 = pM(−ε̃ + y∗1 − y) (30)

0 = −pMε̃ + y∗ − pMy, (31)

where Nul denotes the right null space and a superscript ⊥
the orthogonal complement. Because ε̃ has arbitrary, strictly
positive entries and entries and pM has non-negative entries
by definition a solution for c+ exists when

pMy < y∗.

Similarly, for saturation with u = 0 we get

pmy > y∗.

Thus the system is ergodic if

pMy < y∗ < pmy. (32)

Furthermore, by (22) the expected value of y tracks the ref-
erence value y∗ when it is in the controllable region. �

The proof does not rely on any special structure of A(u)

nor the value of γ . Therefore, the theorem is generally ap-
plicable to tunable reaction networks with saturating inputs,
which is a good model for a large class of systems. For ex-
ample, adding more types of passive species and active ro-
bot types would not change the applicability of this theorem.
However, if the input changes a reaction rate that does not
have much effect on the output, then the controllable region
is small. As a result, while the controller is applicable it is
only useful with an effective input. Since y is an arbitrary
output function this scheme could be used to control the ex-
pected value of other quantities, as long as they depend only
on the discrete state.

Also, as a side effect of our approach to the proof we
have shown that the system is ergodic, which means that the
steady state ensemble average and long term time average
are the same. This feature is important since the above the-
orem concerns the ensemble average at different points in
time. However, from an application perspective the time av-
erage of individual trajectories is often more important.

6 Integral control applied to the robotic testbed

This section combines the mathematical model of the ro-
botic testbed developed in Sect. 4 with the results from
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the previous section to solve the control problem stated in
Sect. 1.With the mathematical model for the testbed in place
we can state the problem more formally. Control the system
such that ENP12 = y∗ by adjusting the intensity of the over-
head lamps.

To apply the theorem from Sect. 5 let the output function
y : Q → R be given by

y(q) = NP12 .

The resulting feedback controller is shown in Fig. 7. The
closed loop SHS is characterized by the state transition di-
agram shown in Fig. 8 and the extended generator of the
closed loop SHS

Lψ(NP12,NA,x)

= ∂ψ(NP12 ,NA,x)

∂x
γ (NP12 − y∗)

+ (ψ(NP12 + 1,NA,x) − ψ(NP12 ,NA,x))

Fig. 7 Block diagram of the proposed control system. Only the
air-table state and output signal are discrete, all other signals are con-
tinuous

× k1(C1 − NP12)
2

+ (ψ(NP12 − 1,NA,x) − ψ(NP12 ,NA,x))k−1NP12

+ (ψ(NP12 − 1,NA − 1, x) − ψ(NP12,NA,x))

× k2NP12NA

+ (ψ(NP12 ,NA + 1, x) − ψ(NP12 ,NA,x))

× x(C2 − NA). (33)

As argued in Sect. 5 (22)–(23) setting ψ = x gives

d Ex

dt
= E γ (NP12 − y∗), (34)

resulting in correct behavior when the process is ergodic.

6.1 Experimental results

We implemented the proposed controller on the robotic test-
bed described in Sect. 2. The generator matrix A(u) is de-
fined by (15)–(17) with the parameters found in Sect. 4. In
the following experiments the number of P1 and P2 pairs is
C1 = 10 and the number of active robots is C2 = 4.

To show the controller’s the tracking capability we
tracked two periods of a square wave. The low and high
setpoints were 0.7 and 0.8 (corresponding to 7 and 8 P12).
Both of the setpoints are inside the empirically determined
controllable region for this system, 0.60–0.86.

To determine the upper and lower limits of the control-
lable region, the system was operated in open loop with both
u = 0 and u = 1 and allowed to equilibrate. After reaching

Fig. 8 A schematic
representation of the closed loop
SHS. The boxes represent
discrete states and the arrows
represent transitions. Each box
shows both the discrete state it
represents and the ODE
describing the continuous states.
An arbitrary state (NA,NP12 )

T

is highlighted in black. The
transition intensities for all
transitions leaving (NA,NP12 )

T

are shown next to the arrows
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equilibrium the expected value of the output function NP12

was estimated, which by (32) are the upper and lower limits
of the controllable region.

Intuitively, the size of the controllable region depends on
the influence the global input has on the tunable reaction
network. Even if the active robots were to recharge instantly
(unlimited input), there would still be a non-zero equilib-
rium distribution of NP12 , depending on the relative rates

Fig. 9 (Color online) Frames taken from the overhead camera feed.
Each crescent shaped dimer P12 detected by the vision system is la-
beled with a red dot. The four square objects in each frame are the
solar panels of the active robots. The number of red dots in each frame
corresponds to the output function NP12 of the state. Note that differ-
ent intensities of the overhead lamps, corresponding to different inputs,
can seen in the reflections on the air-table. The input in is lowest in (b)
and highest in (c). Frames (b) and (c) are chosen to show that the sys-
tem output can temporarily be outside the controllable region due to
random fluctuations. The output function in (b) is smaller than 6.0 and
larger than 0.86 in (c)

in (15) and (16). The size of the region depends on the net-
work structure.

In this particular example, if there were more P1 and P2

robot pairs but the same number of active robots the con-
trollable region would be smaller. If there were more active
robots and the same number of passive P1 and P2 robots
the size of the controllable region would be larger. The in-
put only changes the recharge rate of active robots, if there
are more of them it has a larger effect on the steady state
behavior.

Snapshots from the overhead camera during the experi-
mental trials are shown in Fig. 9. The combined results of
25 trajectories are shown in Fig. 10. We let each trajectory
run with a setpoint of 0.7 for 5 minutes (a half period) before
recording data, which allowed transients resulting from the
manual initialization to dissipate. After the warm up period
we collected 20 minutes of data for each trajectory.

This experiment demonstrates the controller tracking a
reference signal in mean (Fig. 10(b, c)). This experiment
also demonstrates the fundamental stochasticity in the sys-
tem. The spread in Fig. 10(b, c) is not due to measurement
uncertainty or noise, but a fundamental property of the sto-
chastic system we are controlling.

Next, we present simulation experiments exploring how
the variance of the copy number relates to the integrator gain
γ in the example system. The proof for tracking in mean did
not depend on the value of γ , so the proposed controller will
always yield the desired mean steady-state copy number as

Fig. 10 Tracking data from
robotic testbed. This is the
average of 25 different
experiments. Each experiment
has 10 P1 and P2 robots, and
4 active robots. The grey
shading in the background
corresponds to the fraction of
trajectories with that number of
pairs. Darker regions
correspond to higher occupancy.
The two histograms on the
bottom show the fraction of
possible dimers taken for the
last half of each step, (b), (c).
The vertical line is the
computed mean, which
demonstrates correct controller
behavior
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long as the setpoint is in the controllable region. However, it
might differ in the degree of fluctuation around the correct
mean.

6.2 Variance of the controlled system

To investigate the dependence of the closed loop system
variance on the integrator gain and setpoint we turn to sim-
ulations.

While SSA (Gillespie 1977) is an efficient way to sim-
ulate trajectories for SCK, the non-constant transition in-
tensities in the controlled system make this method difficult
to apply. Instead, we use a stochastic integration algorithm
with the parameters from Sect. 4 to simulate closed loop tra-
jectories to obtain an estimate of the variance. The open loop
variance is computed exactly, by first numerically finding
the input u such that the associated infinitesimal generator
has the correct steady state

Nul(A(u)T )T y = y∗,

and then using this steady state to compute the variance

E(y − y∗)2.

The relation between setpoint, integrator gain, and stan-
dard deviation at steady state are shown in Fig. 11. Each data
point was collected by setting γ and estimating the stan-
dard deviation at steady state. This approach limits small-
est value of γ we can feasibly simulate, since small values
slow down the system dynamics and make simulations pro-
hibitively computationally expensive.

We observe that less aggressive values of γ result in
a smaller standard deviation of the output. The upper and
lower limits of the standard deviation correspond to open
loop and bang-bang control. Another interesting feature of
Fig. 11 is that the standard deviation of the output is less
sensitive to γ if the reference y∗ is close to the edge of the
controllable region.

The dependence of the variance on the integrator gain
suggests that very low values of γ result in the lowest steady
state variance. However, there is a tradeoff between speed
of convergence and steady state variance. When γ is small,
then the dynamics of the integrator variable x are slow.
When the integrator dynamics are much slower than the
open loop dynamics then the small integrator gain is the lim-
iting factor in reaching steady state. In many cases slow re-
sponse times are undesirable, even if these result in a smaller
steady state variance. Lowering the integrator timescale by
increasing γ can decrease the convergence time at the cost
of a higher steady state variance.

Note, that the controllable region in the simulated sys-
tem is shifted up from the physical system. This is likely
due to the charging behavior of the active robots, which is

Fig. 11 Standard deviation of output for different setpoints and in-
tegrator constants γ . The dashed line at the bottom corresponds the
standard deviation when the system is under open loop control. The
dash-dot line at the top corresponds to the standard deviation of the
system when driven with a bang-bang controller and the input is al-
ways saturated. Each standard deviation is estimated from 200 simula-
tion trajectories

modeled as exponential in the simulation, but actually has
a different distribution. Each disassembly takes roughly the
same amount of energy. However, regardless of the exact lo-
cation of the controllable region, we expect the qualitative
behavior of the variance to be similar, especially since the
network structure is the same. What is important about the
controllable region is that setpoints inside it can be reached.

7 Conclusions and future work

We proposed an integral feedback controller for controlling
the average copy number of an arbitrary species in a sys-
tem modeled as a tunable reaction network. We prove that
the controller tracks a reference in mean and demonstrate
the approach on an robotic experimental platform. We also
present some preliminary simulation results regarding the
variance of the copy number as a function of the integra-
tor gain and setpoint. We are currently working on analyti-
cal results describing the steady state variance of the control
scheme.

Finally, we would like to emphasize the generality of our
approach. This control scheme works for any tunable reac-
tion network and requires no tweaking of the integrator gain
γ as long as the reference is in the controllable region, which
is easy to measure experimentally. Also, the tunable reaction
network model is quite general since the variable rate input
can model a wide variety of physical mechanisms. While
we presented an example system with relatively large com-
ponents, we believe that the presented or similar approaches
will be especially useful in the context of many microscopic
components.
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In the future we would like to find ways to decentral-
ize the controller by using local estimates of the global out-
put. In particular, we want to implement this control scheme
with other chemical reactions. For example, the continuous
state could correspond to a high copy number species where
the mass action kinetics approximation works well. Such an
implementation would open the door to using the proposed
control scheme in many other settings, such as biological
systems.
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