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Abstract: Neural interfaces provide novel opportunities for augmenting human capabilities in
domains like human-machine interaction, brain-computer interfaces, and rehabilitation. How-
ever, the performance of these interfaces varies significantly across users. Decoders that adapt to
individual users have the potential to reduce variability and improve performance but introduce
a “two-learner” problem as the user simultaneously adapts to the changing decoder. We propose
and experimentally test a game-theoretic framework to optimize closed-loop performance of a
myoelectric interface for continuous control (based on surface electromyography, sEMG) through
co-adaptation of the user and decoder. Human subjects learned to use our interface to perform
a two-dimensional trajectory-tracking task. Closed-loop performance was affected by decoder
learning rate but not by initialization or decoder cost weights. Our study indicates the potential
for co-adaptation in humans and machines to optimize the performance of neural interfaces.
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1. INTRODUCTION

Direct control of devices using neural activity has many ap-
plications, including brain-computer interfaces to restore
function (BCIs) (Carmena, 2013; Shanechi et al., 2017),
human-machine interfaces (HMIs) (De Santis, 2021), reha-
bilitation (Reinkensmeyer et al., 2016; Li et al., 2016), neu-
roprosthetics (Hochberg et al., 2012), and augmenting hu-
man capabilities (Willett et al., 2021). However, variability
in the efficacy of neural interfaces across users (Zhang
et al., 2020) and variability in neural signals within a single
user over time (Yamagami et al., 2018) present challenges
to the safety and performance of these interfaces.

In such scenarios, interfaces that seamlessly adapt to
users while also shaping how the user learns to control
the interface are desirable. Such co-adaptive interfaces
are more robust to variability across and within users
by jointly optimizing the closed-loop interaction between
the user and device. Previous studies explored how co-
adaptation can reduce task error (Müller et al., 2017;
Orsborn et al., 2014, 2012) and maximize interaction
efficiency (De Santis, 2021). For example, Orsborn et al.
(2014) proposes and validates SmoothBatch, a closed-
loop adaptation algorithm that iteratively updates the
decoder to reduce task error. However, algorithms that
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only consider error and ignore user effort lack theoretical
guarantees of convergence.

Co-adaptive human-machine interfaces present a “two-
learner” problem. Both the human and machine are learn-
ing in a closed-loop alongside each other. Game theory has
been proposed in recent years as a framework to study two-
learner dynamics in sensorimotor control (Braun et al.,
2009; Li et al., 2019, 2016; Müller et al., 2017; Madduri
et al., 2021). In particular, game theory provides tech-
niques for predicting convergence to and stability of sta-
tionary points in two-learner systems (Ratliff et al., 2013;
Başar and Olsder, 1999). Although general-sum games can
arise in sensorimotor interactions (Braun et al., 2009), we
contend that the special case of potential games (Monderer
and Shapley, 1996), where the incentives of both learners
are aligned, are particularly relevant in neural control
applications. Prior studies have leveraged potential games
to explore how human-decoder interactions co-adapt with
practice, both in simulation (Madduri et al., 2021) and in
human-subject experiments (Li et al., 2016, 2019). For ex-
ample, (Li et al., 2019) modeled a robot and human phys-
ically interacting using game theory, and demonstrated
that each learner estimating the other’s controller will
converge to the Nash equilibrium. Such two-learner models
could predict and shape the evolution of user-decoder
dynamics. However, predictions from the game-theoretic
framework have not yet been experimentally tested for
neural interfaces.
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Başar and Olsder, 1999). Although general-sum games can
arise in sensorimotor interactions (Braun et al., 2009), we
contend that the special case of potential games (Monderer
and Shapley, 1996), where the incentives of both learners
are aligned, are particularly relevant in neural control
applications. Prior studies have leveraged potential games
to explore how human-decoder interactions co-adapt with
practice, both in simulation (Madduri et al., 2021) and in
human-subject experiments (Li et al., 2016, 2019). For ex-
ample, (Li et al., 2019) modeled a robot and human phys-
ically interacting using game theory, and demonstrated
that each learner estimating the other’s controller will
converge to the Nash equilibrium. Such two-learner models
could predict and shape the evolution of user-decoder
dynamics. However, predictions from the game-theoretic
framework have not yet been experimentally tested for
neural interfaces.

Co-Adaptive Myoelectric Interface for
Continuous Control ⋆

Maneeshika M. Madduri ∗ Momona Yamagami ∗

Augusto X. T. Millevolte ∗ Si Jia Li ∗∗

Sasha N. Burckhardt ∗∗∗ Samuel A. Burden ∗

Amy L. Orsborn ∗,∗∗

∗ University of Washington, Department of Electrical & Computer
Engineering, Seattle, WA 98195 USA.

∗∗ University of Washington, Department of Bioengineering, Seattle,
WA 98195 USA.

∗∗∗ University of Washington, Department of Neuroscience, Seattle,
WA 98195 USA.

Abstract: Neural interfaces provide novel opportunities for augmenting human capabilities in
domains like human-machine interaction, brain-computer interfaces, and rehabilitation. How-
ever, the performance of these interfaces varies significantly across users. Decoders that adapt to
individual users have the potential to reduce variability and improve performance but introduce
a “two-learner” problem as the user simultaneously adapts to the changing decoder. We propose
and experimentally test a game-theoretic framework to optimize closed-loop performance of a
myoelectric interface for continuous control (based on surface electromyography, sEMG) through
co-adaptation of the user and decoder. Human subjects learned to use our interface to perform
a two-dimensional trajectory-tracking task. Closed-loop performance was affected by decoder
learning rate but not by initialization or decoder cost weights. Our study indicates the potential
for co-adaptation in humans and machines to optimize the performance of neural interfaces.

Keywords: human-in-the-loop systems, neural interfaces, sensorimotor control

1. INTRODUCTION

Direct control of devices using neural activity has many ap-
plications, including brain-computer interfaces to restore
function (BCIs) (Carmena, 2013; Shanechi et al., 2017),
human-machine interfaces (HMIs) (De Santis, 2021), reha-
bilitation (Reinkensmeyer et al., 2016; Li et al., 2016), neu-
roprosthetics (Hochberg et al., 2012), and augmenting hu-
man capabilities (Willett et al., 2021). However, variability
in the efficacy of neural interfaces across users (Zhang
et al., 2020) and variability in neural signals within a single
user over time (Yamagami et al., 2018) present challenges
to the safety and performance of these interfaces.

In such scenarios, interfaces that seamlessly adapt to
users while also shaping how the user learns to control
the interface are desirable. Such co-adaptive interfaces
are more robust to variability across and within users
by jointly optimizing the closed-loop interaction between
the user and device. Previous studies explored how co-
adaptation can reduce task error (Müller et al., 2017;
Orsborn et al., 2014, 2012) and maximize interaction
efficiency (De Santis, 2021). For example, Orsborn et al.
(2014) proposes and validates SmoothBatch, a closed-
loop adaptation algorithm that iteratively updates the
decoder to reduce task error. However, algorithms that

⋆ Funding: Meta Research; a National Science Foundation Graduate
Research Fellowship to AXTM; and a National Defense Science and
Engineering Graduate Fellowship Program to MMM.

only consider error and ignore user effort lack theoretical
guarantees of convergence.

Co-adaptive human-machine interfaces present a “two-
learner” problem. Both the human and machine are learn-
ing in a closed-loop alongside each other. Game theory has
been proposed in recent years as a framework to study two-
learner dynamics in sensorimotor control (Braun et al.,
2009; Li et al., 2019, 2016; Müller et al., 2017; Madduri
et al., 2021). In particular, game theory provides tech-
niques for predicting convergence to and stability of sta-
tionary points in two-learner systems (Ratliff et al., 2013;
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In this paper, we propose and experimentally test a game-
theoretic framework to optimize closed-loop performance
of a myoelectric interface (using surface electromyography,
sEMG) through co-adaptation of the user and decoder. In
particular, we model the user and decoder as two players in
a potential game and implement a natural (co-)adaptation
strategy for the decoder: iteratively update to minimize
the decoder’s cost. In a human subjects experiment with
seven participants, we found that the user and decoder
co-adapt to significantly improve tracking performance
during a five-minute two-dimensional trajectory-tracking
task. We explored three different decoder adaptation pa-
rameters: (1) decoder learning rate (i.e., rate of decoder
adaptation), (2) decoder initialization, and (3) decoder
cost weight (i.e., scaling of the decoder cost function).
We found that decoder learning rate affected performance:
the slower learning rate led to better tracking performance
than the faster learning rate. We additionally found that
decoder initialization location affected final decoder loca-
tion but not task performance. Neither decoder initializa-
tion nor decoder cost weight affected task performance.
Our findings indicate the potential for game-theoretic al-
gorithms to optimize the performance of neural interfaces.

2. PROBLEM FORMULATION

We model the user and decoder as two players that interact
in a closed-loop dynamic game (Başar and Olsder, 1999)
wherein the user produces myoelectric signal s(t) ∈ RN

that the decoder transforms into cursor position y(t) ∈ R2

to track the target trajectory τ(t) ∈ R2.

We use a velocity-based decoder,

v(t) = D · s(t), y(t) = y(0) +

∫ t

0

v(σ) dσ, (1)

where the matrix D ∈ R2×N is synthesized by minimizing
a linear combination of two costs – task error and decoder
effort – defined by

error = ∥D · s− (τ̇ − ẏ)∥22 , effort = ∥D∥2F ; (2)

here ẋ denotes the time derivative and ∥x∥2 denotes the
2-norm of signal x : [0, t] → Rd, and ∥M∥F denotes
the Frobenius norm of matrix M ∈ Rm×n. Minimizing
velocity error (2) is a common objective for invasive
BCI (Orsborn et al., 2014; Wodlinger et al., 2015); we
additionally consider the decoder effort in (2) because
our theoretical analysis suggests that it is necessary to
ensure the co-adaptation game has well-defined stationary
points (Madduri et al., 2021).

The linear combination of error and effort that defines
decoder cost c(D) is determined by weighting λ > 0 as

c(D) = ∥D · s− (τ̇ − ẏ)∥22 + λ ∥D∥2F . (3)

Under the hypothesis that users also seek to optimize a
linear combination of task error and user effort analogous
to (2), the user and decoder play a potential game (Hes-
panha, 2017, Ch. 12) whose theoretical properties have
been the subject of a previous study (Madduri et al., 2021).

3. EXPERIMENTAL METHODS

Human subjects participants gave their informed consent
prior to experimentation, according to study procedures
approved by the University of Washington’s Institutional
Review Board (IRB #STUDY00014060).

3.1 Task

Participants were tasked with producing myographic sig-
nals to control a cursor to follow a target trajectory on
a 2-dimensional computer display (Fig. 1). Participants
were instructed to keep their cursor as close to the target
as possible at all times.

The target trajectory was generated as a sum of two sinu-
soids with frequencies 0.10 and 0.25 Hz in the horizontal
direction and 0.15 and 0.35 Hz in the vertical direction;
to reduce the predictability of the target trajectory, the
phases of the sinusoids were selected uniformly at random
at the beginning of each trial. The target and cursor
positions were updated and displayed at 60 Hz.

3.2 Conditions

The role of (1) decoder learning rate, (2) decoder initial-
ization, and (3) decoder cost weight on co-adaptive system
performance was tested.

(1) two different decoder learning rates were tested: slow
(α = 0.75) and fast (α = 0.25).

(2) two randomized initializations of the D decoder ma-
trix were used: positive (matrix elements chosen uni-
formly at random in the range [0, 10−2]) and negative
(elements chosen uniformly at random in [−10−2, 0]).

(3) two decoder cost weights were tested: low (λ = 102)
and high (λ = 103).

All combinations of the 2 learning rates, 2 initializations,
and 2 decoder cost weights were tested for a total of 8
different conditions (2 learning rates × 2 initializations × 2
decoder cost weights). Each trial was 5 minutes long. This
block of 8 trials was repeated twice for each participant
with a 5-minute break in between blocks, and the order of
conditions was randomized within blocks.

3.3 Data Acquisition, Filtering, and Processing

EMG signals were obtained using a Quattrocento system
(Bioelettronica, Italy). A 64-channel electrode array (4mm
inter-electrode spacing, 5x13 electrode rectangular layout)
was placed around the forearm to target recordings from
the Extensor Carpi Radialis. Electrodes were placed on the
dominant arm for each subject. Once placed, the electrode
array was wrapped with Coban self-adherent wrap (3M,
Saint Paul, Minnesota).

Raw EMG signals were obtained using Biolite Software
(Bioelecttronica, Italy) at 2048 Hz on Differential Mode
with the built-in low-pass filter of 130 Hz and a high-pass
filter of 10 Hz. The EMG signals were then filtered by
delinearizing two consecutive 50 ms time windows with no
overlap, and then taking the average of the delinearized
signal to be used as the user input s (Yamagami et al.,
2020). EMG data were mapped to cursor position as in (1).
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In this paper, we propose and experimentally test a game-
theoretic framework to optimize closed-loop performance
of a myoelectric interface (using surface electromyography,
sEMG) through co-adaptation of the user and decoder. In
particular, we model the user and decoder as two players in
a potential game and implement a natural (co-)adaptation
strategy for the decoder: iteratively update to minimize
the decoder’s cost. In a human subjects experiment with
seven participants, we found that the user and decoder
co-adapt to significantly improve tracking performance
during a five-minute two-dimensional trajectory-tracking
task. We explored three different decoder adaptation pa-
rameters: (1) decoder learning rate (i.e., rate of decoder
adaptation), (2) decoder initialization, and (3) decoder
cost weight (i.e., scaling of the decoder cost function).
We found that decoder learning rate affected performance:
the slower learning rate led to better tracking performance
than the faster learning rate. We additionally found that
decoder initialization location affected final decoder loca-
tion but not task performance. Neither decoder initializa-
tion nor decoder cost weight affected task performance.
Our findings indicate the potential for game-theoretic al-
gorithms to optimize the performance of neural interfaces.

2. PROBLEM FORMULATION

We model the user and decoder as two players that interact
in a closed-loop dynamic game (Başar and Olsder, 1999)
wherein the user produces myoelectric signal s(t) ∈ RN

that the decoder transforms into cursor position y(t) ∈ R2

to track the target trajectory τ(t) ∈ R2.

We use a velocity-based decoder,

v(t) = D · s(t), y(t) = y(0) +

∫ t

0

v(σ) dσ, (1)

where the matrix D ∈ R2×N is synthesized by minimizing
a linear combination of two costs – task error and decoder
effort – defined by

error = ∥D · s− (τ̇ − ẏ)∥22 , effort = ∥D∥2F ; (2)

here ẋ denotes the time derivative and ∥x∥2 denotes the
2-norm of signal x : [0, t] → Rd, and ∥M∥F denotes
the Frobenius norm of matrix M ∈ Rm×n. Minimizing
velocity error (2) is a common objective for invasive
BCI (Orsborn et al., 2014; Wodlinger et al., 2015); we
additionally consider the decoder effort in (2) because
our theoretical analysis suggests that it is necessary to
ensure the co-adaptation game has well-defined stationary
points (Madduri et al., 2021).

The linear combination of error and effort that defines
decoder cost c(D) is determined by weighting λ > 0 as

c(D) = ∥D · s− (τ̇ − ẏ)∥22 + λ ∥D∥2F . (3)

Under the hypothesis that users also seek to optimize a
linear combination of task error and user effort analogous
to (2), the user and decoder play a potential game (Hes-
panha, 2017, Ch. 12) whose theoretical properties have
been the subject of a previous study (Madduri et al., 2021).

3. EXPERIMENTAL METHODS

Human subjects participants gave their informed consent
prior to experimentation, according to study procedures
approved by the University of Washington’s Institutional
Review Board (IRB #STUDY00014060).

3.1 Task

Participants were tasked with producing myographic sig-
nals to control a cursor to follow a target trajectory on
a 2-dimensional computer display (Fig. 1). Participants
were instructed to keep their cursor as close to the target
as possible at all times.

The target trajectory was generated as a sum of two sinu-
soids with frequencies 0.10 and 0.25 Hz in the horizontal
direction and 0.15 and 0.35 Hz in the vertical direction;
to reduce the predictability of the target trajectory, the
phases of the sinusoids were selected uniformly at random
at the beginning of each trial. The target and cursor
positions were updated and displayed at 60 Hz.

3.2 Conditions

The role of (1) decoder learning rate, (2) decoder initial-
ization, and (3) decoder cost weight on co-adaptive system
performance was tested.

(1) two different decoder learning rates were tested: slow
(α = 0.75) and fast (α = 0.25).

(2) two randomized initializations of the D decoder ma-
trix were used: positive (matrix elements chosen uni-
formly at random in the range [0, 10−2]) and negative
(elements chosen uniformly at random in [−10−2, 0]).

(3) two decoder cost weights were tested: low (λ = 102)
and high (λ = 103).

All combinations of the 2 learning rates, 2 initializations,
and 2 decoder cost weights were tested for a total of 8
different conditions (2 learning rates × 2 initializations × 2
decoder cost weights). Each trial was 5 minutes long. This
block of 8 trials was repeated twice for each participant
with a 5-minute break in between blocks, and the order of
conditions was randomized within blocks.

3.3 Data Acquisition, Filtering, and Processing

EMG signals were obtained using a Quattrocento system
(Bioelettronica, Italy). A 64-channel electrode array (4mm
inter-electrode spacing, 5x13 electrode rectangular layout)
was placed around the forearm to target recordings from
the Extensor Carpi Radialis. Electrodes were placed on the
dominant arm for each subject. Once placed, the electrode
array was wrapped with Coban self-adherent wrap (3M,
Saint Paul, Minnesota).

Raw EMG signals were obtained using Biolite Software
(Bioelecttronica, Italy) at 2048 Hz on Differential Mode
with the built-in low-pass filter of 130 Hz and a high-pass
filter of 10 Hz. The EMG signals were then filtered by
delinearizing two consecutive 50 ms time windows with no
overlap, and then taking the average of the delinearized
signal to be used as the user input s (Yamagami et al.,
2020). EMG data were mapped to cursor position as in (1).

Fig. 1. (Left) The participant is tasked with following the red target by controlling the blue cursor. Participants
controlled the blue cursor with the 64-channel Quattrocento EMG sensor on their forearm. (Right) Block diagram
illustrating the transformation of myographic signals to the computer display.

3.4 Decoder Adaptation

Closed-loop decoder adaptation was performed to update
the EMG-cursor movement transformation as the partic-
ipant controlled the interface. Decoder adaptation used
a supervised learning algorithm. The training signal is
provided by inferring the user’s intended velocity based on
task goals, assuming that the user intends to move towards
the provided target (Orsborn et al., 2012; Gilja et al.,
2012). Decoder parameters were updated using a frame-
work derived from the SmoothBatch algorithm (Orsborn
et al., 2012). Rather than only task error, the cost function
in (3), which combines error and effort, was minimized to
determine optimal decoder parameters.

The decoder was updated iteratively using 20 second
batches of data. Given a batch of data, the minimum D∗

of the cost (3) was computed,

D∗ = min
D

c(D), (4)

and the updated decoder D+ was determined using the
SmoothBatch scheme (Orsborn et al., 2012), that is, by a
convex combination of D and D∗,

D+ = αD + (1− α)D∗. (5)

3.5 Data Analysis

Our primary metric for task performance was time-domain
tracking error computed as the 2-norm between the target
and cursor positions, ∥τ − y∥2. For computing changes in
task performance across the trial, we looked at relative er-
ror,

errorfi

errori
×100%, where errorfi = errorfinal - errorinitial.

We also compared the distance between final decoders of
different initializations. To do so, we computed the average
last final three decoders for each initialization (averaging
across learning rates, blocks, and subjects), and then com-
pared the distance between the initialization mean and
each subject’s initialization, ||Dfinal,avg - Dfinal,subj ||2F .
The average performance of the first and last 20 seconds
of the trial was used to compute the statistical signifi-
cance of changes within trials. All analyses treat subjects
as individual data points and take the median across
other conditions (learning rate, initialization, decoder cost
weight, and blocks). Statistical significance was assessed
using the non-parametric Wilcoxon signed-rank tests.

4. EXPERIMENTAL RESULTS

A total of 7 people (3 women, 3 men, and 1 who declined
to answer) participated in the study. Participants were
primarily right-handed (6 right-hand, 1 left-hand; 57% all
dominant, 29% mostly dominant, and 14% ambidextrous
in handedness), with an average weight and standard
deviation of 141±19.3 lbs, a height of 66±3.5 in, a forearm
circumference of 9.6± 1.0 in and an age of 23± 3.0 years.
All participants were daily computer users.

4.1 Co-Adaptation Improved Trajectory-Tracking

Task performance, as measured by time-domain tracking
error, improved within individual trials (Fig. 2): comparing
tracking error for the first to the last 20 seconds across
all conditions (learning rate, initialization, decoder effort
weight, and trial block), we found that performance sig-
nificantly improved within trials (Fig. 3).

4.2 Decoder Learning Rate Affected Performance

The slow learning rate yielded better tracking performance
(Fig. 4): comparing the relative error between the first
and last 20 seconds, we found a significantly greater
improvement in performance for the slow learning rate
than for the fast learning rate (Fig. 5a).

4.3 Decoder Initialization Affected Final Decoder

Comparing the relative error of the first to the last 20 sec-
onds between positive and negative decoder initializations,
we found no significant impact on performance (Fig. 5b).
Final task performance did not differ significantly between
the two initializations. However, the final decoder solutions
were influenced by initialization: the distance between final
decoders was smaller within the same initialization than
across initializations (Fig. 6).

4.4 Decoder Cost Weight Affected Decoder Effort

Comparing the relative error of the first to the last 20
seconds between the high and low decoder cost weights, we
found no significant effect on task performance (Fig. 5c).
However, we did observe an effect on the Frobenius norm
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Fig. 2. Comparison of the target (red dashed trace, τ) and cursor (blue straight trace, y) positions over time for one
example trial for one subject. The y-axis is normalized coordinates and the x-axis is the time in minutes within the
trial. The black vertical lines represent decoder adaptations. Horizontal (x) and vertical (y) positions are shown in
the top and bottom plots, respectively.

Fig. 3. Time-domain tracking error (Euclidean distance
between target and cursor position, ||τ−y||2) averaged
over the first 20 seconds and the last 20 seconds.
Median error across all conditions (learning rates,
decoder initializations, decoder cost weights, blocks)
for each subject; statistical comparisons across sub-
jects (N = 7) with a Wilcoxon signed-rank test
(p = 0.016).

of the decoder based on the decoder cost weight (Fig. 7).
The decoder Frobenius norm is overall higher for the low
decoder cost weight than for the high decoder cost weight.

5. DISCUSSION

This is the first study to test co-adaptive myoelectric
interfaces for 2D-continuous control. We observed that
updating a randomly-initialized decoder to minimize task
error and decoder effort enabled users to control a 2-
dimensional trajectory-tracking task with no calibration.
Performance was affected by decoder learning rate but not
by initialization nor by cost weights. However, decoder
initialization and cost weights influenced the final decoder,
suggesting a potential avenue to influence user learning.

Fig. 4. Median tracking error per subject (N = 7) over the
five-minute trial, separated by decoder learning rate
(slow vs fast). Error was calculated at each timepoint
and smoothed with a low-pass filter over 5 seconds
for visualization. Solid lines show the median, and
shading shows 25% interquartiles.

In contrast to prior work that optimized exclusively for
task error (Orsborn et al., 2012, 2014; Müller et al., 2017)
or interaction efficiency (De Santis, 2021), our experiments
employed a new decoder adaptation scheme that opti-
mized a cost function that captures the trade-offs of a
two-learner human-decoder interface. Similar to previous
studies (Orsborn et al., 2012), our co-adaptive framework
yielded rapid calibration independent of initialization. But
our framework can potentially shape both the decoder
and the human by changing parameters such as decoder
learning rate, initialization, and cost weights.

Similarly to previous studies of learning rate on human-
decoder co-adaptation that optimized for task error (Müller
et al., 2017), we found that a slow learning rate resulted
in a lower task error than a fast learning rate. This may
be because slow decoder adaptation is less affected by
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5. DISCUSSION

This is the first study to test co-adaptive myoelectric
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updating a randomly-initialized decoder to minimize task
error and decoder effort enabled users to control a 2-
dimensional trajectory-tracking task with no calibration.
Performance was affected by decoder learning rate but not
by initialization nor by cost weights. However, decoder
initialization and cost weights influenced the final decoder,
suggesting a potential avenue to influence user learning.

Fig. 4. Median tracking error per subject (N = 7) over the
five-minute trial, separated by decoder learning rate
(slow vs fast). Error was calculated at each timepoint
and smoothed with a low-pass filter over 5 seconds
for visualization. Solid lines show the median, and
shading shows 25% interquartiles.

In contrast to prior work that optimized exclusively for
task error (Orsborn et al., 2012, 2014; Müller et al., 2017)
or interaction efficiency (De Santis, 2021), our experiments
employed a new decoder adaptation scheme that opti-
mized a cost function that captures the trade-offs of a
two-learner human-decoder interface. Similar to previous
studies (Orsborn et al., 2012), our co-adaptive framework
yielded rapid calibration independent of initialization. But
our framework can potentially shape both the decoder
and the human by changing parameters such as decoder
learning rate, initialization, and cost weights.

Similarly to previous studies of learning rate on human-
decoder co-adaptation that optimized for task error (Müller
et al., 2017), we found that a slow learning rate resulted
in a lower task error than a fast learning rate. This may
be because slow decoder adaptation is less affected by

Fig. 5. Median relative error across all blocks and (a)
for each learning rates for each subject, (b) for each
decoder initialization for each subject, (c) for each
decoder cost weight λ for each subject; statistical com-
parisons across conditions (N = 7) with a Wilcoxon
signed-rank test ((a) p = 0.016, (b) p = 0.938,
(c) p = 0.578). Only (a) is statistically significant
(p < 0.05)).

Fig. 6. Sum of squared difference from the group mean
for final decoders with either initializations, positive
(+) and negative (−), (||Dfinal,avg - Dfinal,subj ||2F ).
For example, the label +− is ||D+,final,avg -
D−final,subj ||2F . Statistical comparisons across sub-
jects (N = 7) with a paired Wilcoxon signed-rank
test. (++ to +−: p = 0.016, +− to −+: p = 0.078,
−+ to −−: p = 0.016).

random fluctuations in myoelectric activity or changes
in human effort. Performance outcomes could differ with
longer trials. Studying variability and performance over
longer time scales is important for future work.

Our preliminary analysis suggests that decoder initializa-
tion location did not affect task performance, but initial-
ization location did affect the final decoder. The robustness
of task performance despite varying decoder initialization
locations is congruent with prior co-adaptive algorithms
that solely optimized for task performance (Orsborn et al.,
2012; Shanechi et al., 2016). Initial performance is a result
of the random decoder initialization, so low variance in
initial performance across subjects does not reflect sub-

Fig. 7. Decoder norm (||D||2F ) distributions (solid lines
show the median, shading shows 25% interquartiles)
for median decoder cost weight per subject (N =
7) across conditions (blocks, learning rate, decoder
initialization). Markers indicate decoder updates.

ject performance. Final performance is due to decoder
adaptation and user performance, hence the larger vari-
ance across subjects in final versus initial performance.
Our finding that the decoder initialization location affects
learned decoders is consistent with prior work that theoret-
ically highlighted the existence of multiple equilibria in co-
adaptive human-decoder systems (Madduri et al., 2021).
In particular, the theoretical analysis in Madduri et al.
(2021) suggested that decoder initialization may bias the
system towards different equilibria, which we may have
observed in this study. Additional analyses and longer-
term experiments may help quantify the system equilibria
and the effect of decoder initialization location on the final
decoder location. We also acknowledge that experiments
with a higher number of subjects would be valuable to
strengthen these results.

Lastly, our experiments suggest that decoder cost weights
influenced the learned decoder without impacting task per-
formance. This finding that a higher decoder cost weight
led to a lower decoder Frobenius norm is consistent with
theoretical expectations of minimizing the decoder cost.
Task performance being unaffected by different decoder
norms suggests that users may be able to learn multiple
decoders. Users might be potentially compensating for
different decoders in their learned strategies. A particu-
larly compelling question for future work is whether the
user’s encoding or control strategy is biased by the decoder
parameters of the learning rate, initialization, and cost
weights.

6. CONCLUSION

Designing neural interfaces that can adapt to a wide range
of users is key to improving neural interface adoption
and usability. Neural interfaces that adapt to individual
users and shape user learning through co-adaptation could
lead to individualized and robust neural interfaces. We
approach the analysis and synthesis of co-adaptive neural
interfaces from a game-theoretic perspective that treats
the human and decoder as two independent agents in a
game. This paper informs an initial exploration of the
effect of a game-theoretic adaptive decoder framework and
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differing parameters on user learning. Our future work
plans to further explore the effect of decoder initializa-
tion and decoder cost parameters on user encoding and
learning.
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