
Article

A hybrid dynamical extension of
averaging and its application to the
analysis of legged gait stability

The International Journal of

Robotics Research

2018, Vol. 37(2–3) 266–286

© The Author(s) 2018

Reprints and permissions:

sagepub.co.uk/journalsPermissions.nav

DOI: 10.1177/0278364918756498

journals.sagepub.com/home/ijr

Avik De1, Samuel A Burden2 and Daniel E Koditschek1

Abstract

We extend a smooth dynamical systems averaging technique to a class of hybrid systems with a limit cycle that is partic-

ularly relevant to the synthesis of stable legged gaits. After introducing a definition of hybrid averageability sufficient to

recover the classical result, we illustrate its applicability by analysis of first a one-legged and then a two-legged hopping

model. These abstract systems prepare the ground for the analysis of a significantly more complicated two legged model:

a new template for quadrupedal running to be analyzed and implemented on a physical robot in a companion paper. We

conclude with some rather more speculative remarks concerning the prospects for further extension and generalization of

these ideas.
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1. Introduction

The emergence of physically motivated and mathematically

tractable hybrid models (Burden et al., 2015, 2016; John-

son et al., 2016) offers the prospect of extending classical

ideas and techniques of dynamical systems theory for appli-

cation to new settings arising from the repeated making

and breaking of contacts endemic to robotic mobility and

manipulation. In this paper, we work at the intersection of a

class of tractable hybrid legged locomotion models (John-

son et al., 2016) with a class of well-behaved hybrid limit

cycle models (Burden et al., 2015) to generalize an initial

result (De and Koditschek, 2015a) on the stability of “aver-

ageable” hybrid oscillators. Specifically, we extend a clas-

sical smooth dynamical averaging technique to a class of

hybrid systems with a limit cycle that is particularly relevant

to the synthesis of stable gaits.

We also present three applications of the new averag-

ing result to prove stability of hybrid limit cycles, first

for an isolated vertically hopping leg, then for two phys-

ically decoupled (but informationally coupled) vertically

hopping legs exhibiting in-phase (“pronking”) and anti-

phase (“bounding”) limiting phase offsets. In a companion

paper, we use the same result to prove stability in a mechan-

ically coupled pair of vertical hoppers (De and Koditschek,

2018), a model that provides remarkable insight into pre-

flexive and feedback stabilization of these gaits on a phys-

ical quadruped machine. A list if important symbols used

throughout the paper is given in Table 1.

1.1. Relation to prior literature

Classical averaging (Guckenheimer and Holmes, 1990,

Ch. 4.1) yields a method of approximating (with error

bounds) solutions of the T-periodic vector field (1) using

the averaged vector field (3). As in the classical case, our

new hybrid results guarantee equivalence in stability type to

a simpler approximant (named the averaged system) of the

system of interest. Specifically, we show that if the return

map of the averaged system has a hyperbolic periodic orbit,

then so does the original system, and additionally the lin-

earizations of the return maps are ε2-close (and, thus, share

the same eigenvalues and eigenvectors to O(ε)).

This paper is also related to previous stability analyses

of hybrid oscillators appearing in locomotion for a single

vertical hopper (Koditschek and Buehler, 1991), as well as

informationally coupled, physically decoupled vertical hop-

pers (Klavins and Koditschek, 2002; Klavins et al., 2000).

Application of the hybrid averaging result in these instances

yields a greater analytical simplification than has been pos-

sible before. In fact, we show in our analysis that the

nonlinear stance dynamics in our vertical hopper (Section
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4.1) can be reduced to an “averaged” continuous dynam-

ics that appears as a phase-independent proportional con-

troller on the energy (43). Whereas single-vertical-hopper

stability results have been obtained before without averag-

ing (e.g. Koditschek and Buehler, 1991), the more complex

latter instance (informationally coupled vertical hoppers)

has heretofore only been analyzed in the context of a sim-

plified, integrable Hamiltonian (i.e. lossless) stance model

(Klavins and Koditschek, 2002, equation (20)). Integrable

stance dynamics allowed for a discrete return map con-

trol strategy (Klavins and Koditschek, 2002, equation (26)),

but cannot be extended to more general (e.g. two degrees

of freedom (DOFs) or greater) non-integrable dynami-

cal templates such as the so-called spring-loaded inverted

pendulum (SLIP) (Saranli et al., 1998). Hybrid averaging

allows us to analyze with relative ease the general (non-

Hamiltonian) paired vertical hopper plant model obviat-

ing the need to integrate the time-varying flow and, rather,

requiring only examination of its reduced-dimensional,

simplified, averaged approximant (Section 4). Formal sta-

bility analyses of such non-integrable 2-DOF models has

not been achieved thus far in the literature, leading past

researchers to resort to numerical methods (Poulakakis,

2006; Shahbazi and Lopes, 2016). Further work is cur-

rently underway to use hybrid averaging in conjunction with

observations on time-reversal symmetry (Altendorfer et al.,

2004; Razavi et al., 2016) to provide stability analyses of

still higher DOF coupled systems including the SLIP tem-

plate (Full and Koditschek, 1999) and its anchoring physi-

cal models that encode fore–aft motion as well as vertical

travel.

1.2. Contributions and organization

After proving the formal result, we first apply it to a simple

1-DOF vertical hopper to provide a lightweight illustra-

tion of how its hypotheses, inherited (and rendered some-

what more intricate by extension) from the classical setting,

extend beyond the narrow sufficient conditions first artic-

ulated in De and Koditschek (2015a) and review how the

limit cycle it guarantees represents the gait of a single-

legged runner. We then apply the result to a pair of such

vertical hoppers coupled via a three-parameter family of

feedback gains. Two different parameter settings require

two rather different strategies for its application and yield

two different limit cycles, one exhibiting an in-phase and

the other an anti-phase relation between the two hoppers.

In the companion paper (De and Koditschek, 2018), we

further couple these vertical hoppers mechanically to reveal

a simplified model of quadrupedal running that we call

the “slot-hopper” template (using the terminology of Full

and Koditschek (1999)). In that more intricate setting, we

show how further effort in the application of this paper’s

results yields a complete analysis of virtual bipedal gaits for

quadrupedal running-in-place wherein the in-phase limit

cycle encodes stable pronking-in-place while the anti-phase

limit cycle encodes stable bounding-in-place anchored by a

physical robot.

Section 2 first introduces and proves the averaging result

for hybrid systems in a single domain with non-overlapping

guards and fixed time-of-flow (Theorem 2). Subsequently,

in Theorem 3, we provide a condition under which the

more general case (where the flow time between resetting is

not constant) reduces to the former case (by appropriately

redefining the reset map).

Section 3 introduces a motivational physical model on

which to demonstrate and offer something of a tutorial

on how to use our results. We choose a pair of verti-

cally constrained hoppers for their dynamical simplicity (in

this paper we leave them physically uncoupled) notwith-

standing their applicability to the understanding of virtual

bipedal gaits exhibited by physical bipedal or quadrupedal

machines.

Section 4 illustrates the utility of this result from Section

2 to the stability analysis of the models introduced in Sec-

tion 3 by application of Theorem 2 or 3. We offer accompa-

nying simulation results in Section 5 suggesting the physi-

cal relevance of this theory that will be demonstrated in the

companion paper (De and Koditschek, 2018).

Section 6 concludes with a discussion of the limitations

in the presently required conditions and some more specu-

lative remarks on their relaxation as well as extensions to

facilitate applications to higher-dimensional problems.

2. Hybrid averaging

2.1. Classical averaging (background)

Following (Guckenheimer and Holmes, 1990), consider a

time-varying system

ẋ = εf (x, t, ε) ; x ∈ U ⊂ R
n, 0 < ε � 1 (1)

The averaged system is defined as

ẏ = ε
1

T

∫ T

0

f (y, t, 0) dt =: εf (y) (2)

Note that y is used instead of x to make clear that these

vector fields act on different coordinates. We describe the

necessary coordinate change below.

Theorem 1 (Smooth averaging theorem (Guckenheimer

and Holmes, 1990)). There exists a Cr change of coordi-

nates x = y + εw(y, t, ε) under which (1) becomes

ẏ = εf (y) +ε2f1(y, t, ε) (3)

Moreover,

(i) If x(t) and y(t) are solutions of (1) and (2) with initial

conditions x(0), y(0) respectively, and |x(0) −y(0) | =
O(ε), then |x(t) −y(t) | = O(ε) on a time scale t ∼ 1/ε.

(ii) If f is periodic with period T, and if p0 is a hyperbolic

equilibrium of (2), then there exists ε0 > 0 such that,
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Table 1. Important symbols used throughout the paper, in order of appearance.

Symbol Brief description Ref. Symbol Brief description Ref.

ε ∈ R+ Averaging parameter Section 2 F : X → TX Stance vector field Section 2

f : X → TX2 Slow vector field Section 2 f : X2 → TX2 Averaged vector field Section 2

R : X2 → X2 Slow coordinate reset Section 2 γ : X → R Event function Section 2

G ⊂ X Guard set Section 2 P : X2 → X2 Averaged return map Section 2

g ∈ R+ Acceleration due to gravity (29) zi ∈ R Physical hip height Section 3.2

Es ∈ R
4 State vector (Figure 3 model) Section 3.2 ui : X → R Hip control input (31)

ω ∈ R+ Stance spring frequency (32) p ∈ R
2 → R

2 Stance phase vector (32)

ρ ∈ R+ Nominal leg length (32) ai ∈ R+ Hip energy (liftoff velocity) (33)

ψi ∈ 9 ⊂ R+ Hip phase (34) ωf : R+ → R+ Flight frequency (35)

δ ∈ R Phase difference (36) β ∈ R+ Stance damping (37)

vi : X → R Nonlinear part of control (37) wi : X → R Frequency control input (37)

ka ∈ R+ Vertical gain (37) kp, kd ∈ R+ Coordination control gains (38), (39)

K : R
4 → R

4 Bipedal symmetry (48) K : R
3×3 Slow-coordination symmetry (49)

(ψ1, a1) “Single” average vector Section 4.1 (ψ1, a1, a2, δ) “Decoupled” average vector Sections 4.2–4.3

for all 0 < ε ≤ ε0, Equation (1) possesses a unique

hyperbolic periodic orbit γε(t) = p0 +O(ε), of the same

stability type as p0.

Remark 1. The statement (i) does not depend on the peri-

odicity assumption made in Guckenheimer and Holmes

(1990), but (ii) does. Further, we emphasize that we do not

compare the behaviors of (1) and (2) directly; instead, we

change coordinates for the original vector field from x to y,

and then compare the behavior of the original system in the

new coordinates (3) to the “model averaged system” (2).

In the following, we replicate the proof of Theorem 1

from Guckenheimer and Holmes (1990), so that unfamiliar

readers have an accessible reference for this result, which

our novel contributions depend heavily on.

Proof (from Guckenheimer and Holmes (1990)). First, we

compute the change of coordinates explicitly. Let

f (x, t, ε) = f (x) +̃f (x, t, ε) (4)

be split into its mean, f , and oscillating, f̃ , parts. Let

x = h(y) := y + εw(y, t, ε) (5)

without yet choosing w. Differentiating the equation above

and using (1) and (4), we have

( I + εDyw) ẏ = ẋ − ε
∂w

∂t

= εf (y + εw) +ε̃f (y + εw, t, ε) −ε ∂w

∂t

or (expanding in powers of ε, and choosing w such that
∂w
∂t

:= f̃ (y, t, 0)),1

ẏ = ε( I + εDyw)−1
[
f (y) +εDyf · w(y, t, 0)

+ f̃ (y, t, 0) +ε ∂ f̃

∂ε
(y, t, 0) −̃f (y, t, 0) +O(ε2)

]

= ε( I − εDyw)
[
f (y) +εDyf · w(y, t, 0)

+ ε
∂ f̃

∂ε
(y, t, 0)

]
+ O(ε3)

= εf (y) +ε2
[
εDyf · w(y, t, 0) −Dyw(y, t, 0) f (y)

+ ∂ f̃

∂ε
(y, t, 0)

]
+ O(ε3)

=: εf (y) +ε2f1(y, t, ε) (6)

as required by (3).

We use a version of Gronwall’s lemma (see Gucken-

heimer and Holmes, 1990 for details) to compare the solu-

tions of (2) and (3). If y(t) and yε(t) are their respective solu-

tions, the lemma states that if |y(0) −yε(0) | = O(ε), then

|yε(t) −y(t) | = O(ε) for t ∈ [0, 1
εL

]. Using the coordinate

change (5), we know that

|x(t) −yε(t) | = εw(yε(t) , t, ε) = O(ε)

and using the triangle inequality,

|x(t) −y(t) | ≤ |x(t) −yε(t) | + |yε(t) −y(t) | = O(ε)

and we obtain the desired result (i).

To prove (ii), we again follow the proof strategy of Guck-

enheimer and Holmes (1990), but provide significantly

more detail as well as correct some typos in the original. We

also enumerate the steps in order to better reference them in

the following text.
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(a) We consider the Poincaré maps P0 and Pε associated

with (2) and (3). Rewriting these latter systems as

ẏ = εf (y) , θ̇ = 1 (7)

ẏ = εf (y) +ε2f1(y, θ , ε) , θ̇ = 1 (8)

where (y, θ ) ∈ R
n × S

1, and S
1 = R/T is a circle of

length T . We define a global cross-section6 := {(y, θ ) :

θ = 0}, and the first return or time T Poincaré maps

P0 : U → 6, Pε : U → 6 are then defined for (7) and

(8) as the flow maps associated with a time-T flow of

each of the time-varying dynamics with initial condition

t = 0, where U ⊆ 6 is some open set.

(b) If p0 is a hyperbolic equilibrium of (2), then f (p0) = 0.

Using (Hirsch et al., 1974, 300), the spatial Jacobian

of the flow around and equilibrium is that of a linear

time-invariant system, and so2,3

DP0(p0) = eεTDf (p0) = I + εTDf (p0) +O(ε2) (9)

(c) Note that Pε is ε-close4 to P0 since T is fixed inde-

pendent of ε, using the result of (i).5 Next we show

that DPε(p0) = DP0(p0) +O(ε2). For this, consider the

time-invariant vector field corresponding to (8),

[
ẏ

θ̇

]
=

[
εf (y) +ε2f1(y, θ , ε)

1

]
,

and define its time-t flow from initial condition (y, θ )

as 8ε(y, θ , t), versus the corresponding flow 80(y, θ , t)

for (7). Note that, by definition, Pε( p) := πy8ε( p, 0, T),

where πy is the projection to the y-coordinates. Follow-

ing (Hirsch et al., 1974, 300) to compute the spatial

derivative of the flow, we obtain the linear time-varying

system where A(t) := D8ε(y(t) , 0, t),

Ȧ(t) =
[
εDf + ε2Dyf1 ε2Dθ f1

0 0

]
A(t) .

We can solve this linear time-varying system using the

Peano–Baker series. As we are only interested in the top

left block, we can compute it at p0,

DPε(p0) = I + ε

∫ T

0

Df (8ε(p0, θ , t) ) dθ + O(ε2)

= I + ε

∫ T

0

[
Df (8ε(p0, θ , t) ) −Df (80(p0, θ , t) )

+ Df (80(p0, θ , t) )
]

dθ + O(ε2)

?= I + εTDf (p0) +ε
∫ T

0

[
Df (8ε(p0, θ , t) )

− Df (80(p0, θ , t) )
]

dθ + O(ε2)

(9)= DP0(p0) +ε
∫ T

0

[
Df (8ε(p0, θ , t) )

− Df (80(p0, θ , t) )
]

dθ + O(ε2)

where we used the fact that 80(p0, θ , t) ≡ p0

for step ?. From (i), for θ ∈ [0, T] we know

that ‖8ε(p0, θ , t) −80(p0, θ , t) ‖ = O(ε) =⇒
8ε(p0, θ , t) = 80(p0, θ , t) +O(ε). In addition, Df

is Lipschitz continuous and so Df (8ε(p0, θ , t) ) =
Df (80(p0, θ , t) ) +O(ε). Using this in the block equa-

tion above, we have DPε(p0) = DP0(p0) +O(ε2).

(d) Consider the function ζ ( p, ε) := 1
ε
( Pε( p) −p),6 such

that Dpζ = 1
ε
( eεTDf (p) − I), and limε→0 Dpζ = TDf ( p).

Note that zeros of ζ correspond to fixed points of

Pε, and that Dpζ (p0, ε) = TDf (p0) is invertible. The

implicit function theorem (IFT) implies that the zeros

of Dpζ form a smooth curve (pε, ε) ∈ R
n × R. Thus, pε

are fixed points of Pε and, further, pε = p0 + O(ε).

(e) Putting together the prior steps, we see that

DPε(pε) = exp[εT( Df (pε) +ε2Df1(pε) ) ]

= exp[εTDf (p0) +O(ε2) +ε2TDf1(pε) ) ]

= exp[εTDf (p0) ] + O(ε2)

or DPε(pε) = DP0(p0) +O(ε2).

(f) Owing to (d) and (e), the eigenvalues of DPε(pε) are

ε2 close to those of DP0(p0). Consequently, the stability

properties of Pε at its fixed point, pε, are the same as

that of P0 at its fixed point, p0.

Thus, (8) has a periodic orbit ε-close to p, and via the

change of coordinates (5), Equation (1) has a similar orbit.

2.2. Switching systems (fixed-interval reset)

The smoothness assumption of Theorem 1 precludes its

application to legged locomotion, since the making and

breaking of contacts with the environment is a crucial com-

ponent of this domain. We begin by introducing (in this

subsection) discrete “reset” maps that interrupt the contin-

uous flow of (1) at fixed time intervals, which fall under

the umbrella of “switching” systems (Van Der Schaft and

Schumacher, 2000), and in Section 2.3 we generalize to a

state-dependent event-based reset, which typically arises in

legged locomotion (Johnson et al., 2016).

2.2.1. Averaging coordinate change. Even though not

required for the proof of Theorem 1, we will find it useful to

delve deeper into the structure of the coordinate change (5).

As pointed out in the proof of Theorem 1, w is a solution

to the partial differential equation (PDE) ∂w
∂t

:= f̃ (y, t, 0).

From this we make the following observations:

• w does not depend on ε;

• the base value of w at t = 0 is not yet constrained, so

we are free to choose (as in Guckenheimer and Holmes,

1990, Example 1, Section 4.2)

w(y, 0, ε) ≡ 0 for all y, ε; (10)

• h in (5) is a good change of coordinates for sufficiently

small ε > 0, since it is ε-close to the identity map;
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• since the right-hand side of ∂w
∂t

:= f̃ (y, t, 0) does not

depend on w, and also since y is held fixed while taking

the partial derivative with respect to t, this PDE can be

solved by simply integrating over t, i.e.

w(y, t, ε) :=
∫ t

0

f̃ (y, σ , 0) dσ (11)

is a solution of (5).

We illustrate in several examples in (De, 2017) that (11) is

indeed a coordinate change from (1) to (3).

Lemma 1 (Endpoint behavior of averaging coordinate

change). At t = T, the coordinate change w has the

properties

(i) w(y, T , ε) = 0; and

(ii) Dyw(y, T , ε) = 0.

Proof. We have

w(y, T , ε)
(5)=

∫ T

0

f̃ (y, σ , 0) dσ

(4)=
∫ T

0

f (y, σ , 0) dσ − Tf (y)
(2)= 0

by the definition of f . Similarly,

Dyw(y, T , ε)
(5)=

∫ T

0

Dỹf (y, σ , 0) dσ

(4)=
∫ T

0

Dyf (y, σ , 0) dσ − TDyf (y)

= Dy

(∫ T

0

f (y, σ , 0) dσ − Tf (y)

)
(2)= 0,

where, in the penultimate step, we switched the order of the

derivative and the integral.

We remark here that the result of Lemma 1 is unsurpris-

ing: the intuitive purpose of f̃ is to capture the “deviation”

between the original vector field f (1) and f (2), and we

should expect (from the definition of the “average” vector

field) that the deviation integrates to 0.

2.2.2. Switching systems (constant flow time). Now sup-

pose that instead of a smooth periodic system, we have a

switching system with the flow of (1) punctuated by a reset,

R (acting on the original x-coordinates). We assume for this

section that the reset acts after a fixed flow time T of (1),

and relax this assumption in the next section.

Theorem 2 (Switching averaging theorem). Given the

“original” and “averaged” switching systems of the forms

ẋ = εf (x, t, ε) , θ̇ = 1, x(T+) = R(x(T) ) (12)

ẏ = εf (y) , θ̇ = 1, y(T+) = R(y(T) ) (13)

where R is allowed to vary with ε, T+ refers to a limit from

the right, and θ is reset to 0 by the switching event:

(i) the Cr (for r ≥ 2) reset R satisfies: (a) DxR(x) =
S0 +εS1(x, ε) (with constant S0), (b) S0 is invertible, and

its unity eigenvalues have diagonal Jordan blocks (i.e.

unity eigenvalues have algebraic multiplicity 1); and

(ii) there is a point p0 such that: (a) it is an equilibrium of

f , (b) R(p0) = p0, and (c) the averaged return map is

hyperbolic at p0;

there exists ε0 > 0 such that, for all 0 < ε ≤ ε0, Equation

(12) possesses a unique hyperbolic periodic orbit, of the

same stability type as p0.

Proof. First, we apply the Cr coordinate change (5). As

shown in the proof of Theorem 1(i), w converts the con-

tinuous dynamics in (12) to take the form of (3). Define the

reset after the averaging coordinate change (5),

Ry := h−1 ◦ R ◦ h, (14)

and convert (12) into the switching system

ẏ = εf (y) +ε2f1(y, θ , ε) , θ̇ = 1,

y( T+) = Ry(y(T) ) ,
(15)

where (y, θ ) ∈ R
n × S

1, and S
1 = R/T is a circle of length

T . We know that the continuous flow of (15) can be approx-

imated by (2) after changing coordinates; but we need to

check how Ry and R are related using (14).

First, note that since Ry only acts on y(T), and since the

time dynamics in (15) are decoupled, we only ever need to

compute Ry(y(T) ), and DyRy(y(T) ). From (5) and (14),

Ry(y(T) ) = R(x(T) ) −εw(x(0) , 0, ε)

(10)= R(x(T) ) = R(y(T) ) , (16)

where we used Lemma 1 to observe that x(T) =
y(T) +εw(y(T) , T , ε) = y(T) for the last equality, and where

T+ = 0 after the reset. Similarly, for the spatial Jacobian,

first note that Dyw(y, 0, ε) = 0 from the assertion (10) for

each y(0). Then,

DRy(y(T) ) = DR(x(T) )
[
I + εDyw(y(T) , T , ε)

]

= DR(y(T) ) ,

where we used Lemma 1 for the last step.

The remainder of this proof follows closely the proof of

Theorem 1 (ii), and we refer to those steps when convenient.

Consider the Poincaré maps P0, Pε, and associated with (13)

and (15). Define a section 6 := {(y, θ ) : θ = 0}, and the

first return or time T Poincaré maps P0 : U → 6, Pε :

U → 6 are then defined for (13) and (15) as the flow maps

associated with a time-T flow of each of the time-varying

dynamics, with initial condition t = 0, composed with their

respective resets

P0 := R ◦ Q0, Pε := Ry ◦ Qε,

where U ⊆ 6 is some open set, and Q0, Qε are the time-T

flows.
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As shown in steps (b)–(c) in the proof of Theo-

rem 1(ii), DQ0(p0) = exp[εTDf (p0) ], and DQε(p0) =
DQ0(p0) +O(ε2). In addition, as shown in step (c), the

fundamental averaging result Theorem 1(i) shows that

Qε(p0) = p0 + O(ε). Now incorporating the reset,

DPε(p0) = DR( Qε(p0) ) ·DQε(p0)

= DR(p0 + O(ε) ) ·DQε(p0)

= (S0 + εS1(p0 + O(ε) ) )DQε(p0)

?=
(
S0 + εS1(p0) +O(ε2)

)
DQε(p0)

=( S0 + εS1(p0) ) DQ0(p0) +O(ε2)

= DR(p0) DQ0(p0) +O(ε2)

= DP0(p0) +O(ε2) (17)

where for the step ?, we used the fact that S1 is Lipschitz

continuous.

By the hypotheses in the statement of Theorem 2(ii),

we know that P0 has a fixed point at p0, but we need to

show that Pε has a fixed point that is close. From the block

equation above, DPε(p0) = S0 + ε( S1 + TDf (p0) ) +O(ε2).

By passing to the Jordan form, without loss of general-

ity we assert that S0 = V
[

Im 0
0 U

]
V−1 (using the hypothe-

sis that “1” eigenvalues have algebraic multiplicity 1 from

Theorem 2(i)), where U does not have a unity eigen-

value. Now let E(ε) := V
[

Im/ε 0
0 In−m

]
V−1. Define ζ ( p, ε) =

E(ε) ( Pε( p) −p). Note that ζ ( p, 0) = 0, and letting S̃1 :=
S1 + TDf (p0)

V−1Dpζ (p0, ε) V

= V−1E( DPε − I) V =
[

Im/ε 0
0 In−m

] (
V−1DPεV − I

)

=
[

Im/ε 0
0 In−m

] ([
Im 0
0 U

]
+ V−1S̃1V − I

)

=
[

Im/ε 0
0 In−m

] ([
0 0
0 U−In−m

]
+ εV−1S̃1V

)

In the limit ε → 0, the top m rows have rank m, since S̃1 is

full rank (hyperbolicity of the return map DP0(p0) asserted

in the hypotheses). The bottom n − m rows evaluate to U −
In−m; since U has no unity eigenvalues, U − In−m is also

full rank. For ε > 0, the argument is unchanged for the

first m rows. For the bottom rows, the entries of U − In−m

dominate those of εV−1S̃1V for sufficiently small ε, and so

by continuity of eigenvalue with matrix entries, the right-

hand side is full rank. Thus, Dpζ is full rank, and using the

IFT, we know there is a family of fixed points pε for Pε, and

pε = p0 + O(ε).

As shown in step (e) in the proof of Theorem (ii), we

have DQε(pε) = DQ0(p0) +O(ε2), and we showed in the

steps leading to (17) that DR( Qε(p0) ) = DR(p0) +O(ε2).

Similar to those steps, we can show that DR( Qε(pε) ) =
DR(p0) +O(ε2) Putting these together,

DPε(pε) = DR( Qε(pε) ) DQε(pε)

=
(
DR(p0) +O(ε2)

) (
DQ0(p0) +O(ε2)

)

= DP0(p0) +O(ε2) (18)

Fig. 1. We define a class of hybrid averageable systems (Theorem

3) with a single domain, fast (σ ) and slow (x) coordinates, with

general conditions on the flow (dark orange), and requirements on

fixed points of the flow and the reset. The calculations in Theorem

3 show how to construct a new hybrid system with constant flow

time (yellow, guard G := {T} × X) for any hybrid system with

variable flow time (purple, guard G = γ−1(0)) by augmenting

with a flow-to-reset map.

Following step (f) in the proof of Theorem 1(ii), we con-

clude the desired result.

2.3. Hybrid systems (event-based reset)

Hybrid systems (see Figure 1) arising in legged locomotion

and other fields often encounter a discrete reset at a state-

dependent “event,” unlike the fixed flow time we assumed

in the previous section. The event is usually described as the

intersection of the continuous flow with a guard surface, G,

which triggers a discrete reset of the system state. The time

elapsed between these events generally varies with initial

condition.

In this section we show that the variable event time can

be incorporated in a modified reset, effectively reducing

this more general case to the switching case, enabling the

application and generalization of Theorem 2.

Theorem 3 (Hybrid averaging theorem). Given the “origi-

nal” hybrid system

ẋ = εf (x, σ , ε) , σ̇ = 1

γ (x, σ ) = 0 =⇒ x+ = R(x, σ )
(19)

and “averaged” switching system

ẏ = εf (y) , σ̇ = 1,

σ = T =⇒ y+ = R(y)
(20)

where R is constructed from R as defined in the proof (23),

we assert the following hypotheses on (19)–(20).

(i) Assuming Dσγ = 1,7 the guard set satisfies Dxγ =
O(ε).

(ii) The Cr (for r ≥ 2) reset R (allowed to vary with ε)

satisfies: (a) DxR(x, σ ) = S0+εS1(x, σ , ε) (with constant

S0); (b) S0 is invertible, and its unity eigenvalues have

diagonal Jordan blocks.
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(iii)There is a point p0 and T > 0, such that: (a) p0 is

an equilibrium of f ; (b) R(p0, T) = p0; (c) γ (p0, T) =
0; and (d) the matrix S0 + ε( U + V), where εU :=
εS1(x, T , ε) −DσR · Dxγ , V := TDf ) is hyperbolic at

p0, T.

If conditions (i)–(iii) hold, then there exists ε0 > 0 such

that, for all 0 < ε ≤ ε0, Equation (19) possesses a unique

hyperbolic periodic orbit, of the same stability type as p0.

Proof. We first provide a construction that enables us to

locally transform a system with variable flow time (19),

to a system with constant flow time that has equivalent8

Poincaré (i.e. flow-and-reset) dynamics. Let 8(x, σ ) denote

the maximal flow associated with the continuous dynamics

of (19) from the initial condition (x, σ = T).9 Since σ̇ ≡ 1,

πσ8(x, σ ) = T + σ . Any initial condition (x, 0) impacts the

guard as

γ ◦8(x, σ ) = 0 (21)

where σ may be negative. Applying the IFT (Hirsch et al.,

1974, Appendix IV) (justified since Dσγ ◦ 8 6= 0) to (21)

with respect to t at test point (x, 0) yields a C1 time-to-

event map τ : U → R where U ⊂ X is a neighbor-

hood of x (Hirsch et al., 1974, Ch. 11, Section 2) such

that γ ◦ 8(x, τ (x) ) ≡ 0. Note that the image of τ includes

negative times. The derivative (i.e. gradient) of τ can be

computed at (x, 0) by differentiating (21) with respect to x

(recall that Dx8(x, 0) =
[

I
0

]
)

Dγ ·( Dx8+ Dσ8 · Dτ ) = 0 =⇒ Dτ = −Dxγ

εDxγ · f + 1
(22)

since we assumed Dσγ = 1 without loss of generality.

Define the time-T-flow equivalent reset R : πxU → X by

R(x) := R ◦8(x, τ (x) ) (23)

Differentiating with respect to x using chain rule, and

substituting using (22) we compute

DxR(x) = DR · (Dx8(x, 0) +Dσ8 · Dτ)

(22)= DR ·
([

I

0

]
− 1

εDxγ · f + 1

[
εf

1

]
Dxγ

)

= DxR − DσR · Dxγ + O(ε2) (24)

using the hypothesis that Dxγ = O(ε), and where σ is

evaluated at T on the right-hand side.

Let 8x now denote the flow of the continuous dynamics

of (19) starting from initial condition (x, σ = 0). Consider

the switching system

ẋ = εf (x, σ , ε) , σ̇ = 1, σ = T =⇒ x 7→ R(x) (25)

and its flow-and-reset return map

R ◦8x(x, T)
(23)= R ◦8(8x(x, T) , τ ◦8x(x, T) )

which corresponds exactly to the return map for (19). In

addition, note that DxR = S0 + εU, and that the averaged

return map for (20) would be

DP(p0) = DR(p0) ( I + εTDf ) +O(ε2)

=: S0 + ε( U + V) +O(ε2) (26)

With the hyperbolicity of DP(p0), all of the conditions of

Theorem 2 are satisfied by the systems (25) and (20), and

upon its application, we obtain the desired result.

Remark 2 (Relation to smoothing). Hybrid systems of the

form (19) satisfying the conditions of Theorem 3 (hence-

forth referred to as “averageable” hybrid systems in this

paper) are smoothable in the sense that they satisfy the

hypotheses of (Burden et al., 2015, Theorem 3). Since

that result gives a conjugacy to a classical (non-hybrid)

vector field and since the smoothing does not affect the

ε-dependence of the vector field, it is unsurprising that we

are able to extend classical averaging theory to the present

hybrid setting. The contribution in this paper is the provi-

sion of a constructive, in fact computational (e.g. Section

4.1), method useful for stability analysis of hybrid systems.

Remark 3 (Lower and upper bounds on ε). The conclusion

of the preceding lemma is formally valid only for ε > 0

sufficiently small. However, it may be possible in practice

to obtain lower or upper bounds on the allowable range

for ε.

1. As we have invoked IFT in the proof of Theorem 1, it

is straightforward (if tedious) to bound the size of the

neighborhood in which (2) has a periodic orbit as in

(Abraham et al., 1988, Supplement 2.5A). Alternatively,

singular perturbation methods (Tsatsos, 2006) may pro-

vide lower bounds on values of ε that ensure that the

conclusions of Theorem 1 hold.

2. An obstruction to enlarging the upper bound on ε

appears in our example in Section 4.1: the quotient (41)

is only valid when ẋ1 > 0, which is violated when

ε > ω.

2.4. Symmetry-factored hybrid averaging

Theorem 3 applies to systems with a single continuous

flow (“mode” in hybrid systems terminology (Burden et al.,

2015)) punctuated by discrete reset events, as modeled in

(19). We are able to use this result to demonstrate stability

of a “monoped” in the upcoming Section 4.1. We develop

two small extensions to the theoretical result in the follow-

ing two subsections that allow the result to be applicable in

a broader class of “biped” systems that we detail below.

The sagittal plane vertical hopper model we present in

Section 3 can have four physical modes (resulting from

none, one of the two, or both legs in stance), and Figure 2

suggests how the focus only on in-phase or anti-phase limit

cycles leads to a formal reduction to the “single mode with

reset” hybrid system (Theorem 3). For the in-phase case
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Fig. 2. Depiction of the two kinds of hybrid dynamical limit cycles analyzed in this paper. In the full (visualized as two-dimensional)

product domain, there are four possible modes corresponding to each of the two legs being in flight or stance. We (locally) analyze two

limit cycles (A): one with alternating stances interspersed with aerial phases (blue), and one with “short” single stance periods. In the

former case, we use symmetry (Section 2.4) to factor the return map into two iterations of a “half return map” (27) (B, C), integrate

the trivial aerial dynamics, and obtain a single-mode hybrid system (D). In the latter case, we assume that active toe extension control

(Section 2.5) can be used to eliminate the short single-stance periods and enforce simultaneous transition between aerial and double

stance modes (E, F), integrate the trivial aerial dynamics, and recover another single-mode hybrid system (G). In Section 4.2 and the

“weakly coupled hoppers” section in De and Koditschek (2018) we analyze a limit cycle of form D, and in Section 4.3, and the “strongly

coupled hoppers” (De and Koditschek, 2018) we analyze a limit cycle of form G.

(bottom row of Figure 2) the limit cycle of interest passes

through only two modes (double support and flight). In Sec-

tion 2.5, we observe that our control affordance (each leg of

the abstract “machine” analyzed here, and indeed the physi-

cal machine to be analyzed in the companion paper (De and

Koditschek, 2018), has two independently actuated DOFs)

allows us to force operation into this regime where integrat-

ing the aerial dynamics reduces the flight mode to a mere

factor of a single mode reset map (as we show in the single-

leg example of Section 4.1). However, for the anti-phase

case (top row of Figure 2), the limit cycle of interest passes

through three modes and even after replacing the flight flow

with its integrated reset map, we must still extend the result

in Theorem 2 to a class of hybrid systems with two con-

tinuous modes. We achieve this extension by imposing a

symmetry condition on the dynamics of the two alternat-

ing single-stance modes in order to specialize the notion of

a standard hybrid dynamical system as defined in (Burden

et al., 2015, Definition 1), as follows.

Corollary 1. Given a tuple H̃ =( X, F̃, G̃, R̃, K) such that:

(i) ( X, F̃, G̃, R̃) is a hybrid dynamical system as defined in

(Burden et al., 2015, Definition 1) with two modes in the

same domain X, i.e. index set J = {1, 2} ≈ Z2 (we use ·̃
to make explicit that these elements are disjoint unions

of domains or maps as per convention);

(ii) K : X → X is an involutive symmetry, i.e. K2 = id;

(iii)the vector field, guard, and reset respect the symmetry,

i.e. (a) DK · F(j+1) ◦ K = F(j), (b) γ(j+1) ◦ K = γ(j), and

(c) R(j+1) = K ◦ R(j) ◦ K;

a limit cycle of the kind depicted in Figure 2B has a return

map that can be factored as

P̃ =( P(0))
2 , where P(0) := K ◦ R(0) ◦ Q(0) (27)

Proof. The first condition in (iii) essentially states that F(j)

are conjugate through the K; from this we automatically

conclude that

K ◦ Q(j+1) = Q(j) ◦ K (28)

where Q(j) is the flow of F(j) until it intersects the guard

surface γ(j). For a limit cycle of the kind depicted in Figure

2B, the full return map can be factored:

P̃ = R(1) ◦ Q(1) ◦ R(0) ◦ Q(0)

=( K ◦ R(0) ◦ K) ◦Q(1) ◦ R(0) ◦ Q(0)

(28)= K ◦ R(0)◦( Q(0) ◦ K) ◦R(0) ◦ Q(0)

=( P(0))
2 .

In (27), P(0) is a “half return map.” It is clear from Corol-

lary 1 that the stability properties of the limit cycle are fully

described by the half return map. Consider the single-mode

hybrid system, H(1) =( X(1), F(1), G(1), K ◦ R(1)). The return

map of H(1) is simply P(1) for all limit cycles of the kind

shown in Figure 2B.

Thus, the symmetry properties in Corollary 1(iii) allow

us to analyze the single-mode system H(1) and make conclu-

sions about limiting behavior of H̃ . Accordingly, suppress-

ing the single-mode subscript label, we return to the special-

ized structure of systems compatible with Theorem 3 and

consider the tuple H =( X, F, G, R, y∗), where X := X(1),

F := F(1), G := G(1), R := K ◦ R(1) (again, we empha-

size that we have dropped the subscripts since we need only

analyze behavior in the first mode), and y∗. In the analyti-

cal results of Section 4, we apply Theorem 2 or Theorem
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3 for our stability analyses in Section 4.2 and the “weakly

coupled hoppers” section of De and Koditschek (2018).

Remark 4. Note that we have made the following notational

changes from (Burden et al., 2015, Definition 1): (a) we pre-

fer an implicit (though non-unique) description of the guard

set, i.e. γ(j) is any function such that G(j) ≡( γ(j))
−1 (0); (b)

we use parenthesized subscripts for the index set; and (c)

we make use of a (non-unique) implicit representation of

the guard, γ(j)

(
G(j)

)
≡ 0. Apart from notation, it is impor-

tant to note that the domain for each continuous mode is

the same space, X, and not separate disjoint domains as in

Burden et al. (2015).

Remark 5. Symmetry-factoring has been exploited previ-

ously to simplify return map calculations in Altendorfer

et al. (2004). In that case, time-reversal symmetry of Hamil-

tonian SLIP within a single stance is utilized to factor a

SLIP return map, whereas in this paper, we utilize the sym-

metric steps of a bipedal gait as in Schmitt and Holmes

(2000) in order to factor the full return map that represents a

complete stride into a “half-return map” (27) that only con-

tains a single step.10 More generally, notwithstanding the

present-seeming special nature of these factorizations, we

suspect that symmetry analysis of this nature will play an

important role in many more legged locomotion settings.

2.5. Near-simultaneous transitions

We now consider the in-phase limit cycle depicted in the

bottom row of Figure 2. Specifically, as anticipated above,

we bring its analysis under the sway of the restricted single-

mode framework of Theorems 2–3 by enforcing transitions

through the higher codimension guard set intersections

where both toe-touching constraints are active.

Assumption 1. In the limit cycles of type Figure 2E–G,

active control of the leg extension is used in the aerial phase

to execute simultaneous touchdown and liftoff.

Since the actuators only have to move the toes (small

inertia), this action can, in principle, be made almost devoid

of any energy cost.

We provide numerical and empirical justification for

this assumption following the introduction of more phys-

ically realistic models in the companion paper (De and

Koditschek, 2018). In the “near-simultaneous transitions”

section of De and Koditschek (2018), we compare traces

from simulations with active toe extension control in aerial

phase either enabled or disabled from a variety of ini-

tial conditions to illustrate how the resulting trajectories

become nearly indistinguishable after a few strides. Inde-

pendently, even without imposing such active control on

the physical Minitaur robot, the relative frequency of single

stance in empirical pronking is low, 6.31% when preflex-

ively pronking in-place (with modified body inertia) and

6.65% when pronking with feedback-stabilized body pitch

as shown in plots in De and Koditschek (2018), lending

support to our “simultaneous transition” assumption for the

Fig. 3. Two decoupled unit mass vertical hoppers, shown here in

a single-stance mode.

pronking analysis (Section 2.5). It is worth noting in passing

that these empirical observations, revealing as they do the

rarity (even absent active control) of single stance in pronk-

ing, lend further support to the suggestion emerging from

the analysis of Burden et al. (2016) (motivated by the preva-

lence of virtual bipedal and monopedal gaits in biology)

that such high codimension transitions might, themselves,

be preflexively attracting.

3. Model task: vertical hopping

The application domain that motivated the preceding theo-

retical developments is legged locomotion on land. A well-

known model for running is that of a mass suspended on a

massless leg by a (physical or virtual) spring (Blickhan and

Full, 1993; Geyer et al., 2006). We begin here by consid-

ering one (29) or multiple (depicted in Figure 3) vertically

constrained legs: a useful model for investigating in-place

hopping, bounding (two legs hopping out of phase), and

pronking (two legs hopping in phase).

Apart from the utilitarian interest of this regime (where,

as we will show in Section 4, it is straightforward to com-

mand both in-phase pronking and anti-phase bounding)

the effectively decoupled dynamics greatly simplifies the

analysis, easing the introduction of notation and permit-

ting simpler stability proofs (that are, nevertheless, strongly

evocative of the subsequent preflex stabilized regimes to

be analyzed in the companion paper (De and Koditschek,

2018)).

3.1. Equations of motion

Consider a physical plant with a pair of vertically

constrained masses (of unit mass), suspended by massless

legs with nominal extension ρ ∈ R+. The configuration

variables of interest are physical heights of the masses,

zi ∈ R+.

We obtain two modes, stance and flight, based on whether

the height is less than the nominal leg extension (as formal-

ized below in (29)). The equations of motion for the two
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hoppers (indexed by i ∈ I := {1, 2}) are

z̈i =
{

−g +ϒi zi < ρ

−g otherwise
(29)

where ϒi is the shank extension force generated by leg

i. We discuss scaling the controller parameters in rela-

tion to the morphological parameters more in De and

Koditschek (2018), but for this paper we assume that

the shank extension controller compensates for the known

dynamical parameters as

ϒi := g + ui (30)

where ui is the parameter-agnostic “template controller”

signal that we define below in (31).

3.2. Model space description

In this section we introduce our preferred coordinates for

analysis, and show the results of transforming the verti-

cal hopper pair’s decoupled equations of motion (29). We

also introduce the template controllers used in this paper

for, first, height regulation in single-legged vertical hop-

ping and, then, coordination control in two-legged vertical

hopping.

3.2.1. Vertical hopper control. We set the template vertical

hopper controller in stance to have a physical (Blickhan and

Full, 1993) or virtual (Kenneally et al., 2016) spring-like

force, together with a nonlinearity vi( Es) (comprising damp-

ing as well as active inputs, see (37)) that affects asymptotic

stability:

ui := ω2( ρ − zi) +εvi( Es) (31)

where Es =( z1, z2, ż1, ż2) is the full state vector of the sys-

tem in Figure 3. Note that there is no gravity compensation

term in the template controller above; in (30) just above we

declared the relation between (31) and its use as the phys-

ical control input in the various plant models in this paper

(such as ϒi in (29)).

3.2.2. Energy-phase coordinates. We write the physical

vertical (position and velocity) coordinates in their phase

canonical form, p : R
2 → R

2,

p( zi, żi) :=
[ −żi

( ρ − zi)ω

]
, (32)

where ω > 0 is the stance frequency, and consider the

square-root-of-energy coordinate ai ∈ R+,

ai :=
{

‖p( zi, żi) ‖ zi < ρ√
2g( zi − ρ) +ż2

i otherwise
(33)

Note that mba2
i /2 (in Joules) represents the total mechanical

energy of a vertical hopper. However, motivated by the ana-

lytical simplicity of the resulting stance dynamics (Sections

4.1 and 4.2), we find it convenient to assume unit mass and

work in the square root. Consequently, the units of ai in (33)

are meters per second, and intuitively it captures the vertical

speed at liftoff or touchdown. In addition, since both expres-

sions in (33) reduce to the square root of (mass-specific)

energy at touchdown, ai is continuously defined around the

cycle. As the reader might anticipate, this quantity derived

from the total mechanical energy has slow dynamics in a

desirable periodic orbit of a hopper and, indeed, we show

this in (41). This makes ai a good candidate to be one of the

“x” coordinates of Theorem 3, and indeed we use it in such

capacity in Section 4.1.

Also define the corresponding phase, ψi ∈ 9 ⊂ R,

ψi :=
{

∠p( zi, żi) zi < ρ
ai−żi

2ai
otherwise

(34)

where “∠θ” refers to the “angle of θ ∈ S1,” and the

stance phase is the natural completion of the polar coor-

dinate transformation in (33), the flight phase definition

is from Klavins et al. (2000), and we refer the reader to

Remark 6 again for the implications of the discontinuity in

this definition.

Note that around the cycle, ψi goes from 0 to π in stance,

and from 0 to 1 in flight. Define the “flight frequency,”

ωf : R+ → R+ : ai 7→ g/( 2ai) (35)

The abstract phase definition here is inspired by the work

of Klavins et al. (2000). However, the process of generating

a constant-slope phase coordinate (referred to as a “smooth-

ing” step in Klavins et al. (2000, Section 3.2)) is much

more difficult in our case because of the various nonlineari-

ties and coupling forces. We discuss further connections to

Klavins et al. (2000) in the Appendix.

Remark 6 (Continuity in maps from physical to model coor-

dinates). All dynamical models considered in this paper fall

within the class of self-manipulation hybrid systems (John-

son et al., 2016) and are thus guaranteed to have unique

and non-blocking executions. We further show, using the

distinct strategies depicted in Figure 2, that they satisfy

the requirements of Theorem 3, placing them within the

class of “smoothable” hybrid systems (Burden et al., 2015,

Theorem 3), so that their executions are also guaranteed

to vary continuously with respect to initial conditions and

be piecewise smooth. Because our coordinate transforma-

tions, e.g. (34) are written for convenience across the dis-

tinct modes of the original physical coordinates of the

self-manipulation system, they are not formally continuous

functions. However, as depicted in Figure 2, both routes to

the single mode averageable model set out in Theorem 3

subsume into its formal reset map the erstwhile continuous

flows through “uninteresting” (and integrable) modes of the

physical coordinates, so that (34) and (36) operate only in a

single mode in which they are indeed smooth functions.
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3.2.3. Phase differences. For the analyses we present in

Section 4 and the analysis section in De and Koditschek

(2018), the principal tool we use is single-mode hybrid aver-

aging (Theorem 2–3). The result allows us to make local

stability conclusions about hyperbolic hybrid limit cycles,

but is only applicable to continuous dynamics with a sin-

gle “fast” variable (which can be thought of as a phase-like

coordinate). In order to express the dynamics of our plant

models in terms amenable to application of hybrid averag-

ing, we use our intuition to find appropriate slow “phase

difference” coordinates (36). This idea is inspired by Proc-

tor et al. (2010), where differences of phases of identical

coupled oscillators are shown to be slow, and a classical

averaging application follows.

We introduce the following local (by this we mean that δ

is a smooth function of the physical states while in a single

hybrid mode, but discontinuous across modes11) definition

for “phase difference:”

δ := τ1 − τ2, where (36)

τi :=
{

(ψi − π/2) /ω zi < ρ

(ψi − 1/2) /ωf( ai) otherwise

Note that the coordinates above have the units of time (this

is apparent from the definition above, since ψi are unitless

(34), and ω (31) and ωf (35) both have units of per second).

3.2.4. Oscillatory energization and phase control. The vi

term in our vertical hopper control (31) contains the vari-

ous nonlinearities responsible for asymptotic stability and

phase control. This includes a lumped viscous friction term

(which is assumed to come from unavoidable parasitic

sources), as well as terms introduced by feedback:

vi( Es) := −β żi − ka cosψi + wi( Es) (37)

where the second summand in the last equation is an oscil-

latory energization term (De and Koditschek, 2015b) that

can intuitively be thought of as “negative damping,”12, and

the last summand introduces a new feedback phase-control

term. The phase controller expressed in the functional form

of wi(x) is discussed in Section 3.3.

3.3. Coordination controllers.

In this paper, we propose two kinds of coordination con-

trollers. First, we introduce a phase controller13 with phase

control gain kd ∈ R,

wi( Es) =( −1)i−1 kd( ż1 − ż2) sinψi (38)

Looking ahead, setting kd > 0 in Section 4.2 stabilizes an

anti-phase limit cycle (the template for a “bounding” gait in

the “weakly coupled hoppers” section in De and Koditschek

(2018)), whereas setting kd < 0 in Section 4.3 stabilizes a

limit cycle entraining the two legs in-phase (the template for

a “pronking” gait in the “strongly coupled hoppers” section

in De and Koditschek (2018)).

Second, we introduce an empirically motivated attitude

controller (only for pronk stabilization) that adds a propor-

tional control term to (38),

wi( Es) =( −1)i−1
(
kp( z1 − z2) +kd( ż1 − ż2)

)
(39)

for i ∈ I.

We verify analytically the efficacy of these controllers

with respect to the mechanically isolated hoppers of Fig-

ure 3 in Section 4. In the companion paper we will show,

first, that these stability results persist for a weakly mechan-

ically coupled instance of the hoppers (De and Koditschek,

2018) and, then, turn to a similar but more intricate analysis

of what we will term “preflexive” stabilization wherein the

influence of two distinct modes of (first, stronger, and then

much stronger) mechanical coupling substitutes in place of

any feedback control.14

We remark here that (38) and (39) are both trivial to

implement on a physical platform, since the only sensory

information required is of the coordinate z1 − z2, and its

derivative. For example, on the physical Minitaur robot of

the companion paper (De and Koditschek, 2018) this infor-

mation can be measured directly through the physical angle

φ and its derivative.

4. Analytical results

Our stability analyses of the various models and control

schemes take the form of systematically working through

the checklist of conditions of Theorem 2 or 3.

The generalization to variable flow-time achieved by

Theorem 3 (over Theorem 2) allows us to account for vari-

able stance duration caused by the nonlinear forcing (31)

and (37) the springy leg is subject to. In Section 4.1, we

model in detail the weakly varying (45) stance duration and

account for this effect in the linearized return map Jaco-

bian (26). However, just as (Raibert, 1986, Ch. 2) argued,

we find in our empirical tests referenced from the table of

assumptions in De and Koditschek (2018) that the variation

in stance duration of a spring–mass system with weak forc-

ing is negligible. Thus, we enforce a constant stance time

assumption (Assumption 2) for Sections 4.2–4.3 to sim-

plify our exposition. Nonetheless, we include the requisite

calculations for a variable-flow-time version of the analy-

sis in Section 4.2 in Section 4.2.4 in order to convey to the

reader the conceptual simplicity of the computations. We

anticipate that Theorem 3 will have great utility in situa-

tions where the flow duration varies significantly, such as

the “preloaded” leg spring strategies explored in (Raibert

et al., 1989, equation (4.6)) for high-speed running.

4.1. Single vertical hopper

To demonstrate the applicability of hybrid averaging to the

analysis of physical systems, we first investigate a 1-DOF
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hybrid system. We consider one of the two hoppers depicted

in Figure 3: a unit mass restricted to travel along its verti-

cal axis with an attached massless leg. We choose this as

our first example for two reasons. First, despite its apparent

simplicity, it serves as a template for ubiquitous running and

hopping behavior in robots and animals (Blickhan and Full,

1993). Variants of this model have been analyzed exten-

sively in the literature, see e.g. Koditschek and Buehler

(1991) for an analysis of this 1-DOF restriction of a pla-

nar point-mass model whose energizing input is inspired

by the empirically successful strategies reported in Raibert

(1986). Second, the simplicity of the equations of motion

mitigate the intricacies of the hybrid averaging, exposing in

particular the synergistic relationship of this method with

symmetry, which we discuss further in Section 4.1.1.

Informed by the structure of the averaging results of Sec-

tion 2, we propose an alternative energization scheme (intu-

itively similar but physically distinct from Raibert (1986))

and apply Theorem 1 to establish an analogous stabil-

ity result. The analyses in Koditschek and Buehler (1991)

relied on two simplified models that both admitted closed-

form return maps (Koditschek and Buehler, 1991, equa-

tions (15) and (17)). However, hybrid averaging allows

a stability analysis without requiring integrable15 stance

dynamics (e.g. (41)). Recall that even the “simple” 2-DOF

SLIP dynamics (Saranli et al., 1998) are non-integrable,

hence motivating an analysis tool that drops this require-

ment.

4.1.1. Continuous dynamics. For the following analysis,

we choose (in the language of Theorem 3) the coordinates

σ := ψ1 ∈ X1 and x := a1 ∈ R.

Using the previously declared vertical hopper model in

(3.1) and control in (31) and (37), setting wi ≡ 0 (because

there is no “other” hopper to coordinate for now) in the sys-

tem dynamics (29) and (30), we derive the stance ( a1,ψ1)

equations of motion of the hopper as follows.

Define q := p( z1, ż1) from (32). The physical equation of

motion in stance (from (29) and (31)) is

z̈1 = ω2( ρ − z1) +εv1

and rewritten in terms of q are

q̇1 = −z̈1 = ω2( z1 − ρ) −εv1 = −ωq2 − εv1

q̇2 = −ż1ω = q1ω
(40)

Using (33), a1 = ‖q‖, and from the equations above,

a1ȧ1 = qT q̇ = −εv1q1 = −εv1( a1 cosψ1)

⇒ ȧ1 = −εv1 cosψ1

where we used the polar coordinate transformation of q, i.e.

q1 = a1 cosψ1 and q2 = a1 sinψ1. For the ψ1 dynamics,

note that

q̇1 = −a1 sinψ1ψ̇1 + ȧ1 cosψ1

q̇2 = a1 cosψ1ψ̇1 + ȧ1 sinψ1

and note that q1q̇2 − q2q̇1 = a2
1ψ̇1. Then,

ψ̇1
(40)= 1

a2
1

( q2
1ω − q2( −ωq2 − εv1) )

= 1

a2
1

(
ω2( q2

1 + q2
2) +εv1q2

)
= ω + εv1 sinψ1/a1

since q2
1 + q2

2 = a2
1.

We observe that for sufficiently small ε > 0, we have

ψ̇1 > 0, allowing us to divide ȧ1 by ψ̇1. Now in the language

of Theorem 3, σ = ψ1, x = a1, and we can write

∂a1

∂ψ1

= −ε cosψ1v1

ω + ε
a1

sinψ1v1

(41)

where v1 is as given in (37). Note that the system takes the

form of (19). Consider the prospective fixed point for the

averaged system,

T = π , y∗ = ka/β (42)

where the value of T corresponds to the state having tra-

versed the entire half plane of stance (i.e. the state of liftoff)

and the value of y∗ (i.e. energy a∗
1) corresponds to the equi-

librium energy suggested by the second summand of (37).

Using this T for direct integration of the stance vector field

(41) from touchdown through to liftoff, we obtain (now, as

in (2), letting y = a1),

f (y) :=
∫ π

0

f (y, σ , 0) dσ

πω
= −

∫ π

0

v1 cosψ1 dψ1

πω

= ( ka − a1β)

2ω
, (43)

which indeed evaluates to 0 at y∗ (42), satisfying Theorem

3(iii).

In intuitive terms, we point out that the oscillatory control

signal introduced in (37) has the special property that the

ka-term is odd16 in ψ1 in the first row of (41), whereas it is

even in ψ1 in the second row. Consequently, after the aver-

aging step, ka persists in the averaged a1-dynamics (43).

In more complex future analysis expanding on these ideas

(as discussed in the conclusion), we see that similar odd

symmetries (e.g. last row of (53)) are helpful in eliminating

coupling interactions.

4.1.2. Guard set. The guard set is defined by the physical

liftoff event when the normal force at the toe–ground inter-

face during stance goes to 0, and from (29) and (30), we see

that this happens when ui = 0 in (31):

γ (x, σ ) := tanψ1 − ε( ka/a1 − β)

ω
(44)

scaled such that Dσγ = 1 at σ = T . In addition, Dxγ =
O(ε), satisfying Theorem 3(i). Lastly, note that γ (y∗, T) = 0

at the fixed point of the averaged vector field (43), satisfying

Theorem 3(iii). In addition, we can calculate

Dγ (y∗, T) =
[
1 εβ2

kaω

]
(45)
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We observe that Lemma 1 allows us to apply both x

and y coordinates as arguments to γ , since both sets of

coordinates coincide at liftoff time.

4.1.3. Reset map. As in De and Koditschek (2015a), the

massless in-flight leg is reset to its nominal length, ρ. It fol-

lows from (34) that the touchdown phase, ψ1 is identically

zero since z1 = ρ at the touchdown event. Noting from (34)

that ż1 = −a1 at touchdown, and recalling that the mechan-

ical energy a1 is conserved in flight (33), we can solve for

a1 at touchdown, yielding

R(x, σ ) =
√

a2
1 cos2 ψ1 − 2ga1 sinψ1/ω (46)

=⇒ DR(y∗, T) = [1, g/ω] (47)

where S0 := 1 is constant, satisfying Theorem 3(ii). In

addition, R(y∗, T) = y∗ from (46), satisfying Theorem 3(iii).

Again, we observe that Lemma 1 allows us to apply both x

and y coordinates as arguments to R.

4.1.4. Stability test. We can calculate U according to the

definition in Theorem 3 to obtain

S0 + εU = DyR − DσRDyγ
(45),(47)= 1 − εgβ2

kaω2

where the second summand was introduced by the variable

flow time. As pointed out in the introduction of Section 4.1,

this effect empirically appears to be negligible, likely due to

the small magnitude of the second summand. We can also

compute V by differentiating (43) to obtain V = −πβ

2ω
.

As in (26), using the previous computations, the averaged

return map linearization is

DP(y∗) = 1 − ε

(
gβ2

kaω2
+ πβ

2ω

)
,

which is stable as well as hyperbolic for small ε > 0.

We conclude from Theorem 3 that the (unaveraged) verti-

cal hopper also has a stable fixed point that is ε-close17 to

(42). We present a numerical demonstration of this result in

Section 5.1.

4.2. Two vertical hoppers: anti-phase limit cycle

(bounding template)

Here we present a local analysis of the anti-phase limit cycle

with alternating stances of hoppers 1 and 2, the results of

which are borne out in empirical trials in De and Koditschek

(2018).

We appeal to Corollary 1 with symmetry (48), and study

the half return map with the continuous dynamics F :=
F(1), where mode “1” we now define as that where hop-

per 1 is in stance, hopper 2 in flight, and where the reset

R := K ◦ R(1), where R(1) maps states from liftoff of hopper

1 to touchdown of hopper as depicted in the upper series of

sketches in Figure 2.

The full state space thus has four dimensions. The sym-

metry map (Corollary 1(iii))

K : R
4 → R

4 :
(
a(j),ψ(j)

)
7→

(
a(j+1),ψ(j+1)

)
(48)

is helpful in defining the reset maps in Section 4.2 and the

“weakly coupled hoppers” section of De and Koditschek

(2018).

For this subsection and the next, we enforce the follow-

ing assumption, whose justification is referenced from the

assumptions table in De and Koditschek (2018).

Assumption 2. The stance duration (resulting from a

weakly perturbed spring-mass oscillation) is constant.

As described in the introduction of Section 4, our empir-

ical trials display more-or-less constant flow time, and we

find that the further complication in algebra does not buy

any new insight. Still, we include a variable-flow-time ver-

sion of the return map computation (and stability analysis)

that appears in Section 4.2.3 to demonstrate in a tutorial

manner how an application of Theorem 3 would proceed.

4.2.1. Continuous dynamics. For the following analysis,

we choose the coordinates σ := ψ1, and x :=( a1, a2, δ),

where δ is the phase difference coordinate introduced in

Section 3.2.3. The projection of the symmetry map K to

these x-coordinates is a linear map defined by the matrix

K :=




0 1 0

1 0 0

0 0 −1


 ∈ R

3×3 (49)

The continuous dynamics (29) can be rewritten in the coor-

dinates defined in (33)–(34), as we have already shown for

the stance leg in Section 4.1 in (41).

For the leg in flight (ȧ2, ψ̇2), from the second row of (33),

d

dt

a2
2

2
= a2ȧ2 = gż2 + ż2z̈2 = ż2( z̈2 + g)

(29)= 0 (50)

and from the second row of (34),

ψ̇2
(50)= − z̈2

2a2

(29)= g

2a2

(35)= ωf( a2)

Putting it all together,

ȧ1 = −ε cosψ1v1, ȧ2 = 0,

ψ̇1 = ω + ε

a1

sinψ1v1, ψ̇2 = ωf( a2)
(51)

where the ε parameter appears in these positions due to our

choice of ε magnitude nonlinearity in the hopper control

(31) so as to depend upon the anti-phase stabilizing version

(kd > 0) of the phase coordination term w1 defined in (38).

Using the phase difference coordinate δ from (36) (note

that hopper 1 is in stance and hopper 2 is in flight for the

analysis in this subsection), we note that

d

dt
δ = ε

ωa1

sinψ1v1 (52)
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i.e. by inspection, the presence of the “small” parameter,

the factor ε in (52), reveals that the chosen phase differ-

ence coordinate is “slow” (O(ε) dynamics). The continuous

dynamics in these coordinates are

σ̇ = ω + ε
sinψ1v1

a1

ẋ = ε




− cosψ1v1

0
sinψ1v1
ωa1




(53)

Consider the prospective anti-phase fixed point,

T = π , y∗ =
[̃
ka/β̃, k̃a/β̃, 0

]T
(54)

where

k̃a := ka + gkd

2ω
, β̃ := β − 4kd

3π
(55)

Although the last entry of (54) is zero, we emphasize that

this denotes an “anti-phase” limit cycle: observe in (36) that

when hopper 2 attains apex, τ1 = 1/2, then δ = 0 implies

that, simultaneously, the hopper must be experiencing its

“bottom” (most compressed) event.

In addition, note from (54) that the kd gain introduced

through our phase controller (38) moves the first two com-

ponents, of the equilibrium, y∗, a∗
1 = a∗

2 = k̃a/β̃, smoothly

as a function of that controller gain kd . The limiting kd = 0

case recovers the isolated vertical hopper equilibrium point

(42). Direct integration of (53), using (38) with kd > 0,

yields

f (y) :=
∫ π

0

dy

dσ
dσ = 1

2ω




k̃a − a1β̃

0

− gkd

ω2a1
δ


 (56)

which evaluates to 0 at y∗, satisfying Theorem 2(ii). More-

over, anticipating its use in (63), we can calculate the

Jacobian as

Df (y) =




− β̃

2ω
0 0

0 0 0
gkdδ

2ω3a2
1

0 − gkd

2ω3a1


 (57)

4.2.2. Reset. The touchdown condition is triggered by the

event that hopper 2 touches down, or ψ2 − 1 (34) crosses

zero. Thus, using K as defined in (48), π1 ◦K ◦R(1) ≡ 0, sat-

isfying Theorem 2(i), where R(1) maps the state from liftoff

of hopper 1 to touchdown of hopper 2 (as in Corollary 1),

and is obtained by integrating the trivial aerial dynamics, as

detailed below.

Note that the ai are defined continuously through modes

(33), and the ai are unchanged by ballistic flight.

Define tLO as the liftoff time (when hopper 1 is in stance,

hopper 2 is in flight) and tTD as the touchdown time (when

hopper 1 is in flight, hopper 2 is in stance). In this reset

calculation, to avoid confusion, we will be explicit about

which row of (34) is used in each appearance of ψi, e.g.

ψ
(2)

f =( a2 − ż2) /( 2a2).

First, we integrate the aerial dynamics. Note that the time

of flight is tf is given by

ψ
(2)

f ( tLO) +ωf( a2) tf = 1 =⇒ tf = 1 − ψ
(2)

f ( tLO)

ωf( a2)

Using this in ψ
(1)

f ( tTD) = ψ
(1)

f ( tLO) +ωf( a1) tf, and noting

from (34) that ψ
(1)

f ( tLO) = 0, we obtain the flight map

ψ
(1)

f ( tTD) = ωf( a1)

ωf( a2)
( 1 − ψ

(2)

f ( tLO) ) (58)

Now we must express the above in terms of δ. Using the

appropriate patches at tLO and tTD,

δ( tLO) = ψ
(1)
v ( tLO) −π/2

ω
− ψ

(2)

f ( tLO) −1/2

ωf( a2)

δ( tTD) = ψ
(1)

f ( tTD) −1/2

ωf( a1)
− ψ

(2)
v ( tTD) −π/2

ω

(59)

Per our constant flow-time assumption (Assumption 2), we

know that ψ
(1)
v ( tLO) = π , and combining with (59),

δ( tLO) = π

2ω
− ψ

(2)

f ( tLO) −1/2

ωf( a2)
(60)

Since the leg touches down at its nominal extension, by

(34), ψ
(2)
v ( tTD) = 0, and combining with (59),

δ( tTD) =
ψ

(1)
f ( tTD) −1/2

ωf( a1)
+ π

2ω

(60)=
ψ

(1)
f ( tTD) −1/2

ωf( a1)
+ δ( tLO) +

ψ
(2)
f ( tLO) −1/2

ωf( a2)
(61)

Substituting (58) into the above,

δ( tTD) = δ( tLO) − 1

2ωf( a2)
− 1

2ωf( a1)
+ 1

ωf( a2)

= δ( tLO) + 1

2ωf( a2)
− 1

2ωf( a1)
= δ + ( a2 − a1)

g

All together, the slow-coordinate reset is

R( a1, a2, δ) = π2 ◦ K ◦




ψ1

a1

a2

δ+( a2 − a1) /g




= K
[
a1, a2, δ + (a2−a1)

g

]T

(62)

From the above, we observe that DR has a constant O( 1)

part, satisfying Theorem 2(i).
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4.2.3. Application of switching averaging. Using (49),

(57), and (62) and evaluating at (54), we obtain the averaged

return map

DP := DR·( I + επDf )

=




0 1 0

ζ1 0 0
ζ1
g

− 1
g

−1 + εgkdβ

2kaω3


 (63)

where

ζ1 := 1 − εβ̃

2ω
(64)

only depends on constant parameters. The block lower trian-

gular DP has eigenvalues ±j
√
ζ1 from the upper left block

(the upper block has complex conjugates hence the determi-

nant is their magnitude squared), and −1 + εgkdβ

2kaω3 from the

scalar lower right block, which is within the unit circle for

small ε > 0.

This computation reveals a condition on allowable

parameter values; in (38), kd must be small enough such that

β̃ > 0. Assuming our gains are set appropriately, for small

ε > 0, |ζ1| < 1, and also the other eigenvalues are within

the unit circle since their product is ζ1, and the averaged

return map is stable. In addition, the return map is hyper-

bolic, and applying Theorem 2, we conclude that the pair

of independent hoppers has a stable anti-phase limit cycle ε

close to (54).

4.2.4. Variable flow-time (event-based reset) analysis.

This section contains a “tutorial” description of how The-

orem 3 can be applied (without requiring Assumption 2)

to the bounding analysis of Section 4.2. We point out spe-

cific departures from the constant-flow-time version of the

analysis below, and end by juxtaposing the return map lin-

earization (66) against its constant-flow-time counterpart

(63).

Guard set First, the guard set is defined by the “normal

reaction crossing zero” event as in (44).

Reset Next, the reset map is modified in two of its entries.

1. Note that a1 is constant through flight, but we need

to convert its stance coordinates at the time of liftoff

(depending on when the guard surface (44) is inter-

sected) to flight coordinates. Thus, the a1 reset is

replaced instead by (46) (see (65) below).

2. In addition, the phase difference reset calculation is

modified. We replace (60) with the guard (44), and

obtain

δ( tLO) = tan−1( εka/(ωa1) −β)

2ω
− ψ

(2)

f ( tLO) −1/2

ωf( a2)

Using this together with (61), we obtain

δ( tTD) = δ( tLO) + 1

2ωf( a2)
− 1

2ωf( a1)

+ π − tan−1( εka/(ωa1) −β)

2ω

Putting these together, and applying the symmetry opera-

tion (48)

R(1)(x,ψ1) =




√
a2

1 cos2 ψ1 − 2ga1 sinψ1/ω

a2

δ + (a2−a1)

g
+ π−tan−1(εka/(ωa1)−β)

2ω


 (65)

Note from (54) that

R

([
k̃a/β̃

k̃a/β̃
0

])
= K

[
k̃a/β̃

k̃a/β̃
0

]
=

[
k̃a/β̃

k̃a/β̃
0

]

satisfying R(y∗) = y∗ in Theorem 3(iii). Next, we use (24)

to find DR. Using the guard (44) and the reset (65), and

evaluating at the fixed point (54), we obtain

DR(1)(y
∗) =




1 − εgβ2

kaω
0 0

0 1 0

−1/g 1/g 1




which has a constant O( 1) part. We also note the similarity

between the top left entry and Section 4.1. Repeating the

steps in Section 4.2.3, we obtain the averaged return map

DP =




0 1 0

ζ1 − εgβ2

kaω
0 0

ζ1
g

− 1
g

−1 + εgkdβ

2kaω3


 (66)

Note that the eigenstructure of this matrix is similar to

its constant-flow-time counterpart (63). In fact, since ζ1 −
εgβ2

kaω
< ζ < 1 for small ε, the eigenvalues for the block

lower triangular matrix above are within the unit circle.

4.3. Two vertical hoppers: in-phase limit cycle

(pronking template)

In this section we show that phase control (38) (albeit now

with kd < 0) can be applied to the same independent hop-

pers model as in the previous subsection (Figure 3) but now

used to stabilize a different limit cycle.

As depicted in the lower succession of sketches in Fig-

ure 2, we think of this limit cycle as having a single con-

tinuous mode (double stance) followed by a reset (aerial

phase), assuming simultaneous transitions as discussed in

Section 2.5. With this assumption in force, we now show,

in counterpoint to the previous section (where the introduc-

tion of a symmetry operator (48) achieves a re-factorization

of the three physical modes depicted in Figure 2B into

the “half-stride” paired modes depicted in Figure 2C), how
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these different hybrid dynamics can directly be modeled as

executions of a single-mode averageable hybrid system.

In this instance, we again use the switching theorem

(Theorem 2) and ignore the small variation in the flow

duration.

4.3.1. Continuous dynamics. As in (51), but this time,

since both legs are in stance, for i ∈ I we get (29) for both

legs. Use the phase difference δ in the double-stance patch

from (36), and note that

d

dt
δ = ε

ω2

(
v2 sin(ωδ − ψ1)

a2

+ v1 sinψ1

a1

)

=: fδ(x) (67)

i.e. the phase difference is “slow” analogously to its coun-

terpart (52) in the anti-phase limit cycle analysis of the

preceding Section 4.2.1. Once again as in Section 4.2, we

use the coordinates, σ = ψ1 + π/2 and x :=( a1, a2, δ), and

see that

σ̇ = ω + ε

a1

sinψ1v1

ẋ = ε




− cosψ1v1

− cos(ωδ − ψ1) v2

fδ(x)




(68)

where fδ(x) is defined in (67). Recall we are using the same

phase controller (38) as in Section 4.2, but now with kd < 0.

Introducing the prospective in-phase fixed point,

T = π , y∗ = [ka/β, ka/β, 0]T (69)

we point out here that the equilibrium phase difference

above is very different from that in (54) despite the visual

similarity, due to the different definition of δ (which is, as

before in Section 4.2, local). Recall again that in Section

4.2.1 we considered hopper 1 to be in stance and hopper 2

to be in flight, whereas now both hoppers are assumed to be

in stance. Consequently, Equation (36) shows that δ is zero

if and only if both hoppers attain “bottom” simultaneously.

Equation (37) is now substituted into (68), thereby select-

ing a ka for a desired y∗ through (69), and (68) is integrated

(we used the Integrate18 function in Mathematica 10.2 to

perform this integral),

f (y) =




(ka−a1β)

2ω
− 2kd (a1−a2c)

3πω
(ka−a2β)

2ω
− 2kd (a1(c2−s2)−a2c3)

3πω
−2kds(2a2

2+a1a2s2+2a2
1c)

3πω3a1a2


 (70)

where s := sin(ωδ) and c := cos(ωδ). Despite the com-

plexity, we observe the following about the averaged vector

field (70):

1. the preflexive kd = 0 case recovers the isolated vertical

hopper ai-dynamics (29) for both hips (first summand

in each of the first two rows);

2. when δ = 0 and a1 = a2, we also recover isolated ver-

tical hopper dynamics in the first two rows, suggesting

that behavior close to the equilibrium resembles that of

independent vertical hoppers;

3. in the Appendix, we provide an interpretation of the

last row as a proportional controller on the phase

difference, δ.

The averaged vector field (70) evaluates to 0 at y∗, satisfying

Theorem 2(ii). Moreover, we can calculate the Jacobian and

evaluate at y∗ to obtain

Df (y∗) =




−ζ2 − ζ3 ζ3 02×1
ζ3 −ζ2 − ζ3

0 − 8kd

3πω3


 , (71)

where we define the new constants ζ2 := β

2ω
and ζ3 := 2kd

3πω
.

4.3.2. Reset. The touchdown condition is the touchdown

of hopper 1 after its flight phase, or whenψ1−1 (34) crosses

zero. As in Section 4.2.2, ai are not modified by the aerial

dynamics. To integrate the aerial dynamics, note first that

since the touchdown event is at the zero of 1 − ψ
(1)

f , and

ψ
(1)

f ( tLO) = 0, the time of flight is simply tf = 1/ωf( a1).

In this time, hopper 2 must finish its stance phase, complete

its flight phase, and proceed through its stance phase (where

some of these times may be negative):

tf = π − ψ
(2)
v ( tLO)

ω
+ 1

ωf( a2)
+ ψ

(2)
v (tTD)

ω
(72)

To express in terms of δ, note that

δ(tLO) = π − ψ
(2)
v (tLO)

ω
, δ(tTD) = −ψ

(2)
v (tTD)

ω

Using the above in (72), we obtain

1

ωf(a1)
= δ(tLO) −δ(tTD) + 1

ωf(a2)

Rearranging, using (35), and putting together with the

energy coordinates, we obtain

R( a1, a2, δ) =
[
a1, a2, δ + 2(a2−a1)

g

]T

(73)

Just as in Section 4.2.2, y∗ in (69) when substituted into

the equation above yields R(y∗) = y∗, satisfying Theorem

2(ii), and we also note that DR has a constant O( 1) part,

satisfying Theorem 2(i).

Note that unlike the reset map for the anti-phase limit

cycle (62), K does not appear here, since we only have a

single-mode hybrid system in consideration for the in-phase

limit cycle.
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Fig. 4. Top: Displacement of the vertical hopper in physical z

coordinates (thin vertical lines separate stance and flight). Mid-

dle: Abstract energy coordinate a (29) in purple (dashed: flight)

and, in gold, the equivalent continuous dynamical system (43) over

several hops. Bottom: Residual error in the a coordinate between

trajectories of the averaged and original systems.

4.3.3. Application of switching averaging. Using (71) and

(73) and evaluating at (69), we obtain the averaged return

map

DP := DR·( I + επDf 1)

=




1 − ε( ζ2 + ζ3) εζ3 0

εζ3 1 − ε( ζ2 + ζ3) 0

− 2(1−ε(ζ2+2ζ3))

g
− 2(1−ε(ζ2+2ζ3))

g
1 − ε8kd

3πω2




(74)

where ζi are as defined in Section 4.3.1. This lower trian-

gular matrix has 1 − ε8kd

3ω
as one of its eigenvalues, which

is within the unit circle for small ε > 0. The symmetric

upper left block has the simple eigenvalues {1 − εζ2, 1 −
εζ2 − 2εζ3}, which are also within the unit circle for small

ε > 0. Moreover, DP is hyperbolic, and using Theorem

3, we conclude that the pair of independent hoppers has a

stable in-phase limit cycle ε close to (69).

5. Numerical results

In this section we present simulation results of the model

systems discussed in this paper. In Section 5.1, we dis-

play overlapping traces of “unaveraged” and “averaged”

dynamics on an isolated vertical hopper, showing the cor-

respondence that is formally established by Theorem 1. In

Section 5.2, we demonstrate the efficacy of the new coor-

dination controllers introduced in Section 3.3 on a pair of

informationally coupled, mechanically decoupled vertical

hoppers.

We would like to remind the reader that the compan-

ion paper (De and Koditschek, 2018) contains a much

larger swath of not just numerical but also empirical results

benefitting from the theoretical contributions of this paper.

5.1. 1-DOF vertical hopper

Using parameters ω = 50 rad/s, k = 0.4 N-s/m2, β = 10

N/(m/s) and ε = 2, numerical simulations of the ver-

tical hopper with Mathematica 10, using NDSolve19 and

WhenEvent20 show that

1. the fixed point of the averaged system is approximately

0.15 mm away from the original system’s fixed point

(Figure 4 middle, difference between purple a and

dashed gray a∗); and

2. the residual error between trajectories of the averaged

and original systems are an order of magnitude smaller

than a∗ = k/β = 0.04 m (Figure 4, bottom).

Remark 7 (Approximating continuous control with discrete

steps). Note that the averaged vector field (43) has the form

of a proportional controller on total energy. Thus, Theo-

rem 1 enables us to conclude that the cumulative control

effect on body height from multiple isolated steps through

a second-order ordinary differential equation (ODE) is

approximately equivalent to that of a first-order ODE act-

ing on body height (as shown in Figure 4(middle)): the gold

traces in the middle plot correspond to the averaged system

and “snipping away” the resets recovers a smooth energy

dynamics corresponding to (43).

5.2. Pair of vertical hoppers

In Figure 5 we illustrate numerically the analytical results

just derived in Section 4.2–4.3. The physical model we use

is the pair of vertical hoppers of Figure 3, and we demon-

strate that our new phase controller (38) can stabilize both

anti-phase and in-phase limit cycles by changing the sign of

the scalar parameter kd .

We provide empirical demonstration of the phase con-

troller on a physical platform as well as empirical applica-

tion of the attitude controller (39) in the companion paper

(De and Koditschek, 2018) in the “feedback synchroniza-

tion” empirical results section.

We also show in the Appendix how the phase controller

(38) behaves in closed-loop like an abstract phase control

such as previously analyzed in Klavins et al. (2000). The

empirical benefit of (38) is that it is a smooth function of

data φ, φ̇ measured from sensors on the robot, whereas the

abstract phase difference (36) is not only an involved cal-

culation, but also a discontinuous function of the physical

state.

6. Conclusion

This paper presents, to the best of our knowledge, the first

instance of a generalization to hybrid systems of a clas-

sical averaging result. Thus, Theorem 1 joins a growing

body of cases wherein suitably constructed hybrid systems

(Burden et al., 2016, 2015; Eldering and Jacobs, 2016;

Ames and Sastry, 2006; Westervelt et al., 2003; Posa et al.,

2016) admit an appropriately restated version of classical
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Fig. 5. Comparison of coordination through pure “abstract” phase

(75) versus its perceptually direct surrogate (38). Simulation runs

of a pair of independent vertical hoppers with z =( z1 + z2) /2

(Figure 3) where, comparing no phase control (dashed black), the

abstract phase control (75) (blue), and our new phase controller

(38) (red) that introduces complexity in our analysis here, but

leads to more simple and robust physical implementation in (De

and Koditschek, 2018). Note that the sign of kψ is the same for

both limit cycles due to our local definition of δ, as discussed after

(55). We also include (dashed black) “baseline” traces with the

phase control (38) silenced to demonstrate the behavioral efficacy

of either phase control strategy: note the resulting attenuated (top)

and accentuated (bottom) pitching with respect to the baseline.

dynamical systems results, with useful applications to new

engineering settings.

6.1. Relaxing and extending the required

conditions

We provide some examples that demonstrate limitations

of the present theory, and in doing so, motivate future

theoretical work.

6.1.1. Extension to multiple domains. Intuitively, the

ε-parameterization of the continuous dynamics in (1)

ensures that all non-phase coordinates vary slowly with

respect to the phase. Robotic systems in steady-state opera-

tion, with asymptotically stable limit cycles, are one (impor-

tant) class of systems our results apply to, but by no means

the only.

An additional limitation in our modeling is the single

continuous mode and reset of (19). Generalizing the results

herein to hybrid systems with multiple modes or overlap-

ping guards presents a number of challenges. With multiple

domains, there is no privileged set of coordinates shared

across disjoint portions of state space, so it is not obvious

how to parameterize the flow to the form of (1). With over-

lapping guards, the return map is generally discontinuous

(Remy et al., 2010, Table 3) or at least nonsmooth (Bur-

den et al., 2016, Section 4.2), so it is not obvious how to

generalize conditions on the guard and reset in Theorem 3.

6.1.2. Effects of ε-perturbation. As discussed in

Remark 3, large-ε limits of classical averaging con-

clusions can be found in the literature (e.g. Tsatsos, 2006,

17). Numerically, as well as from our empirical experience

in De and Koditschek (2015a), the vertical hopper example

in Section 4.1 retains the asymptotic behavior of (43) for

large ε (Section 5.1).

6.1.3. Rank condition in Theorems 2(ii) and 3(iii). We

emphasize that this condition is necessary for averaging

along the lines of hyperbolicity in the classical theory

(Guckenheimer and Holmes, 1990, Theorem 4.1.1). Indeed,

consider the switching system with flow-time T , dynamics

ẋ = −εx, R(x, σ ) = x + εTx

and observe that f = −x and Df = −1. Note that the

linearization of the return map,

DR · DQ(x) =( 1 + εT) ( 1 − εT) +O(ε2) = 1 + O(ε2)

is not hyperbolic to O(ε), so we cannot assess stability using

Theorem 2.

6.2. Applications and extensions in higher

dimensions

Application to a simple 1-DOF model relevant to legged

locomotion (Section 4.1) indicates that stability analyses

of limit cycles in higher-dimensional systems (De and

Koditschek, 2015b; Kenneally et al., 2016) could be greatly

simplified, in analogy to the simple construction afforded by

De and Koditschek (2015a) relative to the initial controllers

of De and Koditschek (2015b). This is an avenue of ongo-

ing research being undertaken by the authors, and would

add to the large body of emerging engineering-motivated

research to develop approximations of the behavior of non-

linear dynamical systems near reference trajectories (Ames

et al., 2014; Manchester, 2011; Rijnen et al., 2016; Wu and

Sreenath, 2015) (limit cycles in the case of this paper).

In current and future work, we wish to apply this method

to systems of much higher dimensionality than consid-

ered here or in the companion paper (De and Koditschek,

2018). We believe that the following insights will be key in

generalizing this method.

• Time-reversal symmetry. As we observe in the last

paragraph of Section 4.1.1, the averaging method bears

a particular synergy with phase symmetry. The preva-

lence of symmetry in locomotion (Altendorfer et al.,
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2004; Raibert, 1986; Razavi et al., 2016) motivates and

encourages further application of the methods intro-

duced here. Work currently in progress reveals that

time-reversal symmetry can help find averageable coor-

dinates for a class of hybrid dynamical systems appear-

ing in legged locomotion (such as the examples here),

easing the work of representing the continuous dynam-

ics in the form of Theorem 2.

• Conservation laws. High-dimensional systems often

exhibit symmetries leading to conservation laws, as

seen for instance in SLIP or lateral leg spring (LLS)

(Holmes et al., 2006). Conservation laws can be lever-

aged for dimension reduction before application of our

hybrid averaging ideas in this paper, especially since

conserved quantities contribute to non-hyperbolicity in

the return map, thereby precluding the application of

Theorem 2.

• Dimension reduction using feedback anchoring. The

traditional view of anchoring (Full and Koditschek,

1999), or (hybrid) zero dynamics (Westervelt et al.,

2003), is that of dimension reduction in the form of an

attracting invariant submanifold of the original system.

We foresee that our averaging ideas could be applied

to the restricted dynamics (“template dynamics” or

“zero dynamics”), i.e. after an initial reduction (anchor-

ing) due to passive mechanics or stabilizing feedback

control.
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Notes

1. Note that we evaluate at ε = 0 since these terms interact with

a Taylor expansion at ε = 0 of ẏ, as shown in (6).

2. There was a typo in Guckenheimer and Holmes (1990); it

should have said Df (p0) instead of Df ( p).

3. This statement means that if p0 is a hyperbolic fixed point of f ,

by definition, the eigenvalues of Df (p0) have a non-zero real

part. Consequently, the eigenvalues of exp( εTDf (p0) ) do not

lie on the unit circle.

4. There was a typo in Guckenheimer and Holmes (1990); not

ε2-close.

5. Intuitively, the result of (i) holds over a time interval of

O( 1/ε). This statement says that since T does not depend on

ε, for small enough ε, the O( 1/ε) time interval over which (i)

applies can be greater than T .

6. The 1/ε in ζ is there to maintain invertibility even as ε → 0,

since limε→0 DPε → I .

7. This can be done without loss of generality by scaling γ as

long as Dσ γ 6= 0, which we assert as a condition on the

transversality of the flow and the guard.

8. We use the term “equivalent” to denote a correspondence

stronger than conjugacy; whereas the flows are indeed con-

jugate, the return maps are identical.

9. This initial condition corresponds to the nominal impact time,

not the initialization of the continuous dynamics at σ = 0. In

addition, the reader should note that we keep “x” arbitrary for

now, i.e. the following calculations hold for any x.

10. We envision that exploiting within-stance time-reversal sym-

metry as in Altendorfer et al. (2004) could augment the

method in this paper, for further analytical benefit (as we

pursue with work already in progress seeking to analyze

the composition of this paper’s in-place behaviors with the

fore-aft motions treated as disturbances in the “empirical

compositions” section in De and Koditschek (2018)).

11. The discontinuity of (36) across modes does not introduce any

analytical issues as discussed in Remark 6.

12. From (34), −kaω cosψi =( εka/ai) żi (forcing in the direction

of velocity, but normalized by ai).

13. Though the arguments of (38) seemingly involve only physical

coordinates, we justify the use of the term phase controller by

exposing the strong relation between the energetically relevant

“proportional/dissipative” form of (38)–(39), and abstract

phase control in the Appendix.

14. In addition, in the companion paper (De and Koditschek,

2018), we numerically and empirically test these controllers

on systems with preflexive stabilization as well (though we

omit these analyses of combined preflexive–feedback stabi-

lization for sake of space and clarity).

15. We remind the readers of the distinction between an integrable

flow, and the averaging integral (2). In the latter case, we inte-

grate the vector field over a single “phase” parameter while

holding the other states constant.

16. A function f such that −f (x) = f ( −x) is odd in x, and one

such that f ( −x) = f (x) is even in x.

17. Practitioners may wish to note that ε-closeness in state cor-

responds to ε-closeness in energy in mechanical systems like

this hopper.

18. See https://reference.wolfram.com/language/ref/Integrate.html

19. See http://reference.wolfram.com/language/ref/NDSolve.html

20. See https://reference.wolfram.com/language/ref/WhenEvent.

html
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Appendix: A physical surrogate for abstract

phase difference (Section 3.3)

This appendix contains various calculations that are used

for our stability proofs, broken down by the section in which

they appear.

In each of Sections 4.2–4.3, a more straightforward

proof involving algebraically simpler terms could have been

obtained by introducing instead of (38) a coordination term

based upon the abstract phase difference

wi(x) =( −1)i−1 kψ sinψi sin(ωδ) (75)

as in Klavins et al. (2000, equation (7)). This is because in

both of the preceding averaging analyses, δ is shown to be

a “slow” coordinate (δ̇ = O(ε)), and can be held constant

while performing the averaging integral in (56) and (70).

However, the analytically simpler alternative (75)

requires computation of the abstract phase difference δ for

implementation, which is quite involved (36), especially

due to the discontinuities in its definition across modes. In

comparison, our globally well-defined phase controller (38)

is a simple function of the physical variables that can be

easily measured with sensors. We observe in Appendix A.1

that, notwithstanding its simplicity, the coordination con-

troller (38) actually functions as a physical surrogate for

the abstract phase difference, behaving, in both the in-phase

and anti-phase cases, like a proportional phase controller

in the averaged sense. We then discuss the numerical and

empirical utility of this simply implemented surrogate in

Appendix A.2.

Although a matter of considerable conceptual interest, we

are not aware of an analogously equivalent “abstract” ver-

sion of the attitude controller (39) that is a function of the

ψi coordinates only.

A.1. Closed-loop phase-difference dynamics

Though our phase controller (38) looks quite different from

the abstract version (75):

1. an inspection of the last row of (56) reveals that δ̇
avg∝

−δ; and

2. inspection of the sin(ωδ) factor in (or application of the

Series function in Mathematica to) the last row of (70)

reveals that δ̇
avg∝ −δ( a2

1 + a2
2) +O( δ2);

where we use the
avg∝ symbol and omit constant positive

parameters, but include all functions of state explicitly. In

both cases, the closed-loop δ dynamics take the form of a

proportional control on δ for small δ, which is identical to

(75).

A.2. Numerical comparison

Figure 5 shows a numerical comparison between the

abstract phase control (75) and the approximation (38) for

both positive and negative signs of the gain kd , respectively

stabilizing a bounding and a pronking limit cycle in a pair

of independent hoppers.

In the companion paper (De and Koditschek, 2018), we

show in simulation our approximated phase control applied

to coupled vertical hoppers and, more importantly, on the

physical platform. Our results show that (38) is able to over-

come preflexive stability and stabilize the physical platform

leg phases to a desired limit cycle for trotting and pacing,

as well as to obtain bounding or pronking.


