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Abstract—The study of controlled hybrid systems requires prac-
tical tools for approximation and comparison of system behaviors.
Existing approaches to these problems impose undue restrictions
on the system’s continuous and discrete dynamics. Metrization
and simulation of controlled hybrid systems is considered here in
a unified framework by constructing a state space metric. The
metric is applied to develop a numerical simulation algorithm
that converges uniformly, with a known rate of convergence, to
orbitally stable executions of controlled hybrid systems, up to and
including Zeno events. Benchmark hybrid phenomena illustrate
the utility of the proposed tools.

Index Terms—Metrization, state transition.

I. INTRODUCTION

FOR continuous-state dynamical systems and finite-state
automata there exist rich sets of tools for metrization and

simulation. The interaction of discrete transitions with contin-
uous dynamics introduces subtleties that render the develop-
ment of similar tools for controlled hybrid systems non-trivial.
Consider the time evolution of a pair of states (ξ1, ξ2) ∈ R

2.
Suppose that when either quantity crosses zero a discontinuous
change in the time derivatives (ξ̇1, ξ̇2) is triggered yielding a
discontinuous planar vector field as in Fig. 1(a). A faithful
model of the system’s full state evolution is hybrid, representing
both discrete and continuous state transitions, as in Fig. 1(b).

The choice of metric for this controlled hybrid system dic-
tates exactly the type of trajectories that can be faithfully sim-
ulated. For example, existing trajectory-space metrics impose
at least unit distance between any states that reside in different
discrete modes [1]–[4]. As a result, simulation algorithms based
on these metrics cannot provably approximate executions that
undergo simultaneous discrete transitions (e.g., x) since nearby
executions encounter different discrete transition sequences
(e.g., yδ , zδ).

Manuscript received January 30, 2014; revised September 12, 2014; accepted
January 23, 2015. Date of publication February 19, 2015; date of current
version August 26, 2015. This work was supported in part by an NSF Graduate
Research Fellowship. Recommended by Associate Editor C. Belta.

S. A. Burden is with the Electrical Engineering Department, University of
Washington, Seattle, WA 98195 USA (e-mail: sburden@uw.edu).

H. Gonzalez is with the Electrical & Systems Engineering Department,
Washington University in St. Louis, St. Louis, MO 63130 USA (e-mail:
hgonzale@wustl.edu).

R. Vasudevan is with the Mechanical Engineering Department, University of
Michigan, Ann Arbor, MI 48109 USA (e-mail: ramv@umich.edu).

R. Bajcsy and S. S. Sastry are with the Electrical Engineering and Computer
Sciences Department, University of California at Berkeley, Berkeley, CA 94720
USA (e-mail: bajcsy@eecs.berkeley.edu; sastry@eecs.berkeley.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TAC.2015.2404231

Fig. 1. Illustration of digital control system governing the time evolution
of two physical quantities (ξ1, ξ2) ∈ R

2 (Fig. 1(a)) and a controlled hybrid
system induced by discrete transitions in the digital controller state (Fig. 1(b)).
The execution x undergoes two discrete transitions simultaneously; the nearby
executions yδ , zδ encounter different discrete transition sequences. Since
R(1,3) ◦R(0,1)(0, 0) = R(2,3) ◦R(0,2)(0, 0) = (0, 0), either transition se-
quence may be chosen for x. (a) Digital control system. (b) Controlled hybrid
system.

To overcome this limitation, we construct a distance metric
over the state space of a controlled hybrid system and apply this
metric to develop a provably-convergent numerical simulation
algorithm applicable to the class of hybrid systems illustrated
in Fig. 1(b). Our framework enables formal investigation of
a wide range of systems: the dynamics may be nonlinear, the
continuous dynamics may be controlled, and multiple discrete
transitions may occur simultaneously, so long as executions are
orbitally stable.

Efforts to construct topologies on controlled hybrid systems
have been significant, and can be best appreciated in this con-
text by determining whether they induce a metric space. Nerode
and Kohn [5] define state-space topologies that are not required
to be metric spaces but are generated by finite-state automata
associated with digital control systems. Simic et al. [6] apply
a quotient construction to obtain, under regularity conditions, a
topological manifold (or hybrifold). Ames and Sastry [7] derive
a category-theoretic colimit topology over the regularization
proposed by Johansson et al. [8] that relaxes domains at the
guard sets. We propose a metric topology over the state space
of controlled hybrid systems that connects disparate domains
through the reset map, effectively metrizing the hybrifold and
colimit topologies, and generalizing the phase space metric
proposed by Schatzman for an impact oscillator [9]. In contrast,
Tavernini [1] and Gobel and Teel [10] directly metrize the space
of executions of hybrid systems; Gokhman [2] demonstrates the
equivalence of the resulting topology with that generated by the
Skorohod trajectory metric [11, Chapter 6]). We highlight in
more detail the limitations imposed by metrizing the trajectory
space rather than state space in Section V-A.
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The literature on numerical simulation of hybrid systems
may be partitioned into two groups: practical algorithms fo-
cused on high-precision estimates of discrete event times, and
theoretical proofs of convergence for simulations. Practical
algorithms aim to place time-steps close to discrete event times
using root-finding [12]–[14]. Theoretical proofs of convergence
have generally required restrictive assumptions: Esposito et al.
[15], apply feedback linearization to asymptotically guarantee
event detection for semi-algebraic guards, while Paoli and
Schatzman [16] develop a provably-convergent algorithm for
mechanical states undergoing impact. The most general con-
vergence results relax the requirement that discrete transi-
tion times be determined accurately [1], [3], [4], [17], and
consequently can accommodate arbitrary nonlinear transition
surfaces, Lipschitz continuous vector fields, and continuous
discrete transition maps. We extend this approach using our
state-space metric to prove convergence, at least at a linear rate,
to executions that satisfy an orbital stability property described
in Section IV. Our algorithm is applicable to hybrid systems
possessing control inputs and overlapping guards, representing
a substantial contribution beyond our previous efforts [17] and
those of others [1], [3], [4].

Organization: Section II contains definitions of mathemat-
ical concepts of interest. Section III contains our technique
for metrization and relaxation of controlled hybrid systems. In
Section IV we develop an algorithm for numerical simulation
and prove uniform convergence at a linear rate of simulations to
orbitally stable executions. The technical and practical advan-
tages of our techniques are illustrated in a series of examples in
Section V.

II. PRELIMINARIES

We begin with the definitions and assumptions used through-
out the paper.

A. Topology

The 2-norm is our finite-dimensional norm of choice unless
otherwise specified. Let PA be the set of all finite partitions
of A ⊂ R. Given n ∈ N, we define the total variation of f ∈
L∞(R,Rn) by

V (f)=sup

⎧⎨⎩
m−1∑
j=0

‖f(tj+1)−f(tj)‖1| {tk}
m
k=0∈PR,m∈N

⎫⎬⎭
(1)

where L∞(R,Rn) is the set of all almost everywhere bounded
functions from R to R

n. The total variation of f is a semi-norm,
i.e., it satisfies the Triangle Inequality, but does not separate
points. f is of bounded variation if V (f) < ∞, and we define
BV (R,Rn) to be the set of all functions of bounded variation
from R to R

n.
Given n ∈ N and D ⊂ R

n, ∂D is the boundary of D, and
int(D) is the interior of D. Recall that given a collection of sets
{Sα}α∈A, where A might be uncountable, the disjoint union
of this collection is

∐
α∈A Sα =

⋃
α∈A Sα × {α}, a set that

is endowed with the piecewise-defined topology. Throughout
the paper we will abuse notation and say that given ᾱ ∈ A
and x ∈ Sᾱ, then x ∈

∐
α∈A Sα, even though we should write

ιᾱ(x) ∈
∐

α∈A Sα, where ιᾱ : Sᾱ →
∐

α∈A Sα is the canoni-
cal identification ιᾱ(x) = (x, ᾱ).

In this paper we make extensive use of the concept of a
quotient topology induced by an equivalence relation defined
on a topological space. We regard a detailed exposition of this
important concept as outside the scope of this paper, and refer
the reader to [18, Chapter 3] or [19, Section 22] for more
details. The next definition formalizes equivalence relations in
topological spaces induced by functions. If f : A → B, V ⊂ A,
and V ′ ⊂ B, then we let f(V ) = {f(a) ∈ B | a ∈ V } denote
the image of V under f , and f−1(V ′) = {a ∈ A | f(a) ∈ V ′}
denote the pre-image of V under f .

Definition 1: Let S be a topological space, A,B ⊂ S two
subsets, and f : A → B a function. The f -induced equiva-
lence relation, denoted Λf , is the smallest equivalence re-
lation containing the set {(a, b)∈S×S | a ∈ f−1(b)} ([20,
Section 4.2.4]). We say that a, b ∈ S are f -related, denoted by

a
f∼ b, if (a, b) ∈ Λf . Moreover, the equivalence class of x ∈ S

is defined as [x]f = {a ∈ S | a f∼ x}, and the set of equivalence
classes is defined as S

Λf
= {[x]f |x ∈ S}. We endow the quo-

tient S
Λf

with the quotient topology.
Note that Λf is reflexive, symmetric, and transitive, i.e. an

equivalence relation. An important application of the function-
induced quotient is the construction of a single topological
space out of several disconnected sets. Indeed, given a collec-
tion of sets {Sα}α∈A, where A is some index set, and a function

f : U →
∐

α∈A Sα, where U ⊂
∐

α∈A Sα, then Ŝ =

∐
α∈A

Sα

Λf

is a topological space.
Next, we present a useful concept from graph theory that

simplifies our ensuing analysis.
Definition 2: Let (J ,Γ) be a directed graph, where J is the

set of vertices and Γ ⊂ J × J is the set of edges. Then, given
j ∈ J , define the neighborhood of j, denoted Nj , by

Nj = {e ∈ Γ | ∃j ′ ∈ J such that e = (j, j′)} . (2)

B. Length Metrics

Every metric space has an induced length metric, defined by
measuring the length of the shortest curve between two points.
Throughout this paper, we use induced length metrics to metrize
the function-induced quotients of disjoint unions of sets. To
formalize this approach, we begin by defining the length of a
curve in a metric space; the following definition is equivalent to
[21, Definition 2.3.1].

Definition 3: Let (S, d) be a metric space, I ⊂ [0, 1] be an
interval, and γ : I → S be a continuous function. Define the
length of γ under the metric d by

Ld(γ)=sup

{
k−1∑
i=0

d(γ(t̄i), γ(t̄i+1)) | k∈N, {t̄i}ki=0∈PI

}
. (3)

We now define a generalization of continuous curves for
quotiented disjoint unions.

Definition 4: Let {Sα}α∈A be a collection of sets and f :
U →

∐
α∈A Sα, where U ⊂

∐
α∈A Sα. γ : [0, 1] →

∐
α∈A Sα
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Fig. 2. g-connected curve γ with partition {ti}4i=0, where Sα = [a, a+
1]× [0, 1], Sᾱ=[b, b+1]×[0, 1], and g : {a+ 1} × [0, 1] → {b} × [0, 1]
with g(a+ 1, x) = (b, x).

is f -connected if there exists k ∈ N and {ti}ki=0 ⊂ [0, 1] with
0 = t0 ≤ t1 ≤ . . . ≤ tk = 1 such that γ|[ti,ti+1) is continuous
for each i ∈ {0, 1, . . . , k − 2}, γ|[tk−1,tk] is continuous, and

limt↑ti γ(t)
f∼ γ(ti) for each i ∈ {0, 1, . . . , k − 1}. Moreover,

in that case {ti}ki=0 is called a partition of γ.
Note that, since each section γ|[ti,ti+1) is continuous, it must

necessarily belong to a single set Sα for some α ∈ A because
the disjoint union is endowed with the piecewise-defined topol-
ogy. In the case when A = {α} is a singleton, then every
idSα

-connected curve is simply a continuous curve over Sα,
where idSα

denotes the identity function in Sα. Fig. 2 shows an
example of a connected curve over a collection of two sets.

Using the concept of connected curves, we now define the
induced length distance of a collection of metric spaces. The
induced length distance is a generalization of the induced
metric defined in [21, Chapter 2].

Definition 5: Let {(Sα, dα)}α∈A be a collection of met-
ric spaces, and let {Xα}α∈A be a collection of sets such
that Xα ⊂ Sα for each α ∈ A. Furthermore, let f : U →∐

α∈A Xα, where U ⊂
∐

α∈A Xα, and let X̂ =

∐
α∈A

Xα

Λf
.

d̃
X̂

: X̂ × X̂ → [0,∞] is the f -induced length distance of X̂ ,
defined by

d̃
X̂
(p, q) = inf

{
k−1∑
i=0

Ldαi
(γ|[ti,ti+1)) | γ : [0, 1] →

∐
α∈A

Xα,

γ(0) = p, γ(1) = q, γ is f -connected,
{ti}ki=0 ∈ P[0,1],

{αi}k−1
i=0 s.t. γ([ti, ti+1)) ⊂ Xαi

∀i
}
. (4)

We invoke this definition to metrize both subsets and dis-
joint unions of metric spaces. It is important to note that al-
though d̃

X̂
is non-negative, symmetric, and subadditive, it does

not necessarily separate points of X̂ (see [21, Section 2.3]),
and hence generally only defines a pseudo-metric. In the special
case where no function f is supplied, then by convention
we let f = idX , the identity function on X . This implies
X̂ = X and the induced metric coincides with the given met-
ric. The following Lemma is a straightforward consequence
of [21, Proposition 2.3.12].

Lemma 6: Let (S, d) be a metric space and X ⊂ S. Then
d̃X is a metric. Moreover, the topology on X induced by d̃X is
equivalent to the topology on X induced by d.

Fig. 3. Illustration of a controlled hybrid system with three modes.

C. Controlled Hybrid Systems

Motivated by the definition of hybrid systems presented in [6],
we define the class of hybrid systems of interest in this paper.

Definition 7: A controlled hybrid system is a tuple

H = (J ,Γ,D, U,F ,G,R) (5)

where:

• J is a finite set indexing the discrete states of H;
• Γ ⊂ J × J is the set of edges, forming a directed graph

structure over J ;
• D = {Dj}j∈J is the set of domains, where each Dj is a

subset of Rnj , nj ∈ N;
• U ⊂ R

m is the range space of control inputs, m ∈ N;
• F = {fj}j∈J is the set of vector fields, where each fj :
R×Dj × U → R

nj is the vector field defining the dy-
namics of the system on Dj ;

• G = {Ge}e∈Γ is the set of guards, where each G(j,j′) ⊂
∂Dj is a guard in mode j ∈ J that defines a transition to
mode j ′ ∈ J ; and,

• R = {Re}e∈Γ is the set of reset maps, where each map
R(j,j′) : G(j,j′) → Dj′ defines the transition from guard
G(j,j′).

For convenience, we sometimes refer to controlled hybrid sys-
tems as just hybrid systems, and we refer to the distinct vertices
within the graph structure associated with a controlled hybrid
system as modes. Each domain in the definition of a controlled
hybrid system is a metric space with the Euclidean distance
metric. A three-mode autonomous hybrid system, which is a
particular case of Definition 7 where none of the vector fields
{fj}j∈J depend on the control input, is illustrated in Fig. 3.
Note that we restrict control inputs to the continuous flow,
hence inputs do not have an effect during discrete transitions.

Next, we impose several technical assumptions that support
existence and uniqueness of executions on hybrid domains.
We delay the definition of executions of a hybrid system to
Section IV-A once all the technical details regarding the
metrization of spaces have been presented.

Assumption 8: Let H be a controlled hybrid system. Then
the following statements are true:

1) For each j ∈ J , Dj is a compact nj-dimensional mani-
fold with boundary.

2) U is compact.
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3) For each e ∈ Γ, Ge is a closed, embedded, codimension 1
submanifold with boundary.

4) For each e ∈ Γ, Re is continuous.

Assumption 9: For each j ∈ J , fj is Lipschitz continuous.
That is, there exists L > 0 such that for each j ∈ J , t1, t2 ∈ R,
x1, x2 ∈ Dj , and u1, u2 ∈ U

‖fj(t1, x1, u1)− fj(t2, x2, u2)‖
≤ L (|t1 − t2|+ ‖x1 − x2‖+ ‖u1 − u2‖) . (6)

Assumption 9 guarantees the existence and uniqueness of solu-
tions to ordinary differential equations in individual domains. In
the sequel we will consider control inputs of bounded variation
u ∈ BV (R, U). Note that without loss of generality we take 0
as the initial time in the following Lemma; a general initial time
can be accommodated by a straightforward change of variables.

Lemma 10: Let H be a controlled hybrid system. Then for
each j ∈ J , each initial condition p ∈ Dj , and each control u ∈
BV (R, U), there exists an interval I ⊂ R with 0 ∈ I such that
the following differential equation has a unique solution:

ẋ(t) = fj (t, x(t), u(t)) , t ∈ I, x(0) = p. (7)

x is called the integral curve of fj with initial condition p and
control u. Moreover, x|I is absolutely continuous.

Proof: Let f̃j : R× R
nj × U → R

nj be any globally
Lipschitz continuous extension to fj (guaranteed to exist
by [22, Theorem 1]). Given any p ∈ Dj ⊂ R

nj and u ∈
BV (R, U), Proposition 5.6.5 in [23] guarantees the exis-
tence of an integral curve x̃ : Ĩ → R

nj for f̃j with initial
condition x̃(0) = p. Note that x̃ is absolutely continuous by
[24, Theorem 3.35]. Let I ⊂ Ĩ be the connected component
of x̃−1(Dj) containing 0. Then x = x̃|I is an absolutely con-
tinuous integral curve of fj and x(I) ⊂ Dj . Note that x is
unaffected by the choice of extension f̃j . �

The following definition is used to construct executions of a
controlled hybrid system.

Definition 11: Let H be a controlled hybrid system, j ∈
J , p ∈ Dj , and u ∈ BV (R, U). x : I → Dj is the maximal
integral curve of fj with initial condition p and control u
if, given any other integral curve with initial condition p and
control u, such as x̃ : Ĩ → Dj , then Ĩ ⊂ I .

Given a maximal integral curve x : I → Dj , a direct
consequence1 of Definition 11 and Assumption 8 is that either
sup I = +∞, or sup I = t′ < ∞ and x(t′) ∈ ∂Dj . This fact is
critical during the definition of executions of a controlled hybrid
systems in Section IV.

III. METRIZATION AND RELAXATION OF

CONTROLLED HYBRID SYSTEMS

In this section, we metrize a unified family of spaces con-
taining all the domains of a controlled hybrid system H. The
constructed metric space has three appealing properties: first,
the distance between a point in a guard and its image via

1This follows from continuity of integral curves and compactness of hybrid
domains.

Fig. 4. Disjoint union of D1 and D2 (left) and the hybrid quotient space M
obtained from the relation Λ

R̂
(right).

its respective reset map is zero; second, the distance between
points in different domains are properly defined and finite; and
third, the distance between points is based on the Euclidean
distance metric from each domain.

A. Hybrid Quotient Space

Using Definitions 5 and 7, we construct a metric space where
the executions of a controlled hybrid system reside. The result
is a metrization of the hybrifold [6].

Definition 12: Let H be a controlled hybrid system, and let

R̂ :
∐
e∈Γ

Ge →
∐
j∈J

Dj (8)

be defined by R̂(p) = Re(p) for each p ∈ Ge. Then the hybrid
quotient space of H is

M =

∐
j∈J Dj

Λ
R̂

. (9)

Fig. 4 illustrates the construction in Definition 12. The in-
duced length distance on M is in fact a distance metric.

Theorem 13: Let H be a controlled hybrid system, and let
d̃M be the R̂-induced length distance of M, where R̂ is defined
in (8). Then d̃M is a metric on M, and the topology it induces
is equivalent to the R̂-induced quotient topology.

Proof: We provide the main arguments of the proof, omit-
ting the details in the interest of brevity. First, note that each
domain is a normal space, i.e., every pair of disjoint closed
sets have disjoint neighborhoods. Second, note that each reset
map is a closed map, i.e., the image of closed sets under the
reset map are closed. This fact follows by Condition (3) in
Assumption 8, since each guard is compact, thus reset maps
are closed by the Closed Map Lemma ([25, Lemma A.19]).

Let D̂ =
∐

j∈J Dj and p, q ∈ D̂. We aim to show that if p
and q yield distinct equivalence classes (i.e., (p, q) 
∈ ΛR̂) then
the induced distance between them is strictly positive. Note that
the equivalence classes [p]

R̂
and [q]

R̂
are each a finite collec-

tion of closed sets. Moreover, since we can construct disjoint
neighborhoods around each of these closed sets, then we can
conclude that there exists δ > 0 such that d̃M([p]

R̂
, [q]

R̂
) >

δ. The proof concludes by following the argument in [21,
Exercise 3.1.14], i.e. since each connected component in D̂ is
bounded, then M is also bounded (in the quotient topology).
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Then, using a simple extension of [18, Theorem 5.8],2 we get
that the identity map from M to the space constructed by taking
the quotient of all the points in D̂ such that d̃M has zero distance
is a homeomorphism, thus they have the same topology. �

It is crucial to note that all R̂-connected curves are contin-
uous in the topology induced by the metric d̃M on the hybrid
quotient space M. This implies in particular that executions
of controlled hybrid systems (to be defined in Section IV)
are continuous in M since the endpoint of the segment of
an execution that lies in a guard Ge will be R̂-related to
the startpoint of the subsequent segment of the execution;
alternately, this follows from [6, Theorem 3.12(b)] since M is
equivalent to the “hybrifold” construction in that paper. This
important property is foundational to the convergence results
for sequences of (relaxed) executions and their simulations
derived in Section IV. For further details, we refer the interested
reader to [6, Examples 3.2 and 3.3] where continuity is clearly
discussed for simple examples.

B. Relaxation of a Controlled Hybrid System

To construct a numerical simulation scheme that does not
require the exact computation of the time instant when an
execution intersects a guard, we require a method capable of
introducing some slackness within the computation. This is
accomplished by relaxing3 each domain along its guard and
then relaxing each vector field and reset map accordingly in
order to define a relaxation of a controlled hybrid system.

To formalize this approach, we begin by defining the relax-
ation of each domain of a controlled hybrid system, which is
accomplished by first attaching an ε-sized strip to each guard.

Definition 14: Let H be a controlled hybrid system. For each
e ∈ Γ, let Sε

e = Ge × [0, ε] be the strip associated to guard Ge.
For each j ∈ J , let

χj :
∐
e∈Nj

Ge →
∐
e∈Nj

Sε
e (10)

be the canonical identification of each point in a guard with
its corresponding strip defined for each p ∈ Ge as χj(p) =
(p, 0) ∈ Sε

e . Then, the relaxation of Dj is defined by

Dε
j =

Dj

∐ (∐
e∈Nj

Sε
e

)
Λχj

. (11)

By Condition (3) in Assumption 8, each point on a strip
Sε
e of Dj is defined using nj coordinates (ζ1, . . . , ζnj−1, τ),

shortened (ζ, τ), where τ is called the transverse coordinate
and is the distance along the interval [0, ε]. An illustration of
Definition 14 together with the coordinates on each strip is
shown in Fig. 5.

We endow each Sε
e with a distance metric in order to define

an induced length metric on a relaxed domain Dε
j .

2The extension aims to allow the domain of the map to be bounded instead
of compact. The new proof follows step-by-step the argument in [18].

3This should not be confused with the “relaxation” of hybrid inclusions
described by Cai et al. [26]. Since interpreting our controlled hybrid systems as
hybrid inclusions yields singleton-valued “flow” and “jump” maps, relaxation
in this sense does not yield a distinct hybrid system.

Fig. 5. Disjoint union of D1 and the strips in its neighborhood, {Sε
e}e∈N1

(left), and the relaxed domain Dε
1 obtained from the relation Λχ1 (right).

Definition 15: Let j ∈ J and e ∈ Nj . Endow Dj with d̃Dj

as its metric, and dSε
e
: Sε

e × Sε
e → [0,∞) as the metric on Sε

e ,
defined for each ζ, ζ ′ ∈ Ge and τ, τ ′ ∈ [0, ε] by

dSε
e
((ζ, τ), (ζ ′, τ ′)) = d̃Ge

(ζ, ζ ′) + |τ − τ ′|. (12)

We now define a length metric on relaxed domains using
Definitions 4 and 5.

Theorem 16: Let j ∈ J , and let d̃Dε
j

be the χj-induced
length distance on Dε

j , where χj is as defined in (10). Then

d̃Dε
j

is a metric on Dε
j , and the topology it induces is equivalent

to the χj-induced quotient topology.
Proof: Since d̃Dε

j
is non-negative, symmetric, and subad-

ditive, it remains to show that it separates points. Let p, q ∈ Dε
j .

First, we want to show that [p]χj
= [q]χj

whenever d̃Dε
j
(p, q) =

0. Note that for each e ∈ Nj and each pair p, q ∈ Ge, and by
the Definition 5 and 15, dSε

e
((p, 0), (q, 0)) ≥ d̃Dj

(p, q), hence
no connected curve that transitions to a strip can be shorter than
a curve that stays in Dj . This fact immediately shows that for
p, q ∈ Dj , d̃Dε

j
(p, q) = 0 implies that [p]χj

= [q]χj
. The case

when one of the points is in Ge × (0, ε] ⊂ Sε
e follows easily by

noting that those points can be separated by a suitably-sized
dSε

e
-ball. The proof concludes by following the argument in

[21, Exercise 3.1.14], as we did in the proof of Theorem 13. �
Refer to d̃Dε

j
as the relaxed domain metric. Note that

Theorem 16 can be proved using essentially the same argument
as in the proof of Theorem 13, but we prove Theorem 16
to emphasize the utility of the inequality relating the induced
metric on a domain and the metric on each strip.

Next, we define a vector field over each relaxed domain.
Definition 17: Let j ∈ J . For each e ∈ Nj , let the vector

field on the strip Sε
e , denoted fe, be the unit vector point-

ing outward along the transverse coordinate. In coordinates,
fe(t, (ζ, τ), u) = (0, . . . , 0︸ ︷︷ ︸

ζ coords.

, 1)T . Then, the relaxation of fj is

fε
j (t, x, u)=

{
fj(t, x, u) if x∈Dj

fe(t, x, u) if x∈Ge×(0, ε]⊂Sε
e , e∈Nj .

(13)

Note that the relaxation of the vector field is generally not
continuous along each Ge, for e ∈ Nj . As we show in the algo-
rithm in Fig. 10, this discontinuous vector field does not lead to
sliding modes on the guards [27], [28], since the vector field on
the strips always points away from the guard. An illustration of
the relaxed vector field fε

j on Dε
j is shown in Fig. 6.
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Fig. 6. Relaxed vector field fε
1 on Dε

1.

The definitions of relaxed domains and relaxed vector fields
allow us to construct a relaxation of the controlled hybrid
systems as follows:

Definition 18: Let H be a controlled hybrid system. We say
that the relaxation of H is a tuple

Hε = (J ,Γ,Dε, U,Fε,Gε,Rε) (14)

where:
• Dε = {Dε

j}j∈J is the set of relaxations of the domains
in D, and each Dε

j is endowed with its induced length

distance metric d̃Dε
j
;

• Fε = {fε
j }j∈J is the set of relaxations of the vector fields

in F ;
• Gε = {Gε

e}e∈Γ is the set of relaxations of the guards in G,
where Gε

e = Ge × {ε} ⊂ Sε
e for each e ∈ Γ; and,

• Rε = {Rε
e}e∈Γ is the set of relaxations of the reset maps

in R, where Rε
e : Gε

e → Dj′ for each e = (j, j′) ∈ Γ and
Rε

e(ζ, ε) = Re(ζ) for each ζ ∈ Ge.

C. Relaxed Hybrid Quotient Space

Analogous to the construction of the metric quotient spaceM,
using Definitions 5 and 18 we construct a unified metric space
where executions of relaxations of controlled hybrid systems re-
side. The result is a metrization of the hybrid colimit [7] (rather
than a metrization of the hybrifold as in the previous section).

Definition 19: Let Hε be the relaxation of the controlled
hybrid system H. Also, let

R̂ε :
∐
e∈Γ

Gε
e →

∐
j∈J

Dε
j (15)

be defined by R̂ε(p) = Rε
e(p) for each p ∈ Gε

e. Then the re-
laxed hybrid quotient space of Hε is

Mε =

∐
j∈J Dε

j

Λ
R̂ε

. (16)

The construction in Definition 19 is illustrated in Fig. 7.
We now show that the induced length distance on Mε is

indeed a metric. We omit this proof since it is identical to the
proof of Theorem 13.

Theorem 20: Let H be a controlled hybrid system, let Hε be
its relaxation, and let d̃Mε be the R̂ε-induced length distance
of Mε, where R̂ε is defined in (15). Then d̃Mε is a metric on

Fig. 7. The disjoint union of Dε
1 and Dε

2 (left), and the relaxed hybrid quotient
space Mε obtained from the relation Λ

R̂ε
(right).

Mε, and the topology it induces is equivalent to the R̂ε-induced
quotient topology.

All R̂ε-connected curves are continuous under the metric
topology induced by d̃Mε which will be important when we
study executions of hybrid systems in Section IV.

As expected, the metric on Mε converges pointwise to the
metric on M.

Theorem 21: Let H be a controlled hybrid system, and let
Hε be its relaxation. Then for each p, q ∈ M, d̃Mε(p, q) →
d̃M(p, q) as ε → 0.

Proof: Abusing notation, let L(γ) denote the length of any
connected curve γ, defined as the sum of the lengths of each
of its continuous sections under the appropriate metric. First,
note that d̃M(p, q) ≤ d̃Mε(p, q). This inequality follows since,
as we argued in the proof of Theorem 16, given an edge (j, j′) ∈
Γ, dSε

(j,j′)
((p′, 0), (q′, 0)) ≥ d̃Dj

(p′, q′) for any pair of points

p′, q′ ∈ G(j,j′). Thus, adding the strips {Sε
e}e∈Γ in Mε only

make the length of a connected curve longer.
Now let D̂ =

∐
j∈J Dj and D̂ε =

∐
j∈J Dε

j . Given δ > 0,

there exists γ : [0, 1] → D̂, an R̂-connected curve with partition
{ti}ki=0, such that γ(0) = p, γ(1) = q, and d̃M(p, q) ≤ L(γ) ≤
d̃M(p, q) + δ. Moreover, without loss of generality let γε :

[0, 1] → D̂ε be an R̂ε-connected curve that agrees with γ on
D̂, i.e., each section of γε on D̂ is identical, up to time scaling,
to a section of γ. Thus γε has at most k ε-length extra sec-
tions, L(γ) ≤ L(γε) ≤ L(γ) + kε, and d̃Mε(p, q) ≤ L(γε) ≤
d̃M(p, q) + kε+ δ. But this inequality is valid for each δ >

0, hence d̃Mε(p, q) ≤ d̃M(p, q) + kε. The result follows after
taking the limit as ε → 0. �

Note that Theorem 21 does not imply that the topology of
Mε converges to the topology of M. On the contrary, Mε is
homotopically equivalent to the graph (J ,Γ) for each ε > 0
[7], whereas the topology of M may be different [6].

We conclude this section by introducing metrics between
curves on Mε.

Definition 22: Let I ⊂ [0,∞) a bounded interval. Given any
two curves γ, γ′ : I → Mε, we define

ρεI(γ, γ
′) = sup

{
d̃Mε (γ(t), γ′(t)) | t ∈ I

}
. (17)

Our choice of the supremum among point-wise distances in
Definition 22 is inspired by the sup-norm for continuous real-
valued functions.



BURDEN et al.: METRIZATION AND SIMULATION OF CONTROLLED HYBRID SYSTEMS 2313

Fig. 8. Algorithm to construct an execution of a controlled hybrid system H.

IV. RELAXED EXECUTIONS AND

DISCRETE APPROXIMATIONS

This section contains our main result: discrete approxima-
tions of executions of controlled hybrid systems, constructed
using any variable step size numerical integration algorithm,
converge uniformly to the actual executions. This section is
divided into three parts. First, we define a pair of algorithms that
construct executions of controlled hybrid systems and their re-
laxations, respectively. Next, we develop a discrete approxima-
tion scheme for executions of relaxations of controlled hybrid
systems. Finally, we prove that these discrete approximations
converge to orbitally stable executions of the original, non-
relaxed, controlled hybrid system using the metric topologies
developed in Section III.

A. Execution of a Hybrid System

We begin by defining an execution of a controlled hybrid
system. This definition agrees with the traditional intuition
about executions of controlled hybrid systems which describes
an execution as evolving as a standard control system until a
guard is reached, at which point a discrete transition occurs to a
new domain using a reset map. We provide an explicit definition
to clarify technical details required in the proofs below. Given
a controlled hybrid system, H, as in Definition 7, the algorithm
in Fig. 8 defines an execution of H via construction. A resulting
execution, denoted x, is an R̂-connected curve from some
interval I ⊂ [0,∞) to

∐
j∈J Dj . Thus, abusing notation, we

regard x as a continuous curve on M. Abusing notation again,
we regard x as a piece-wise continuous curve on Mε for
each ε > 0. Fig. 9(a) shows an execution undergoing a discrete
transition.

Note that executions constructed using the algorithm in Fig. 8
are not necessarily unique. Indeed, Definition 11 implies that
once a discrete transition has been performed, the execution is
unique until a new transition is made; however, the choice in
Step 8 is not necessarily unique if the maximal integral curve
passes through the intersection of multiple guards. It is not hard
to prove that a sufficient condition for uniqueness of executions
is that all the guards are disjoint, even though, as we show in
Section V-C, uniqueness of the executions can be obtained for
some cases where guards do intersect.

Fig. 9. Examples of different executions for a two–mode hybrid system.
(a) Discrete transition of an execution x. (b) Zeno execution x accumulating
at p′. (c) Non–orbitally stable execution at initial condition p′.

With the definition of execution of a controlled hybrid sys-
tem, we can define a class of executions unique to controlled
hybrid systems.

Definition 23: An execution is Zeno when it undergoes an
infinite number of discrete transitions in a finite amount of time.
Hence, there exists T > 0, called the Zeno time, such that the
execution is only defined on I = [0, T ).

Zeno executions are hard to simulate since they apparently
require an infinite number of reset map evaluations, an impos-
sible task to implement on a digital computer. A consequence
of the algorithm in Fig. 8 is that if x : I → M is an execution
such that T = sup I < ∞, then either

1) x has a finite number of discrete transitions on I = [0, T ],
and x(T ) ∈ ∂Dj for some j ∈ J , or

2) x is a Zeno execution and I = [0, T ).

We now introduce a property of Zeno executions of particular
interest in this paper:

Definition 24: Let H be a controlled hybrid system, p ∈ M,
u ∈ BV (R, U), and x : [0, T ) → M be a Zeno execution with
initial condition p, control u, and Zeno time T . x accumulates
at p′ ∈ M if limt→T d̃M(x(t), p′) = 0.

Examples of Zeno executions that do not accumulate can be
found in [29]. Fig. 9(b) shows a Zeno execution that accumu-
lates at p′. Note that for p′ to be a Zeno accumulation point, it
must belong to a guard of a controlled hybrid system.

Since M is a metric space, we can introduce the concept of
continuity of a hybrid execution with respect to its initial con-
dition and control input in a straightforward way. Employing
this definition, we can define the class of executions that are
numerically approximable:

Definition 25: Let H be a controlled hybrid system. Denote
by x(p,u) :I(p,u)→M a hybrid execution of H with initial con-
dition p∈M and control u∈BV (R, U). Given T >0, we say
that x(p,u) is orbitally stable in [0, T ] at (p, u) if there exists a
neighborhood of (p, u), sayN(p,u)⊂M×BV (R, U), such that:

1) x(p′,u′) is unique for each (p′, u′) ∈ N(p,u).
2) [0, T ] ⊂ I(p′,u′) for each (p′, u′) ∈ N(p,u).
3) The map (p′, u′) �→ x(p′,u′)(t) is continuous at (p, u) for

each t ∈ [0, T ].

As observed in [30, Section III-B], executions that are not
orbitally stable are difficult to approximate with a general
algorithm. Fig. 9(c) shows a non-orbitally stable execution that
intersects the guard tangentially, and note that executions ini-
tialized arbitrarily close to p′ ∈ D1 undergo different sequences
of transitions. Unfortunately, there is presently no general test
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Fig. 10. Algorithm to construct a relaxed execution of a relaxation of a
controlled hybrid system, Hε.

Fig. 11. Relaxed mode transition of a relaxed execution xε in a two—mode
relaxed hybrid dynamical system.

(analytical or numerical) that ensures a given execution is
orbitally stable. Reference [30, Theorem III.2] provides one set
of sufficient conditions ensuring orbital stability.

B. Relaxed Execution of a Hybrid System

Next, we define the concept of relaxed execution for a
relaxation of a controlled hybrid system. The main idea is
that, once a relaxed execution reaches a guard, we continue
integrating over the strip with the relaxed vector field, fe, as
in Definition 17. Given the controlled hybrid system, H and its
relaxation, Hε for some ε > 0, the algorithm in Fig. 10 defines a
relaxed execution of Hε via construction. The resulting relaxed
execution, denoted xε, is a continuous function defined from
an interval I ⊂ [0,∞) to Mε. Note that this algorithm is only
defined for initial conditions belonging to Dj for some j ∈ J
since the strips are artificial objects that do not appear in H.
The generalization to all initial conditions is straighforward; we
omit it to simplify the presentation.

Step 9 of the algorithm in Fig. 10 relaxes each instantaneous
discrete transition by integrating over the vector field on a strip,
hence forming a continuous curve on Mε. Also note that our
definition for the relaxed execution over each strip Sε

e , also
in Step 9, is exactly equal to the maximal integral curve of
fe. Fig. 11 shows an example of a relaxed mode transition
produced by the algorithm in Fig. 10. Given a hybrid system H
and its relaxation Hε, the relaxed execution of Hε produced by
the algorithm in Fig. 10 is a delayed version of the execution of
H produced by the algorithm in Fig. 8, since the relaxed version

has to expend ε time units during each discrete transition. In
that sense, our definition of relaxed execution is equivalent to
an execution of a regularized hybrid system [8].

Note that if a relaxed execution is unique for a given initial
condition and input, then the corresponding hybrid execution
is also unique, but not vice versa. Indeed, consider the case
of a hybrid execution performing a single discrete transition
at a point, say p, where two guards intersect, i.e., p ∈ Ge and
p ∈ Ge′ , such that Re(p) = Re′(p). In this case the hybrid ex-
ecution is unique, but its relaxed counterpart either evolves via
Se or Se′ , hence obtaining 2 different executions. Nevertheless,
both relaxed executions reach the same point after evolving over
the strip.

Next, we state our first convergence theorem.
Theorem 26: Let H be a controlled hybrid system and Hε

be its relaxation. Let p ∈ M, u ∈ BV (R, U), x : I → Mε be
an execution of H with initial condition p and control u, and
let xε : Iε → Mε be a corresponding relaxed execution of x.
Assume that the following conditions are satisfied:

1) x is orbitally stable with initial condition p and control u;
2) x has a finite number of discrete transitions or is a Zeno

execution that accumulates; and
3) there exists T > 0 such that for each ε small enough,

[0, T ] ⊂ I ∩ Iε if x has a finite number of discrete transi-
tions, and [0, T ) ⊂ I ∩ Iε if x is Zeno.

Then, limε→0 ρ
ε
[0,T ](x, x

ε) = 0.
Proof: We provide the main arguments of the proof, omit-

ting some details in the interest of brevity. First, given j∈J
and [τ, τ ′)⊂ [0, T ] such that x(t)∈Dj for each t∈ [τ, τ ′), then,
since x|[τ,τ ′) is absolutely continuous, for each t, t′ ∈ [τ, τ ′)

d̃Mε (x(t), x(t′)) ≤ L
d̃Dj

(
x|[t,t′)

)
=

t′∫
t

‖fj (s, x(s), u(s))‖ ds ≤ K(t′ − t) (18)

whereK = sup{‖fj(t, x, u)‖ | j ∈ J , t ∈ [0, T ], x ∈ Mε, u ∈
U} < ∞.

Second, let k ∈ N and {λi}ki=0 ⊂ [0, 1] be a sequence
such that 0 = λ0 ≤ λ1 ≤ . . . ≤ λk = 1. Given ε > 0, let
γt : [0, 1] → Mε be defined by γt(λ) = xλε(t). Thus, by
Theorem 21 and the algorithm in Fig. 10, γt(0) = x0(t) = x(t)
and γt(1) = xε(t). Assume that xε(t) ∈ Dj for each t ∈ [τ +
ε, τ ′ + ε), where [τ, τ ′) is as defined above. Using Picard’s
Lemma [23, Lemma 5.6.3], for each t ∈ [τ + ε, τ ′)

‖xε(t+ ε)− x(t)‖ ≤ eL(t−τ)

(
‖xε(τ + ε)− x(τ)‖

+

t∫
τ

‖fj (s, x(s), u(s))− fj (s+ ε, x(s), u(s+ ε))‖ ds
)

≤ eL(t−τ)

(
‖xε(τ + ε)− x(τ)‖

+ L

t∫
τ

ε+ ‖u(s)− u(s+ ε)‖ ds
)

≤ eL(t−τ)
(
‖xε(τ + ε)−x(τ)‖+(L+V (u)) (t−τ)ε

)
(19)
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where we have used a standard property of the functions
of bounded variation ([31, Exercise 5.1]). Thus, if we as-
sume that ‖xε(τ + ε)− x(τ)‖ = O(ε), i.e., that there exists
C > 0 such that ‖xε(τ + ε)− x(τ)‖ ≤ Cε, then ‖xε(t+ ε)−
x(t)‖ = O(ε) for each t ∈ [τ + ε, τ ′). Using the same argu-
ment as above ‖xλi+1ε(t+ ε)− xλiε(t)‖ = O((λi+1 − λi)ε),
which implies that γt is continuous for each t ∈ [τ + ε, τ ′), and
that L(γt) = O(ε), hence d̃Dj

(xε(t+ ε), x(t)) = O(ε).
Assuming now that x performs 2 discrete transitions at times

τ, τ ′ ∈ [0, T ], such that τ + ε < τ ′, transitioning from mode j
to j ′, and the from mode j ′ to j ′′. Note that, by definition,
x|[0,τ) = xε|[0,τ). Moreover, since x is orbitally stable, we
know that xε performs the same 2 discrete transitions for ε
small enough. Let τε + ε ∈ [0, T ] be such that xε(τε + ε) ∈
G(j′,j′′). Note that |τε − τ ′| = O(ε) since xε → x uniformly
and x is Lipschitz continuous (both propositions shown above).
Assume that τ ′ ≤ τε + ε and consider the following upper
bounds:

1) If t∈ [τ, τ+ε), then x(t)∈Dj′ and xε(t)∈Sε
(j,j′), thus

d̃Mε(x(t), xε(t)) ≤ d̃Dj′ (x(t), x(τ)) + dSε
(j,j′)

(x(τ), xε(t))

= O(ε). (20)

2) If t ∈ [τ + ε, τ ′), then x(t), xε(t) ∈ Dj′ , thus, using the
bound obtained above

d̃Mε(x(t), xε(t))≤ d̃Dj′(x(t), x(t− ε))+d̃Dj′(x(t− ε), xε(t))
= O(ε). (21)

3) If t ∈ [τ ′, τε + ε), then x(t) ∈ Dj′′ and xε ∈ Dj′ , thus,
denoting limt↑τ ′ x(t) = x(τ ′−)

d̃Mε(x(t), xε(t))≤ d̃Dj′′(x(t), x(τ
′))+dSε

(j′,j′′)

(
x(τ ′), x(τ ′−)

)
+ d̃Dj′

(
x(τ ′−), x

ε(τε+ε)
)
+ d̃Dj′ (x

ε(τε+ε), xε(t))≤O(ε).
(22)

4) If t∈ [τε + ε, τ ε+2ε), then x(t)∈Dj′′ and xε ∈ Sε
(j′,j′′),

thus

d̃Mε (x(t), xε(t)) ≤ d̃Dj′′ (x(t), x(τ
′))

+ dSε
(j′,j′′)

(x(τ ′), xε(t)) ≤ O(ε). (23)

5) If t ∈ [τε + 2ε, T ], then x(t), xε(t) ∈ Dj′′ , thus we get
the same bound as in case (2).

Therefore, ρε[0,T ](x, x
ε) = O(ε) as desired. Note that the gen-

eral case, with an arbitrary number of discrete transitions,
follows by using the a similar argument as above by properly
considering the time intervals and then applying the upper
bounds inductively.

Next, let us consider the case when x is a Zeno execu-
tion that accumulates on p′. Let δ > 0, then x|[0,T−δ] has
a finite number of discrete transitions, and as shown above,
d̃Mε(x(T − δ), xε(T − δ)) = O(ε). Moreover, d̃Mε(x(T −
δ), x(t)) = O(δ) and d̃Mε(xε(T − δ), xε(t)) = O(δ) for each
t ∈ [T − δ, T ). The conclusion follows by noting that these
bounds are valid for each δ > 0. �

Fig. 12. Discrete approximation of a relaxed execution of the relaxation of a
controlled hybrid system Hε.

C. Discrete Approximations

Finally, we are able to define the discrete approximation
of a relaxed execution, which is constructed as an extension
of any existing ODE numerical integration algorithm. Given a
controlled hybrid system H, Ah

j : R× R
nj × U → R

nj , where
h > 0 and j ∈ J , is a numerical integrator of order ω, if
given p ∈ Dj , u ∈ BV (R, U), x the maximal integral curve
of fj with initial condition p and control u, N =

⌊
T
h

⌋
, and a

sequence {zk}Nk=0 with z0 = p and zk+1 = Ah
j (kh, zk, u(kh)),

then sup{‖x(kh)− zk‖ | k ∈ {0, . . . , N}} = O(hω). This def-
inition of numerical integrator is compatible with com-
monly used algorithms, including Forward and Backward
Euler algorithms and the family of Runge-Kutta algorithms
[32, Chapter 7]. The algorithm in Fig. 12 defines a discrete
approximation of a relaxed execution of Hε. The resulting
discrete approximation, for a step size h > 0, denoted by zε,h,
is a function from a closed interval I ⊂ [0,∞) to Mε.

We now make several remarks about the algorithm in Fig. 12.
First, the condition in Step 4 can only be satisfied, i.e., the Algo-
rithm only stops, if zε,h(tk) ∈ ∂Dj and fj(tk, z

ε,h(tk), u(tk))
is outward-pointing, since otherwise a smaller step-size would
produce a valid point. Second, the function zε,h is continuous
on Mε. Third, and most importantly, similar to the algorithm
in Fig. 10, the curve assigned to zε,h in Step 13 is exactly the
maximal integral curve of fe while on the strip. By relaxing
the guards using strips, and then endowing the strips with a
trivial vector field, we avoid having to find the exact point where
the trajectory intersects a guard. Our relaxation does introduce
an error in the approximation, but as we show in Theorem 27,
the error is of order ε. Fig. 13 shows a discrete approximation
produced by the algorithm in Fig. 12 as it performs a mode
transition.

Theorem 27: Let H be a controlled hybrid system and Hε

its relaxation. Let p ∈ M, u ∈ BV (R, U), and let x : I → Mε

be an orbitally stable execution of H with initial condition p
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Fig. 13. Discrete approximation zε,h of a relaxed execution in a two-mode
hybrid dynamical system.

and control u. Furthermore, let xε : Iε → Mε be a relaxed
execution with initial condition p and control u, and let zε,h :
Iε,h → Mε be its discrete approximation. If [0, T ] ⊂ Iε ∩ Iε,h

for each ε and h small enough, then there exists C > 0 such
that limh→0 ρ

ε
[0,T ](x

ε, zε,h) ≤ Cε.
Proof: As we have done with the previous proofs, we only

provide a sketch of the argument in the interest of brevity.
Assume that xε performs a single discrete transition in the
interval [0, T ] for each ε small enough, crossing the guard
G(j,j′) at time τε. Let δ>0. Since x is orbitally stable and Ah

is convergent with order ω, for h small enough there exists an
initial condition zε,h(0) such that |xε(0)−zε,h(0)|<δ and zε,h

crosses the guard G(j,j′) at time τε,hk′ ∈ [tk′ , tk′+1) for some

k′ ∈N, where {tk}Nk=0 is the set of time samples associated
to zε,h. Moreover, we can choose h small enough such that
|τε−tk′+1| ≤ 2δ +O(hω) and |tk′+2−τε + ε|=O(hω).

Let σm = min{tk′+1, τ
ε}, σM = max{tk′+1, τ

ε}, νm =
min{tk′+2, τ

ε + ε}, and νM = max{tk′+2, τ
ε + ε}. Also, let

us assume that h is small enough such that σM ≤ νm. Then on
the interval [0, σm) we get convergence due to Ah. On the inter-
val [σm, σM ) one execution has transitioned into a strip, while
the other is still governed by the vector field on Dj . On the in-
terval [σM , ωm) both executions are inside the strip, and on the
interval [ωm, ωM ) one execution has transitioned to a new do-
main, while the second is still on the strip. After time ωM both
executions are in a new domain, and we can repeat the process.

Consider the following cases:
1) By the convergence of algorithm Ah

d̃Mε

(
xε(σm), zε,h(σm)

)
= O(δ) +O(hω). (24)

2) Using (18) from the proof of Theorem 26

d̃Mε

(
xε(σM ), zε,h(σM )

)
≤ d̃Mε (xε(σM ), xε(σm))

+ d̃Mε

(
xε(σm), zε,h(σm)

)
+ d̃Mε

(
zε,h(σm), zε,h(σM )

)
=O(δ) +O(hω). (25)

3) Using the same argument as in the inequality above

d̃Mε

(
xε(νm), z

ε,h(νm)
)
≤ d̃Mε

(
xε(σM), zε,h(σM)

)
+2ε. (26)

4) Finally, again using the same argument as in case (2)

d̃Mε

(
xε(νM ), zε,h(νM )

)
≤ d̃Mε

(
xε(νm), zε,h(νm)

)
+O(hω).

(27)

The generalization to any relaxed execution defined on Mε and
its discrete approximation follows by noting that they perform
a finite number of discrete jumps on any bounded interval and
that δ can be chosen arbitrarily small. �

Next, we state the main result of this Section, which is a
consequence of Theorems 26 and 27.

Corollary 28: Let H be a hybrid dynamical system and Hε

be its relaxation. Let p ∈ M, u ∈ BV (R, U), x : I → M be
an execution of H with initial condition p and control u, xε :
Iε → Mε be its corresponding relaxed execution, and zε,h :
Iε,h → Mε be its corresponding discrete approximation. If the
following conditions are satisfied:

1) x has a finite number of mode transitions or is a Zeno
execution that accumulates;

2) x is orbitally stable; and,
3) [0, T ] ⊂ I ∩ Iε ∩ Iε,h for each ε and h small enough,

then lim ε→0
h→0

ρε[0,T ](x, z
ε,h) = 0.

Moreover, the rate of convergence in the ρε[0,T ]-metric is
O(ε) +O(hω).

Proof: Note that, by Theorem 26 together with the
Triangle Inequality, this corollary is equivalent to proving
that ρεI(x

ε, zε,h) → 0 as both ε, h → 0. Hence we show that
ρεI(x

ε, zε,h) converges uniformly on h as ε → 0. Using an
argument similar to the one in the proof of [33, Theorem 7.9],
proving the uniform convergence on h is equivalent to showing
that limh→0 lim supε→0 ρ

ε
I(x

ε, zε,h) = 0, but this is true by
Theorem 27, as desired.

The rate of convergence follows from the proofs of
Theorems 26 and 27, in particular from inequalities (20)
to (27). �

V. EXAMPLES

We apply our results in three illustrative examples: first
detailing the technical advantages of our intrinsic state-space
metric over trajectory-space metrics in Section V-A; subse-
quently comparing the performance of our provably-convergent
simulation algorithm to the state-of-the-art in Section V-B;
and finally applying our metric and simulation algorithm to a
novel legged locomotion model in Section V-C. Each example
produces executions that are orbitally stable with respect to our
state-space metric; this follows from [28, Theorem 2.8.3] for
the examples in Section V-A and V-C and [9, Theorem 5.1] for
the example in Section V-B.

A. Metrization Example: Digital Control System

We now study the distance between executions in the digital
control system of Fig. 1 using existing trajectory-space metrics
and our proposed state-space metric. Consider a nominal exe-
cution x : [0, T ] → D that crosses the two thresholds simulta-
neously. For each δ > 0 let yδ : [0, T ] → D be the execution
initialized at yδ(0) = x(0) + (−δ, 0) and let zδ : [0, T ] → D
be the execution initialized at zδ(0) = x(0) + (0,−δ); see
Fig. 1(a) for an illustration. For each δ > 0 the executions
yδ and zδ undergo different sequences of logical controller
states, 0 → 1 → 3 or 0 → 2 → 3, corresponding to transi-
tions through different discrete modes in the controlled hybrid
system in Fig. 1(b). In existing trajectory-space metrics [1]–[4],
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Fig. 14. A mechanical system (Fig. 14(a)) and a pair of examples (Figs. 14(b) and 14(c)) chosen to illustrate the accuracy of the algorithm in Fig. 12 vs.
the PS Method (Figs. 14(d) and 14(e)) and their computation times (Fig. 14(f)). (a) Forced linear oscillator with stop. (b) Position of the analytical solution of
Example 1 in Table I (solid line), and position of the stop (dotted line). (c) Position of the analytical solution of Example 2 in Table I (solid line), and position of
the stop (dotted line). (d) ρε

[0,tmax]
–error of the algorithm in Fig. 12 for the examples in Table I. (e) ρ̂—error of the algorithm in Fig. 12 vs. the PS Method for the

examples in Table I. (f) Computation times of the algorithm in Fig. 12 vs. the PS Method for the examples in Table I.

yδ and zδ would be separated by at least unit distance. In
the state-space metric we develop in Section III, the distance
between yδ and zδ in the controlled hybrid system of Fig. 1(b)
is equal to that between the trajectories of the discontinuous
vector field in Fig. 1(a), and in particular converges to zero
as δ → 0.

An important consequence of this discussion is that x is
orbitally stable with respect to our state-space metric, but not
with respect to existing trajectory-space metrics. Therefore
the algorithm described in Section IV is at present the only
algorithm that yields simulations that provably converge to x.

B. Simulation Example: Forced Linear Oscillator With Stop

We consider a single degree-of-freedom oscillator consist-
ing of a mass that is externally forced and can impact a
plane fixed rigid stop, as in Fig. 14(a). The state of the
oscillator is the position, x(t) ∈ R, and velocity, ẋ(t) ∈ R,
of the mass. The oscillator is forced with a control u ∈
BV (R,R). The oscillator is modeled as a controlled hybrid
system with a single mode D = {(x(t), ẋ(t)) ∈ R

2 |x(t) ≤
xmax}, and single guard corresponding to the mass impact-
ing the stop with non-negative velocity G = {(x(t), ẋ(t)) ∈
R

2 |x(t) = xmax, ẋ(t) ≥ 0}. Upon impact, the state is updated
using the reset map R(x, ẋ) = (x,−c ẋ), where c ∈ [0, 1] is the
coefficient of restitution. Within the single domain, the dynam-
ics of the system are governed by ẍ(t) + 2aẋ(t) + ω2x(t) =

m−1u(t), where ω =
√
m−1k, a = 0.5 m−1 μ, k is the spring

constant, and μ is the damping coefficient.

Given an initial condition (x(t0), ẋ(t0)) = (x0, ẋ0) ∈ D, the
oscillator’s motion is analytically determined by

x(t) = e−at (An cos(ω̃t) +Bn sin(ω̃t))

+ ω̃−1

t∫
0

u(s)e−a(t−s) sin(ω̃(t− s))ds (28)

for each t ∈ [tn−1, tn), where ω̃ =
√
ω2 − a2 (assuming that

the damping is sub-critical), with tn such that x(t−n) = xmax

for each n ∈ N, and An and Bn are determined by the given
initial conditions when n = 0, or those determined by applying
the reset map to x(t−n) when n ≥ 1. Note that determining the
impact times can be done analytically. The analytical solution
holds provided that the mass does not stick to the stop, since in
that case the dynamics are given by ẍ(t) + 2aẋ(t) + ω2x(t) =
m−1(u(t) + λ(t)), where λ(t) ∈ R denotes the force generated
by the stop to prevent movement. This equation holds as long
as x(t) = xmax, ẋ(t) = ẍ(t) = 0, and the reaction of the stop
is negative, i.e., λ(t) ≥ m ω2 xmax. For the contact to cease,
λ(t)−m ω2 xmax must become zero and change sign. Once
this happens, the analytical solution can be used again to
construct the motion of the mass with the initial condition
(xmax, 0).

Assuming that the forcing u is continuous (an assumption
that is violated by many control schemes such as ones generated
via optimal control) a convergent numerical simulation scheme,
which we call the PS Method, to determine the position of a
mechanical system with unilateral constraints was proposed in
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TABLE I
PARAMETERS USED FOR THE SIMULATIONS OF THE FORCED LINEAR

OSCILLATOR WITH STOP

[16]. Given a step-size h > 0 and tk = t0 + h k for each k ∈
N, their approach is a two-step method that computes a set of
positions, zPS : {tk}k∈N → R, by zPS(t0) = x0 and

zPS(t1)=x0 + ẋ0h+
h2

2

(
u(0)− 2aẋ0 − ω2x0

)
zPS(tk+1)=−c zPS(tk−1) + min {yPS(tk), (1 + c)xmax}
yPS(tk)=

1

1 + ah

(
h2u(tk) + (2− h2ω2)zPS(tk)

+−((1−c)−(1+c)a h) zPS(tk−1)). (29)

We illustrate the performance of our approach by considering
the two examples described in Table I whose solutions, which
are defined for all t ∈ [0, tmax], can be computed analytically.
The position component of the analytical trajectory of each
example is plotted in Fig. 14(b) and (c). The evaluation of the
performance of our algorithm as described in Fig. 12 using ρε,
as in Definition 22, is shown in Fig. 14(d). To make our ap-
proach comparable to the PS Method, for Ah we use a Runge-
Kutta of order two which is called the midpoint method. We
cannot use ρε to compare our discrete approximation algorithm
to the PS method since the PS method does not compute the
velocities of the hybrid system. Hence, we use the evaluation
metric proposed in [34] which compares a numerically sim-
ulated position trajectory, zpos : {tk}k∈N → R, to the analyti-
cally computed position trajectory, xanalytic : [0, tmax] → R, at
the sample points {tk}k∈N ∩ [0, tmax] as follows:

ρ̂(zpos, xanalytic) = max {|zpos(tk)− xanalytic(tk)|∣∣{tk}k∈N ∩ [0, tmax]
}
. (30)

The result of this comparison is illustrated in Fig. 14(e). Finally,
the computation time on a 32 GB, 3.1 GHz Xeon processor
computer for each of the examples as a function of the step-
size and relaxation parameter is shown in Fig. 14(f). Notice
in particular that we are able to achieve higher accuracy with
respect to the ρ̂ evaluation metric at much faster speeds. In
Example 1, for step-sizes h ≤ 10−1, our numerical simulation
method is consistently more accurate by several orders of mag-
nitude and generally several orders of magnitude faster than the
PS method. In Example 2, using a step-size of approximately
h = 10−2 and relaxation parameter ε = 2 · 10−7, our numerical
simulation achieves a ρ̂ value of approximately 10−4 while
taking approximately 0.1 seconds, whereas the PS method
requires a step-size of h = 5 · 10−4 which takes approximately
5 seconds in order to achieve the same level of accuracy.

C. Simultaneous Transitions in Models of Legged Locomotion

As a terrestrial agent traverses an environment, its ap-
pendages intermittently contact the terrain. Since the equations
governing the agent’s motion change with each limb contact,
the dynamics are naturally modeled by a controlled hybrid

Fig. 15. Schematic for the saggital–plane locomotion model with three me-
chanical degrees of freedom.

Fig. 16. Projection of guards in (θ, z) coordinates for transition from aerial
domain Da to ground domain Dg with parameters d = � = 1, ψ = π/5.

system with discrete modes corresponding to distinct contact
configurations. Because the dynamics of dexterous manipu-
lation are equivalent to that of legged locomotion [35], such
controlled hybrid systems model a broad and important class of
dynamic interactions between an agent and its environment.

Legged animals commonly utilize gaits that, on average,
involve the simultaneous transition of multiple limbs from
aerial motion to ground contact [36], [37]. Similarly, many
multi-legged robots enforce simultaneous leg touchdown via
virtual constraints implemented algorithmically [38], [39] or
physical constraints implemented kinematically [40], [41]. Tra-
jectories modeling such gaits pass through the intersection of
multiple transition surfaces in the corresponding controlled
hybrid system models. Therefore simulation of this frequently-
observed behavior requires a numerical integration scheme that
can accommodate overlapping guards. The algorithm in Fig. 12
has this capability, and to the best of our knowledge is the only
existing algorithm possessing this property. We demonstrate
this advanced capability using a pronking gait in a saggital-
plane locomotion model.

Fig. 15 contains an extension of the “Passive RHex-runner”
in [42] that allows pitching motion. A rigid body with mass
m and moment-of-inertia I moves in the saggital plane under
the influence of gravity g. Linear leg-springs are attached to
the body via a frictionless pin joint located symmetrically
at distance d/2 from the center-of-mass. The leg-springs are
massless with linear stiffness k, rest length �, and make an angle
ψ with respect to the body while in the air. When a foot touches
the ground it attaches via a frictionless pin joint, and it detaches
when the leg extends to its rest length.
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Fig. 17. Snapshots of pronk at discrete transition times from initial condition (x0, z0, θ0, ẋ0, ż0, θ̇0) = (0, 1.1, 0, 3.4, 0, 0), parameters (m, I, k, �, d, g, ψ) =

(1, 1, 30, 1, 1, 9.81, π/5), step size h = 10−3, relaxation parameter ε = 10−2 (left). Same as before, but with θ̇0 = −0.4 (right).

A pronk is a gait wherein all legs touch down and lift off from
the ground at the same time [36], [37]. Due to symmetries in our
model, motion with pitch angle θ = 0 for all time is invariant.
Therefore periodic orbits for the spring-loaded inverted pen-
dulum model in [43] correspond exactly to pronking gaits for
our model. Fig. 16 contains a projection of the guards G(a,l),
G(a,r), G(l,g), G(r,g) in (θ, z) coordinates for the transition
from the aerial domain Da to the ground domain Dg through
left stance Dl and right stance Dr. The pronking trajectory
is illustrated by a downward-pointing vertical arrow, and a
nearby trajectory initialized with negative rotational velocity is
illustrated by a dashed line. Fig. 17 contains snapshots from
these simulations.

The θ̇0 = 0 trajectory in Fig. 16 clearly demonstrates the
need for a simulation algorithm that allows the intersection
of multiple transition surfaces. We emphasize that our state-
space metric was necessary to derive a convergent numerical
approximation for this execution: since the discrete mode se-
quence differs for any pair of trajectories arbitrarily close to the
θ̇0 = 0 execution that pass through the interior of Dl and Dr,
respectively, application of existing trajectory-space metrics
[1], [3], [4] would yield a distance larger than unity between
the pair. Consequently, to the best of our knowledge, no existing
provably-convergent numerical simulation algorithm based on
a trajectory-space metric is applicable to the θ̇0 = 0 execution.

Another interesting property of this example is that it is
possible to show (by carefully studying the transitions be-
tween vector fields through the guards) that the hybrid quotient
space M is a smooth 6-dimensional manifold near the pronk
execution, and that the piecewise-defined dynamics yield a
continuously-differentiable vector field on this quotient.

VI. CONCLUSION

We developed an algorithm for the numerical simulation of
controlled hybrid systems and proved the uniform convergence
of our approximations to executions using a novel metrization
of the controlled hybrid system’s state space. The metric and the
algorithm impose minimal assumptions on the hybrid system
beyond those required to guarantee existence and uniqueness of
executions. As a consequence, our algorithm does not require a
specialized mechanism to handle overlapping guards or control
inputs: a single code (freely available at http://purl.org/sburden/
hssim) will accurately simulate any orbitally stable execution of
the hybrid system under investigation. Beyond their immediate
utility, it is our conviction that these tools provide a foundation
for formal analysis and computational controller synthesis in
hybrid systems.
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