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Hybrid dynamical systems are used to describe systems that can instantaneously change state

and dynamics. At small timescales, continuous electrodynamics govern the interaction of

rigid bodies. Simulating the corresponding stiff differential equation introduces unnecessary

complexity when the restitution of velocities post-impact is the phenomenon of interest.

Although classical mathematics and physics deals primarily with smooth physical processes,

the dynamics of real-world systems can and does abruptly change. We can learn from

data to inform the structure and fit the parameters of hybrid dynamical models for such

systems. These data-driven methods leverage developments in sensing and computation and

are a natural progression in the study of modeling and controlling systems. Continuously

collecting data can yield interactive systems that adapt towards a target behavior. An

accurate computational model can also verify the safety and efficacy of engineered systems.

This thesis seeks to further the practical application of data-driven hybrid dynamical sys-

tems – to control robotic systems and assistive devices. In the first aim, hybrid dynamical

systems are commonly used to model mechanical systems subject to unilateral constraints,

e.g. legged locomotion. We demonstrated that nonsmoothness can cause standard optimiza-

tion techniques to lose convergence guarantees and contribute to poor performance for the

resulting control policy. The second aim seeks to predict rhythmic human locomotion with

a motive to improve the clinical prescription of Ankle Foot Orthoses (AFO). We created



subject-specific models that can predict how an individual will respond to an untested AFO

torque profile. These aims tie together advancements in data science with the inherent ability

of hybrid dynamical systems to represent phenomena of interest in the real world.
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1

Chapter 1

INTRODUCTION

Hybrid dynamical systems are used to describe systems that discretely jump between

continuous domains of behavior. A popular example is the bouncing ball. While aerial

(not in contact with the ground), its dynamics can be described by the force of gravity

acting on it. Upon contact with the ground, there is a normal force applied, preventing

ground penetration and rapidly changing its velocity. By defining two modes, aerial and

ground for the bouncing ball, we can model it as hybrid dynamical system and simulate its

behavior. This differs from the real continuous time evolution of the bouncing ball which

would be subject to a stiff differential equation as it approaches the ground and is repulsed by

electromagnetic fields. At this small of a timescale, it is difficult to computationally simulate

the interaction between the ball and the ground, in addition to likely not being accurate at

predicting the bouncing motion of the ball [31].

An accurate computational model can be used to verify the safety and efficacy of robotic

[23] or rehabilitative devices [2], termed engineered systems in this section. This is especially

valuable when designing systems that tend to be costly to prototype and build. Early in the

engineering design process, it can be beneficial to quickly iterate over various designs using

a computational model, even before building basic prototypes. Furthermore, prototypes of

engineered systems can be used to inform parameter choices or train a data driven-model,

improving its veracity.

Although much of classical mathematics and physics deals with smoothness observed in

the natural world, the dynamics of real-world systems can abruptly change. This is explained

by chaos theory (catastrophe theory more specifically), where small variations in parameters
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can lead to bifurcations and changes in stability [123]. Hybrid dynamical systems provide

a model structure that matches the intrinsic behavior frequently observed in physical pro-

cesses, e.g. the abrupt change in velocities of colliding bodies. Data-driven methods give

us the ability to learn from experience [42, 109]. Through the incorporation of data-driven

methods into hybrid dynamical systems, this thesis seeks to further their practical applica-

tion – specifically modeling and controlling robotic systems and by optimizing rehabilitative

outcomes associated with AFO prescription.

1.1 Summary of contributions

My thesis consists of findings from two research projects and their unified contributions

to data-driven modeling for hybrid dynamical systems. The first centers on the control

of mechanical systems subject to unilateral constraints (a modeling framework commonly

used to represent legged locomotion). This project is in conjunction with Prof. Sam Burden.

This work was motivated by the observation that many popular gradient–based optimization

approaches for the control of robots assume smoothness of the dynamics for a given maneu-

ver [120] [117] [97]. We demonstrated that nonsmoothness can cause standard optimization

techniques to lose convergence guarantees and in practice contribute to poor performance

for the resulting control policy. We have shown that the number of unique contact sequences

increases with the number of periodic cycles for a mechanical system operating near a limit

cycle. This effects propagates the nonsmoothness of trajectory outcomes, breaking up pre-

viously smooth sections in the cost landscape, stifling attempts to locally optimize.

The second project seeks to predict rhythmic, human locomotion with a motive to improve

the clinical prescription of Ankle Foot Orthoses (AFO). This work is in collaboration with

Michael Rosenberg, Momona Yamagami, Prof. Sam Burden, and Prof. Kat Steele. Using

data-driven techniques, we created subject-specific models that can predict how an individual

will respond to an untested AFO torque profile. To train and test the models selected for

comparison, we collected a dataset of individuals walking on a treadmill with bilateral AFOs.

The participants were subjected to a range of AFO stiffnesses, providing clinically viable
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torque profiles. The prediction task was to interpolate for a given stiffness (a value not

contained within the training range). The content in this document concerns able-bodied

individuals. Our initial results lay the groundwork for future research to extend these results

to patient populations, which are likely to be more challenging to accurately predict as they

display greater inter-individual gait variability [57].

1.2 Hybrid dynamical systems

The hybrid dynamical systems framework, defined later in this section, can be applied to

model the legged locomotion of rigid and compliant legged robots, animals, and humans [67]

[47] [50]. For such systems to transverse terrain, they must interact dynamically with the

ground. A popular way to model contact-rich dynamics, legged locomotion, is to assign a

distinct mode, continuous domain with associated dynamics, for each contact configuration

[84] [112]. To familiarize the reader with hybrid dynamical systems, I will briefly cover the

framework used throughout this dissertation.

Figure 1.1: An example hybrid dynamical system with two modes.

This thesis utilizes a hybrid dynamical systems framework developed for the study of

legged locomotion [67]. The framework defines a hybrid dynamical system as a tuple of
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mathematical objects H = (D,U, F,G,R). D = qj∈JDj are the continuous domains where

each Dj = Rn. Fj : D × U → TD gives the vector field for each domain, ẋ = F (x, u),

defining how the system’s state will evolve over continuous time. The space of control inputs

is u ∈ U = Rm. G ⊂ D is the guard set, which indicates a trajectory has reached the

boundary of the continuous domain and initiates the application of the reset function. The

reset function is defined as R : G → D, mapping a trajectory from the guard to another

point in any of the modes. The reset function can take trajectories between modes. This is

an overview of the class of hybrid dynamical systems that will be considered throughout the

remainder of the dissertation.

Hybrid dynamical systems is an active area of research, particularly with respect to under-

standing the stability, asymptotic behavior, and control of a system, either along a trajectory

or globally. In addition to modeling contact-rich dynamics, hybrid dynamical systems have

been used in biology and medicine to model the behavior of neurons, genes, and cells [2]. Al-

though hybrid dynamical systems appear effective at modeling real-world systems there are

challenges pertaining to their study and implementation. Hybrid dynamical systems builds

upon the study of dynamical systems, but many findings have still not been extended [53].

This means that there is less developed theoretical understanding and simulation software is

tailored to a specific area of interest. This may explain why relaxing unilateral constraints,

assuming universal smoothness, and then solving the resulting more tractable optimization

problems is popular in graphics and robotics [93]. As will be discussed later, although these

methods display desired behavior in simulation, they may introduce pathologies through this

pernicious approximation giving rise to the gap in performance for simulated versus actual

systems [27].

1.3 Data-driven modeling

Improvements in wireless networks, low-power sensors, and chips allow us to now ubiquitously

record data [7]. We can now sense and track individuals and robots with a practical and off

the shelf approach [114]. This gives us the capability to quickly collect rich data-sets that may
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train models which generalize better than ones trained on highly constrained experiments.

The proliferation of data collected on physical systems in tandem with our ever-growing

computational power lays the foundation for the advancement of data-driven modeling and

control [26] [117]. There are new methods of aggregation and computation on extensive and

rich data-sets, driven by advancements in the fields of distributed and networked computing

giving way to a new and accessible scale of computational resources to tackle a variety of

problems. These tools have advanced the design of mechanical systems, especially those with

a large prototype cost, e.g. nuclear reactors [86] and airplanes [25].

Deriving predictive models from first principles is a tedious ad-hoc process of trial and

error that largely relies on human ingenuity. Phenomenological data-driven modeling tech-

niques impose minimal pre-determined analytical structure and instead leverage large em-

pirical datasets collected from the physical system. Since the resulting data-driven modeling

tools rely less on domain-specific features or prior knowledge than other approaches to mod-

eling, they may more readily generalize across disciplinary boundaries although their predic-

tions are limited by the richness of the data-set. Hybrid dynamical systems can bridge the

gap between a control algorithms simulated behavior and realization when implemented on a

physical system. Opportunities for data-driven modeling extend to rehabilitative medicine,

as current practice relies on observing and tuning rehabilitative devices in laboratory or

clinical settings versus at home usage. Perhaps in the future, collecting data on subjects

throughout the day and their evolving gait patterns may yield continuously adaptive devices

that target and remedy pathologies [36].
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Chapter 2

BACKGROUND

2.1 Introduction

In this chapter, I will cover prior research relevant to my thesis contributions. Due to the

interdisciplinary nature of my research, the background section draws broadly upon control

theory with a focus on robotics and biomechanics – particularly human locomotion. The

first subsection of the background covers concepts in robotics and simulation of mechanical

systems subject to unilateral constraints (Section 2.2). Prior research on biologically-inspired

robotics, (Section 2.3), and reduced order modeling, (Section 2.4), are both topics from the

first half of my PhD studies which influenced research directions and approaches later pur-

sued. In the latter half of the background section, the focus shifts towards experiments from

biomechanics, (Section 2.6), and ankle foot orthoses, exoskeleton, and prosthetic research

and development, (Section 2.7). These areas all present opportunities for the application

of data-driven hybrid dynamical systems, which can be applied to model existing systems

and enhance control in the following applications: robots and their physical interaction with

their environment, learning from biology to better engineer systems, control by reducing

complexity, and rehabilitating or augmenting the human body.

2.2 Rigid & compliant robotics

In 2015 the DARPA Robotics Challenge inspired sensational videos of robots struggling to

open doors and turn valves while occasionally falling down for no apparent reason [68]. The

robotics community grappled with the outcome of the DARPA robotics challenge with some

viewing the competition as an explicit failure [9]. Substantial time and money was invested

mainly leading to the proliferation of online memes (satirical humor), deftly exposing the
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limitations of a field. Many others in the robotics field, myself included, believe it served as

a public benchmark for a host of sensing, estimations, and control techniques [73]. The slow

and measured movement of the rigid robots, where they cautiously executed each maneuver,

indicated they did not harness their dynamics to achieve task performance. The challenge

provided insight into current capabilities and opportunities for improvements, the disaster

relief tasks were navigated semi-autonomously, but slowly and with many failures. The

challenge recalibrated expectations, stressed the value of software and hardware reliability,

and underlined the challenge in transferring control from simulation to real [68].

Traditional research in the control of robotics focuses on forward and inverse kinematics,

path planning, collision avoidance, and trajectory planning [121] [16]. These tools repre-

sent the foundations of robotics research. Recent research in learning, biologically-inspired

robotics, medical robotics, locomotion, and manipulation bridges the gap between a variety

of fields including statistics, computer science, biology, medicine, and mechanical design.

Robotics is truly an integrative subject of study, drawing upon the advancements of other

fields along with its own foundational research. One complementary area of study is legged

terrestrial locomotion where models of humans and otherwise, can naturally be expressed

with hybrid dynamical systems. Each contact configuration specifies a domain of dynamics,

enumerating over all possible configurations [55]. Classical, calculus based, techniques ap-

ply to a single domain, it remains an open question on how to optimize hybrid dynamical

systems for an unknown sequence of domains.

Videos of unpiloted UAVs performing acrobatics [1] and towel folding PR2s [80] showcased

newfound abilities to perform dynamic maneuvers without explicitly coded control laws. The

robots were trained and then allowed to perform autonomously. Although offering stunning

demos that in turn generated excitement, there has been a failure to robustly extend these

techniques [9]. Failure to generalize these successes can be due to a multitude of reasons —

testing in highly favorable and controlled conditions, cherry picking successful instances over

many failed experimental setups, hand-tuning by engineers resulting in specialized solutions,

and a lack of fundamental understanding of the dynamics leading to a misapplication of RL
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techniques. One response, still rudimentary and not covered in my document, is to make

these methods more general and adaptable, deemed meta-learning or learning to learn [129].

An example of meta-learning research is to make deep reinforcement learning learn policies

for multiple tasks in tandem without supervision [43].

Figure 2.1: Constrained one-legged hopper.

The study of rigid body impacts can directly translate to the control of robots. Various

factors determine the post impact state of a rigid body, among them friction and elastic-

ity [132]. Simplifying assumptions on the impact makes control less complicated and more

theoretically tractable. Frictionless contacts and plastic impacts are some of the modeling

assumptions made due to the available theory for rigid systems. By better understanding

the impact, i.e. a foot hitting the ground, we can develop models which predict motion

in contact-rich regimes e.g. locomotion and manipulation. Some analytical contact models

consider geometry and angle of impact [42]; new data-driven methods can allow us to fit

models which may generalize better [88]. Limiting the possible contact configurations be-

tween the grasper and object and then utilizing learning techniques can overcome challenges

posed by uncertainty in pose and contact dynamics proving performant in picking tasks [30].
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A similar vein of research undertaken by Prof. Sam Burden and student researchers is to

better understand, quantify, and predict the contact forces that arise from impact on the

ground. The constrained one-legged hopper, as seen in Figure 2.1, serves as a scientific

testbed. Motion is restricted to the vertical plane and the angle of contact is allowed to

vary. After using a motion capture to collect data on the impact transition undergone by

the hopper we can then develop data-driven hybrid dynamical systems models of contact for

a single leg. Future work would then investigate multi-leg impact scenarios.

Compliant legged robotics is an active area of research in both academia and industry.

StarletETH, developed at ETH Zurich, is a quadrupedal robot with series elastic actuators

and serves a platform for the study of dynamic maneuvers [60]. Ghost robotics is a start-

up, the individual legs from their robots are the basis of our lab research platform, seen in

Figure 2.1. The most recent version of this robot, Minitaur, introduced compliance through

backdrivability by using direct drive motors. Rigidity in robots simplifies positional control;

while adding compliance introduces additional control complexity [131]. Compliance endows

the robot with robustness to disturbances and makes its interaction with their environment

safer for itself and surroundings [61]. Biological systems leverage compliance, offloading

portions of feedback control to the feedforward mechanics [47]. This contrasts with the

rigidity of contemporary industrial robots. We can introduce compliance through multiple

mechanisms, backdrivable motors, softening contacts (i.e. end-effectors and feet) and changes

in the structural mechanical design, introducing springiness or damping into an otherwise

rigid system. A data-driven approach may offer a way to model the dynamics introduced

by compliance and in design of the corresponding controller. Ultimately, adding compliance

may help make robots more ubiquitous by improving robustness to errors in perception and

planning [113], lowering power requirements [128], and by making robots safer to operate in

the vicinity of humans [4].
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2.3 Biologically-inspired robotics

The design of engineering systems can draw upon biology for existing and effective solutions.

Many possible, unconventional morphologies seen in biological organisms can transfer to

robots, including snakes [134] and undulating sandfish lizards [87]! X-RHex is a legged robot

inspired by the cockroach [48]. Simplifying active control and instead relying on the system

dynamics, feedforward control, to achieve task performance [59] [6]. As researchers, we would

like to the harness and translate to robots the mechanisms of biological systems that makes

them performant and versatile.

Locomotive capabilities observed in organisms are an aggregated result of the rapid me-

chanical preflexes, cyclic feedforward neural control, and slower feedback control mediated

by sensed deviation from a desired behavior [35]. The interplay between these different

mechanisms of control is complex and nuanced but gives rise to the performant and versa-

tile behaviors seen in biological systems. In the case of terrestrial locomotion, measuring

the ground reaction forces experienced when a leg comes into contact with the surface of

the ground and understanding the impact the system experiences is quite challenging. The

almost instantaneous impact and resulting rapid change in system state, makes it difficult

to accurately observe and model. Contact forces experienced by a biological or robot system

stem from the interaction between its intrinsic properties and the media its coming into

contact with. Different dynamics dominate based on the media and interaction. Moving

through granular media can be described with terradynamics [82] and swimming in wa-

ter predicted by solving the Navier-Stokes equations [24]. Both are examples where the

locomotor-substrate dynamics can be described by a set of equations and solved numerically

if we overcome the challenge of observing and updating the state of hybrid systems as they

switch contact configurations during legged locomotion.
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2.4 Control using reduced-order models

One modeling paradigm applicable to biological systems and robotics involves templates and

anchors [47]. Templates are simple models that represent a system’s target behavior. They

naturally embed in anchors, models that more faithfully represent the complexity observed

in the actual mechanical (joints, muscles and tendons) and neural (preflexes, reflexes, task

specification) systems [82]. Passing between templates and anchors entails moving up and

down a hierarchy of physical fidelity, achieving different aims. At the abstract end, templates

encode mechanistic understanding and can be used to synthesize new control strategies [115],

facilitating translation between application domains, e.g. from simulation to a physical sys-

tem. In a domain of interest, abstract mechanisms encoded in a template can be instantiated

in an application-appropriate anchor, yielding concrete control techniques [83].

Spring loaded inverted pendulum (SLIP) is a fundamental template model in locomotion

research, both in humans, robots and otherwise [49]. It has been used to model the center of

mass motion for walking, running, and other legged gaits [51] [115]. Work has demonstrated

stability properties for both a walking and running SLIP, an unintuitive result for such a

rudimentary model [49]. In addition to modeling bipedal motion, SLIP is used for the time

evolution of the center of mass for legged systems by combing the effect of the leg contacts

with the ground into a single spring leg [52]. Instead of applying a single controller to

a system, another approach decomposes control effort over multiple-levels. The low-level

controller acts to make a component, the leg, behave like a target template, e.g. SLIP.

Then a high-level controller is applied to the resulting virtual system; engineers can then

utilize already developed controllers for the template giving greater modularity to control

while also preventing duplication of effort [62]. 3D bipedal walkers can also be modeled as

an hybrid dynamical systems, an analytical control law was found by using energy-based

feedback control, decoupling the sagittal and lateral elements of walking. The stability of

the resulting gait is then verified numerically [6]. Hybrid dynamical systems have also been

used to model and design a passive 3D walker, where energy was injected into the system
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through gravitational forces (the walker went downhill) [125]. The system was built for

a set of initial conditions whose resulting trajectories converge towards a stable walking

limit cycle. Principled design utilizing theoretical analysis and computational simulations

was used to create a robust and stable system contrasting with typical ad-hoc and iterative

design tactics. These results suggest that robots entirely governed by feedforward dynamics

can achieve certain desirable maneuvers. Stabilizing feedforward dynamics are attractive as

they can be more efficient, stable at small timescales, and can simplify feedback control.

In Aim 1, we show the challenge in applying gradient based optimization techniques to

reduced-order models for the legged locomotion of mechanical systems.

Dead-beat control, discontinuous changes in the input applied, can correct for deviations

from a desired gait within a single stride. Dead-beat control may allow systems to rapidly

reject disturbances. Research has shown that a 3-D walker can move stably across terrain,

without sensing ground height, by controlling the length of its leg [135]. For a system moving

through uneven or rough terrain simple dead-beat control reduces the reliance on accurate

sensing and endowing a level of inherent robustness and maneuverability. Overall, searching

for and optimizing gaits remains an active area of research [136] [118]. Methods for control

in a single domain have not been extended to hybrid dynamical systems if the sequence of

domain changes is unknown.

2.5 Reinforcement learning

Reinforcement learning (RL) algorithms, a branch of optimal control where the agent is

capable of learning a policy by experiencing its environment, are a popular contemporary

approach to controlling robotic systems [1, 80]. Leveraging the ever-improving ability to

collect data and perform computational analysis, RL in practice utilizes concepts from control

theory and information contained in data to improve performance and decrease reliance on

human designers. In Aim 1, we will focus on policy gradient methods, a form of RL

particularly attractive in robotics due to a large state and action space. Policy gradient

methods minimize the cost function by varying parameters of the policy [120].
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2.6 Modeling biomechanics

Robotics has still not replicated the locomotive capabilities of humans. This is likely due to

three reasons: (1) limitations in the capabilities of the torque to weight ratio of actuators

combined with the fidelity of the structure and its ability to withstand stress, (2) contempo-

rary control strategies are not at the level of performance of biological counterparts, and (3)

inefficiency in engineered systems which is most likely due to a lack of effective compliance

usage [4,70,118]. There are many approaches to finding gaits for systems: tinkering [29], an-

alytical analysis [50], and computer optimization [122] are all employed. Detailed, anchored

models of the human musculoskeletal system are used to simulate walking and running [8].

Based on the geometric layout of the skeleton, individual Hill-type muscle models are used

to generate forces that are based on empirical measurements and models of muscle acti-

vation and tendon properties [133]. Numerical simulations of reduced order models such

as SLIP take into account the hybrid dynamics of legged locomotion, when optimized for

energy efficiency at a specified speed, converging to a straight legged rolling center of mass

motion similar to walking at low speeds and an impulsive bounce comparable to running

at high speeds [122]. Although there are many possible solutions, there is only one optimal

solution from a cost function perspective. Escaping local minima and moving towards a

better solution is challenging in a nonlinear cost landscape and requires active intervention

in humans [127].

In the experiment described in Aim 2, AFOs are treated as perturbations, altering the

limit cycle of an individual pushing them towards a more optimal behavior. For a rhythmic

task, a mechanical system may evolve according a lower dimension dynamical system [20].

This likely applies to terrestrial locomotion, walking and running, and suggests that simple

models can capture the dominant dynamics of this reduced-order behavior. Phaser estimate

the phase of a system engaged in a rhythmic task or motion along a stable limit cycle,

takes in multiple noisy measurements and estimates their phase individually [108]. It then

reduces the estimated phase variance across all measurements, returning an estimate of the
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instantaneous phase for the whole system [107]. This method differs from conventional event-

driven phase estimation techniques in locomotion, which linearly interpolate between contact

events, and more sensitively accounts for perturbations to the system that occur within the

gait cycle.

SLIP is used to model running for a variety of systems: humans, animals, and robots

[50] [47] [62]. Stable gaits have been found for these systems using fixed-leg reset policies,

which are instantaneous changes in leg length after lift-off [52]. Follow-up work shows that for

biologically plausible parameter ranges the aforementioned control yield stable gaits [50]. The

characteristics of mechanical components give rise to the emergent dynamics of locomotion

for a system. Various parameters of the SLIP model, stiffness and leg-length reset policy,

attempt to represent these characteristics [51]. By varying the parameters of SLIP, leg

stiffness and angle of touchdown, there has been work into understanding the principles of

running in humans. It was found that running is self-stabilizing and work has established a

set of parameter values, experimentally validated in humans [119]. Research also shows that

are many available solutions available for gaits in SLIP, alluding to the notion that in more

sophisticated systems, e.g. humans, there may be multiple stable gaits available as well.

These results validate the use of reduced-order models in the analysis of biological organisms

with an eventual aim of transferring findings to engineered systems.

Passive, dynamic walkers can achieve periodic gaits with no feedback control, the walkers

move down a ramp around a stable limit cycle. One of the goals of building these systems

is to find elements of mechanical design, witnessed in ourselves and in other organisms,

that enable passive locomotion. A successful example was first demonstrated in 2D [90]

and then extended to 3D [29]. Both illustrate advancements in designing the dynamics

of mechanical systems to achieve task performance versus assuming quasi-static motion,

a common assumption in system design and control. Also this examines, the degree to

which humans rely on neural feedback and thus corrective actuation, versus our natural

feedforward dynamics partially mediated by our mechanics. This is relevant towards building

more energetically efficient systems particularly due to the limitations of energy storage
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techniques. There is an effort to better understand the stabilizing mechanisms of walking.

Simple controller choices such as fore-aft foot placement have a large effect on lateral stability

[13]. Although humans harness passive dynamics for walking, ultimately a degree of active

control is still necessary to realize human gait. Simple models, such as 2D walker, can

help contrast differences in performance between various methods of actuation. For the 2D

walker, energy can be injected just before toe-off by the stance leg or by applying a torque

through the stance hip [76]. The 2D walker can serve as a testbed to reduce a dynamic

and refined movement to base principles, with an aim to then eventually extend findings

to a more complex one. One motivating application for the study of 2D walker models is

predicting AFO interventions. By changing the gait dynamics and therefore altering the gait

pattern of a subject with an AFO, we can inject stabilizing and efficiency properties.

The Lateral Leg Spring (LLS) is similar to the SLIP model except that it models the

motion of the center of mass in the horizontal plane. The LLS displays a variety of stabilizing

behaviors and has been applied to the study of cockroaches [115]. LLS folds the contributions

of all the individual legs, for a multilegged stance phase, into a single virtual leg. This

reduction is representative when applied to cockroaches, since the net force applied by the

legs is zero upon touchdown and again at liftoff for each tripod stance. The feedforward

dynamics and the resultant stability of the cockroach is a product of its mechanical properties,

which allows them to rapidly reject perturbations as they move through rough terrain. The

walking motion of the individuals is similarly modeled by a version of SLIP [89]. In Aim

2 we only consider steady-state walking, where the perturbation is applied by the device.

Further research would broaden the scope of experimental consideration to a variety of AFO

walking conditions and perturbations.

2.7 Ankle foot orthoses, exoskeletons, & prosthetics

A segment of the population would benefit from advances in prostheses, artificial limbs, and

orthotics (or exoskeletons a relatively synonymous term that refers to an augmentative or

more encompassing design) [37]. The development of active orthosis first started in 1935,
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simultaneously in the United States and Yugoslavia, and has started in many other countries

and institutions [37]. Modern prosthetic and orthotic research continues with rehabilitative,

assistive, and augmentative aims in addition to their enabling technologies; energy storage,

actuation, fabrication and control. Amputees with passive ankle-foot prostheses walk less

efficiently than their able bodied counterparts and display gait asymmetry [10]. There are

various trade-offs between powered and passive prostheses. The ankle applies positive work

when in contact with the ground something a powered protheses can mimic [28]. Powered

prosthetics have the ability to adapt more effectively to a variety of terrains and can help

subjects address abnormalities – most likely due to previous use of prosthetics – in their gaits

[40]. Currently though, available hardware still lacks the power density seen in the human

ankle making the powered prosthetic ankle heavier; also the dynamics and control of the

human ankle are still not fully understood making it not feasible to make a fully biomimetic

prosthetic [58]. Passive AFO are more affordable and accessible, making them the current

standard in clinical care. At slower walking speeds, a passive AFOs can mimic the energy

storage and release of the Achilles tendon, at higher speeds the gait becomes asymmetric and

energy efficient, individuals likely compensate for the lack of positive work done by the ankle

with greater hip extension [40]. Recent results have excitingly reduced the energetic cost

of walking in healthy individuals. For powered, ankle exoskeletons this improved efficiency

was quickly achieved for a variety of gaits through an optimization procedure that iterated

across various unimodal torque profiles [137]. The unpowered, ankle exoskeleton garnered

efficiency improvements, by utilizing a mechanical clutch that engaged while the foot was

in contact with the ground overcoming the limitation of muscles, which require metabolic

energy for isometric and eccentric contractions [28].
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Chapter 3

AIMS

3.1 Objective & Aims

The following aims outline the research direction and motivation for their respective research

projects. The overarching goal of this research, and by extension thesis, is to further the

study of hybrid dynamical systems in this new data-rich landscape, and explore new potential

applications by leveraging theoretical results.

3.2 Statement & Aims

Thesis Statement: Further the study and application of data-driven hybrid dynamical

systems

3.2.1 Aim 1 - Study the regularity of optimal policy and value functions for simulated

mechanical systems subject to unilateral constraints

Our work has shown that value and policy functions inherit the underlying regularity of tra-

jectory outcomes for a given maneuver. This proves problematic for policy gradient methods,

or any gradient-based optimization approach, as they rely upon smoothness assumptions in

order to guarantee performance [120]. We created two computational examples to illustrate

the formal findings; in one a box is dropped from a fixed height with plastic impact and

frictionless contacts. This is a simple mechanical system subject to unilateral constraints

that illustrates the phenomenon of nonsmooth trajectory outcomes. In the other compu-

tational example, a simple legged system is subject to a contact-mode dependent control

law. This causes the system to also experience nonsmoothness: discontinuous, continuously-

differentiable or piecewise-differentiable and not continuously-differentiable state outcomes.
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These findings have consequences when performing optimization. We a computed a nonzero

gradient step, using the Deterministic Policy Gradient algorithm, along the optimal policy

for a maneuver with nonsmooth trajectory outcomes (a true gradient would be zero all along

the optimal policy) [120]. Policy gradient methods operating in this regime lose convergence

guarantees and may in practice move erratically and away from the optimum. Our findings

indicate frequent misapplication of optimization approaches that make smoothness assump-

tions, constituting a first step towards altering and developing control strategies that will

more successfully transfer from simulation to real systems. Lastly, we touch on the more

specific case of mechanical systems subject to unilateral constraints operating near a limit

cycle. We find that the amount of contact sequences increases with the number of cycles

completed by the system. This indicates that local optimal optimization approaches would

further struggle with an expanded control horizon, the fragmented cost landscape would

decrease the reliability of computed gradients.

3.2.2 Aim 2 - Develop and survey models to predict the effect of an ankle foot orthosis

from subject-specific data

Currently, the prescription of AFOs is a tedious process of ad-hoc trial and error. Although

there are clinical procedures available for evaluation and prescription, no standard protocol

exists, and outcomes are inconsistent, even within a single clinical center [109]. The aim of

my research is to provide a predictive tool that can help improve the prescription of AFOs

and help clinicians optimize AFO interventions. Due to the cost of fabrication and clinical

time required for each device iteration, many patients end up with sub-optimal solutions.

This can prevent patient adoption and efficacy of the devices.

My work in this aim first establishes a baseline of predictive capabilities for a variety

of models. Our prediction framework is as follows, given the current state of an individual

rhythmically walking, predict a future state — the state is comprised of the kinematics,

estimated kinetics, myoelectric response, and AFO torque profiles. The models are trained

on clinically-practical amounts of data, a facet that led us to survey models whose predictive
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abilities scale differently with training set sizes. We then predicted changes to gait kine-

matics and myoelectric response as the spring stiffness of the AFO was varied. To test the

models, we predicted for a new AFO stiffness value contained within the range of training

stiffnesses (interpolation), versus stiffnesses beyond the training range (extrapolation). The

metrics of predictive performance, along with qualitative analysis, indicate which models

may be suitable for future application in either a research or clinical setting. By varying the

amount of data available for the models to train on, we sought to explore what training set

size is necessary for the surveyed models. Higher data requirements make subject-specific

models less viable in a clinical (expensive) setting. We discuss the functional complexity

and generalizability of the surveyed data-driven models, and their predictive ability within

the constraints of our experimental setup [46]. Finally, we examined the effects of the AFO

torque profile, by separating the relevant coefficients in the linear model and their effect on

the predicted values.
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Part I

AIM 1
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Chapter 4

NONSMOOTH OPTIMAL VALUE AND POLICY FUNCTIONS
FOR MECHANICAL SYSTEMS SUBJECT TO UNILATERAL

CONSTRAINTS

4.1 Introduction

In the optimization approach to robot control, a policy is sought that extremizes a given

performance criterion; the performance achieved by this optimal policy is the optimal value

of the problem. Two widely-applied frameworks for solving such problems are reinforcement

learning [63, 80, 93] and trajectory optimization [99, 100, 104]. Many scalable algorithms in

either framework leverage local approximations—gradients of values and policies—to iter-

ate towards optimality. Mechanical models, that assume frictionless contacts and plastic

impacts, balance fidelity with their physical counterparts versus analytical and computa-

tional tractability. Trajectories of the aforementioned class of models, over a continuously-

differentiable range of initial conditions, can yield discontinuous, continuously-differentiable

or piecewise-differentiable and not continuously differentiable state outcomes. This thesis

contributes to controls, learning, and robotics with analytical findings and a computational

example, that show value and policy functions inherit the underlying regularity of trajec-

tory outcomes for a given maneuver. We further show that in cases of nonsmoothness these

gradients can fail to exist for contact-rich robot dynamics, precluding application of state–

of–the–art algorithms for optimal control.

We begin in Section 4.2 by modeling contact–rich robot dynamics using mechanical sys-

tems subject to unilateral constraints, and describe how nonsmoothness—discontintinuity or

piecewise–differentiability—manifests in trajectory outcomes and (hence) trajectory costs.

Then in Section 4.3 we provide mathematical derivations that show nonsmoothness in tra-
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jectory outcomes and costs gives rise to nonsmoothness in optimal value and (hence) policy

functions. Subsequently in Section 4.4 we present numerical simulations that demonstrate

discontinuous or merely piecewise–differentiable optimal value and policy functions in a me-

chanical system subject to unilateral constraints. Finally in Section 4.5 we discuss the preve-

lance of nonsmoothness and how the lack of classical differentiability prevents gradient–based

algorithms from converging to optimality.

4.2 Mechanical systems subject to unilateral constraints

In this section, we formalize a class of models for contact–rich dynamics in robot locomotion

and manipulation as mechanical systems subject to unilateral constraints and formulate an

optimal control problem for these systems.

4.2.1 Dynamics

Consider the dynamics of a mechanical system with configuration coordinates q ∈ Q = Rd

subject to unilateral constraints a(q) ≥ 0 specified by a differentiable function a : Q → Rn

where d, n ∈ N are finite. We are primarily interested in systems with n > 1 constraints,

whence we regard the inequality a(q) ≥ 0 as being enforced componentwise.

Given any J ⊂ {1, . . . , n}, and letting |J | denote the number of elements in the set J ,

we let aJ : Q → R|J | denote the function obtained by selecting the component functions of

a indexed by J , and we regard the equality aJ(q) = 0 as being enforced componentwise.

It is well–known (cf. [11, Sec. 3] or [66, Sec. 2.4, 2.5]) that, with

J = {j ∈ {1, . . . , n} : aj(q) = 0} denoting the contact mode, the system’s dynamics take the

form

M(q)q̈ = fJ(q, q̇, u) + c(q, q̇)q̇ +DaJ(q)>λJ(q, q̇, u), (4.1a)

q̇+ = ∆J(q, q̇−), (4.1b)

where M : Q → Rd×d specifies the mass matrix for the mechanical system in the q coordi-
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nates, fJ : TQ → Rd is termed the effort map [11] and specifies1 the internal and applied

forces, u ∈ U is an external input, c : TQ→ Rd×d denotes the Coriolis matrix determinedby

M , DaJ : Q → R|J |×d denotes the (Jacobian) derivative of the constraint function aJ with

respect to the coordinates, λJ : TQ→ R|J | denotes the reaction forces generated in contact

mode J to enforce aJ(q) ≥ 0, ∆J : TQ → Rd×d specifies the collision restitution law that

instantaneously resets velocities to ensure compatibility with the constraint aJ(q) = 0, and

q̇+ (resp. q̇−) denotes the right– (resp. left–)handed limits of the velocity with respect to

time.

4.2.2 Regularity of dynamics

The seemingly benign equations in (4.1) can yield dynamics with a range of regularity prop-

erties. This issue has been thoroughly investigated elsewhere [11,95,96]; here we focus specif-

ically on how design choices in a robot’s mechanical and control systems affect regularity of

its dynamics.

In what follows, we will frequently refer to the concept of a control system’s flow, so we

briefly review the concept before proceeding. Given a control system (e.g. (4.1) or (4.2)) with

state space X and input space U, a flow is a function φ : [0, t]×X×U[0,t] → X such that for all

initial states x ∈ X and inputs (u : [0, t]→ U) ∈ U[0,t], the function φx,u : [0, t] → X defined

for all s ∈ [0, t] by φx,u(s) = φ(s, x, u) is a trajectory for the control system. Intuitively,

the flow “bundles” all trajectories into a single function. Mathematically, the flow is useful

for studying how trajectories vary with respect to initial states and inputs. So long as

trajectories exist and are unique for every x ∈ X and u ∈ U[0,t], the flow is a well–defined

function.

It is common to assume that the functions in (4.1) are continuously–differentiable

(M, f, a, γ ∈ Cr); however, as illustrated by [11, Ex. 2], this assumption alone does not ensure

existence or uniqueness of trajectories. This case contrasts starkly with that of classical

1We let TQ = Rd × Rd denote the tangent bundle of the configuration space Q; an element (q, q̇) ∈ TQ
can be regarded as a pair of generalized configurations q ∈ Rd and velocities q̇ ∈ Rd; we write q̇ ∈ TqQ.
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control systems, where the equation

ẋ = F (x, u) (4.2)

yields unique trajectories whose regularity matches the vector field’s: if F is continuously

differentiable, then there exists a flow for (4.2) that is continuously differentiable to the same

order.

To ensure trajectories for (4.1) exist uniquely, restrictions must be imposed; we refer

the interested reader to [11, Thm. 10] for a specific result and [66] for a general discussion

of this issue. Since we are chiefly concerned with how properties of the dynamics in (4.1)

affect properties of optimal value and policy functions, we will assume in what follows that

conditions have been imposed to ensure (4.1) has a flow for states, inputs, and time horizons

of interest.

Assuming that a flow φ exists for (4.1) does not provide any regularity properties on the

function φ; these properties are determined by the design of a robot’s mechanical and control

systems and their closed–loop interaction with the environment. For instance: when limbs

are inertially coupled (e.g. by rigid struts and joints), so that one limb’s constraint activation

instantaneously changes another’s velocity, φ is discontinuous at configurations where these

two limbs activate constraints simultaneously [105, Table 3] [64]; when limbs are force coupled

(e.g. by nonlinear damping), so that one limb’s constraint (de)activation instantaneously

changes the force on another, φ can be piecewise–differentiable at configurations where these

two limbs (de)activate constraints simultaneously [96, Fig. 1]. In both instances, mechanical

design choices lead to nonsmooth dynamics; Figure 4.1 provides examples where control

design choices lead to nonsmooth dynamics (piecewise–differentiable in Figure 4.1(a,c,e),

discontinuous in Figure 4.1(b,d,f)). Other nonsmooth phenomena can arise, e.g. grazing2

and Zeno3 trajectories; in what follows we will focus on the case of simultaneous constraint

(de)activations due to its prevalence in robot gaits and maneuvers (see Section 4.5.1 for a

2where a constraint function aj decreases to and then increases from zero without activating constraint j

3where a constraint is activated an infinite number of times on a finite time horizon
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discussion of when this phenomena prevails).

4.2.3 Regularity of optimal value and policy functions

A broad class of optimal control problems for the dynamics in (4.1) can be formulated in

terms of final (` : X→ R) and running (L : X× U→ R) costs:

ν(x) = min
u∈U[0,t]

`(xu(t)) +

∫ t

0

L(xu(s), u(s)) ds, (4.3)

where xu : [0, t] → X denotes the unique trajectory obtained from initial state xu(0) ∈ X

when input u ∈ U[0,t] is applied; in terms of the flow, xu(s) = φ(s, x(0), u) for all s ∈ [0, t]. To

expose the dependence of the cost in (4.3) on the flow φ, we transcribe the problem in (4.3)

to a simpler form using a standard state augmentation technique (cf. [98, Ch. 4.1.2]):

ν(x) = min
u∈U[0,t]

c (φ(t, x, u)) (4.4)

As discussed in Section 4.2.2, the continuity and differentiability properties of φ are partly

determined by a robot’s design: it is possible for φ and hence c ◦ φ to be discontinuous (φ 6∈

C0), continuously–differentiable (φ ∈ Cr), or piecewise–differentiable and not continuously–

differentiable (φ ∈ PCr \ Cr), depending on the properties of the robot’s mechanical and

control systems. In the next section, we study how continuity and differentiability properties

of c ◦ φ affect the corresponding properties of ν in (4.4).

4.3 Continuity and differentiability of optimal value and policy functions

Consider minimization of the cost function c : X× U→ R with respect to an input u ∈ U:

ν(x) = min
u∈U

c(x, u); (4.5)

so long as X and U are compact and c is continuous, the function ν : X → R indicated

in (4.5), termed the optimal value function, is well–defined. We let π : X → U denote an

optimal policy for (4.5), i.e.

∀x ∈ X : π(x) ∈ arg min
u∈U

c(x, u) (4.6)
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or, equivalently,

∀x ∈ X : ν(x) = c(x, π(x)). (4.7)

In this section we study how regularity properties (continuity, differentiability) of the cost

function (c) relate to regularity properties of optimal value (ν) and policy (π) functions.

4.3.1 Discontinuous cost functions

If the cost (c : X × U → R) is discontinuous with respect to its first argument, then the

optimal policy (π : X→ U) and value (ν : X→ R) are generally discontinuous as well. This

observation is clear in the trivial case that the cost only depends on its first argument, but

manifests more generally.

4.3.2 Continuously–differentiable cost functions

This section contains straightforward calculations based on standard results in classical

(smooth) Calculus and nonlinear programming; it is provided primarily as a rehearsal for

the more general setting considered in the subsequent section.

If c is continuously–differentiable, denoted c ∈ C1(X × U,R) or simply c ∈ C1, then

necessarily [98, Ch. 1.1.1]

D2c(x, π(x)) = 0. (4.8)

If c is two times continuously–differentiable (denoted c ∈ C2) and the second–order

sufficient condition [98, Ch. 1.1.2] for strict local optimality for (4.5) is satisfied at π(x) ∈ U,

D2
2c(x, π(x)) > 0, (4.9)

then the C1 Implicit Function Theorem (IFT) [78, Thm. C.40] can be applied to (4.7) to

choose π as a C1 function near x. Note that

IFT specifically required the invertibility tacit in (4.9):

the linear function D2
2c(x, π(x)) : TuU→ TuU is invertible. (4.10)
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If (4.8) and (4.9) are satisfied, then applying the C1 Chain Rule [78, Prop. C.3] to (4.8)

yields

Dπ(x) = −D2
2c(x, π(x))−1 (D12c(x, π(x))) , (4.11)

and applying the C1 Chain Rule to (4.7) yields

Dν(x) = Dxc(x, π(x))

= D1c(x, π(x)) +D2c(x, π(x))Dπ(x),
(4.12)

whence we obtain derivatives of the optimal value and policy functions in terms of derivatives

of the cost function.

We conclude that if the cost function is two times continuously–differentiable (c ∈ C2) and

first–order necessary (4.8) and second–order sufficient (4.9), (4.10) conditions for optimality

and stability of solutions to (4.5) are satisfied at u = π(x), then the optimal policy and value

functions are continuously–differentiable at x (π, ν ∈ C1) and their derivatives at x can be

computed using (4.11), (4.12).

Theorem 1 Consider a mechanical system with dynamics given in (4.1) and with a value

function as defined in (4.4). If c (φ) ∈ C2(X × U,R) satisfies (4.8), (4.9), and (4.10) at

(ξ, µ) ∈ X × U, then there exist neighborhoods X ⊂ X of ξ and U ⊂ U of µ and a function

π ∈ C1(X,U) such that π(ξ) = µ and, for all x ∈ X, π(x) is the unique minimizer for (4.5)

the derivative of π is given by (4.11), and the derivative of ν is given by (4.12).

4.3.3 Piecewise–differentiable cost functions

If c is piecewise–differentiable,4 denoted c ∈ PC1(X× U,R) or simply c ∈ PC1, then neces-

sarily

∀w ∈ TuU : D2c(x, π(x);w) ≥ 0. (4.13)

4We use the notion of piecewise–differentiability from [116, Ch. 4.1]: a function is piecewise–differentiable
if it is everywhere locally a continuous selection of a finite number of continuously–differentiable functions.
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Here and below, D2c(x, π(x)) : TuU → R denotes a continuous and piecewise–linear first–

order approximation termed the Bouligand (or B–)derivative [116, Ch. 3] that exists by

virtue of the cost being PC1 [116, Lem. 4.1.3]; D2c(x, π(x);w) denotes the evaluation of

D2c(x, π(x)) at w ∈ TuU.

If c is two times piecewise–differentiable (denoted c ∈ PC2), for (4.5) is satisfied at

π(x) ∈ U,

∀w ∈ {w ∈ TuU | w 6= 0, D2c(x, π(x);w) = 0}

: D2
2c(x, π(x);w,w) > 0,

(4.14)

and if the piecewise–linear function

D2
2c(x, π(x)) : TuU→ TuU is invertible, (4.15)

then a PC1 Implicit Function Theorem can be applied to choose π ∈ PC1 near x [111,

Cor. 3.4].5 Applying the PC1 Chain Rule [116, Thm. 3.1.1] to (4.13) yields (cf. [111, § 3])

∀v ∈TxX : Dπ(x; v) =

−D2
2c(x, π(x))−1 (D12c(x, π(x); v)) ,

(4.16)

and applying the PC1 Chain Rule to (4.7) yields

∀v ∈TxX : Dν(x; v) = Dxc(x, π(x); v)

= D1c(x, π(x); v) +D2c(x, π(x);Dπ(x; v)),
(4.17)

whence we obtain B–derivatives of the optimal value and policy functions in terms of B–

derivatives of the cost.

We conclude that if the cost function is two times piecewise–differentiable (c ∈ PC2) and

first–order necessary (4.13) and second–order sufficient (4.14), (4.15) conditions for optimal-

ity and stability of solutions to (4.5) are satisfied at u = π(x), then the optimal policy and

value functions are piecewise–differentiable at x (π, ν ∈ PC1) and their B–derivatives at x

can be computed using (4.16), (4.17).

5This Implicit Function Theorem requires D2c be strongly B–differentiable; the costs considered here are
not generally strongly B–differentiable, but they are generally PCr–equivalent to strongly B–differentiable
functions [75, Thm. 3.1], whence [111, Cor. 3.4] can be applied indirectly.
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Theorem 2 Consider a mechanical system with dynamics given in (4.1) and with a value

function as defined in (4.4). If c (φ) ∈ PC2(X× U,R) satisfies (4.13), (4.14), and (4.15) at

(ξ, µ) ∈ X × U, then there exist neighborhoods X ⊂ X of ξ and U ⊂ U of µ and a function

π ∈ PC1(X,U) such that π(ξ) = µ and, for all x ∈ X, π(x) is the unique minimizer for

(4.5)

the B–derivative of π is given by (4.16), and the B–derivative of ν is given by (4.17).

4.3.4 Conclusions regarding regularity of optimal value and policy functions

The results in Sections 4.3.1, 4.3.2, and 4.3.3 suggest that we should generally expect regu-

larity of optimal value and policy functions to match that of the cost function: they should

be discontinuous when the cost is discontinuous, or piecewise–differentiable when the cost is

piecewise–differentiable. In Section 4.4 we provide instances of the class of models described

in Section 4.2 that exhibit these effects.

4.4 Optimal value and policy functions for a mechanical system subject to
unilateral constraints

We showed in the previous section that optimal value and policy functions for contact–rich

robot dynamics inherit nonsmoothness from the underlying dynamics. To instantiate this re-

sult, we crafted the simplest mechanical system subject to unilateral constraints that exhibits

the nonsmooth phenomena of interest (piecewise–differentiable or discontinuous trajectory

outcomes), yielding the touchdown and liftoff maneuvers shown in Figure 4.1(a,b). For the

touchdown maneuver, we seek the optimal (constant) force to exert in the left leg (u1) when

the left foot is in contact and the right foot is not; similarly, we seek the optimal choice of

force in the right leg (u2) when the right foot is in contact and the left foot is not: with

a1, a2 > 0 as input penalty parameters,

ctouchdown(θnadir, u1, u2) = (θnadir − θdesired)2 + a1u
2
1 + a2u

2
2. (4.18)
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For the liftoff maneuver, we seek the optimal (constant) torque (u12) to apply to the body

while both feet are in contact: with a12 > 0 as an input penalty parameter,

cliftoff(θapex, u12) = (θnadir − θdesired)2 + a12u
2
12. (4.19)

We implemented numerical simulations of these models6 and applied a scalar minimiza-

tion algorithm7 to compute optimal policies as a function of initial body rotation.8

As expected, the optimal value and policy functions computed for the touchdown and

liftoff maneuvers are nonsmooth (Figure 4.3(c,d,e,f)). This result does not depend sensitively

on the problem data; nonsmoothness is preserved after altering parameters of the model

and/or cost function. We emphasize that the nonsmoothness in Figure 4.3 arises from the

nonsmoothness in the underlying system dynamics (4.1); the functions in (4.18) and (4.19)

are smooth.

4.5 Discussion

We conclude by discussing how often we expect to encounter the nonsmooth phenomena

described above in models of robot behaviors (Section 4.5.1) and what our results imply

about the use of smooth tools in this nonsmooth setting (Section 4.5.2).

4.5.1 Prevalence of nonsmooth phenomena

In Section 4.4, we presented two simple optimal control problems where the dynamics of

a mechanical system subject to unilateral constraints gave rise to a nonsmooth cost: one

where the cost was piecewise–differentiable, and another where it was discontinuous. The

reader may have noticed that the nonsmoothness occurred along trajectories that underwent

simultaneous constraint (de)activation. This peculiarity was not accidental: the cost is gen-

6using the modeling framework in [66] and simulation algorithm in [21]

7SciPy v0.19.0 minimize scalar

8We plan to release the software used to generate these results as an environment in OpenAI Gym [18].
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erally continuously–differentiable along trajectories that (de)activate constraints at distinct

instants in time.9

If the constraint surfaces intersect transversely [78, Ch. 6], then the nonsmoothness pre-

sented in Section 4.4 is confined to a subset of the state space with zero Lebesgue measure. In

light of this observation, intuition may lead one to ignore these states in practice. However,

we believe this intuition will lead the practitioner astray as the complexity of considered

behaviors increases. Indeed, since the number of contact mode sequences increases fac-

torially with the number of constraints and exponentially with the number of constraint

(de)activations, then the region where the cost function is continuously–differentiable is

“carved up” into a rapidly increasing number of disjoint “pieces” as behavioral complexity10

increases.

Although we cannot at present comment in general on how these smooth pieces fit to-

gether, we note that some important behaviors will reside near a large number of pieces. For

instance, periodic behaviors with (near–)simultaneous (de)activation of n ∈ N constraints

as in [5] could yield up to (n!)k pieces after k ∈ N periods. The combinatorics are similar

for tasks that involve intermittently activating (a subset of) n constraints k times as in [93].

Since the dimension of the state space is independent of n and k, these pieces must be

increasingly tightly packed as n and/or k increase.

4.5.2 Justifying the use of gradient–based algorithms

Suppose a (possibly non–optimal) policy π : X→ U has an associated value νπ : X→ R. If

this value admits a first–order approximation with respect to π, then it is natural to improve

the policy using steepest descent: with α > 0 as a stepsize parameter,

π+ = π + α arg min
‖δ‖=1

Dπν
π(δ). (4.20)

9This follows from [3, Eqn. 2.3] so long as the constraint (de)activations are admissible [96, Def. 3, Lem. 1].

10as measured by the number of constraints and/or constraint (de)activations
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The update in (4.20) is a direct policy gradient–based algorithm [15, 124], and can be inter-

preted as a natural [69] or trust region [117] algorithm depending on the norm chosen. In

practice, the derivative Dπν
π is not generally available and must be estimated, e.g. using

function approximation [39, 72] or sampling [15, 120]. This practice is justified for smooth

control systems whose value functions are smooth; it is not generally justified for the mechan-

ical systems subject to unilateral constraints considered here since the value of (optimal or

non–optimal) policies can be nonsmooth. To see how nonsmoothness can prevent a gradient–

based algorithm from converging to an optimal policy, consider the result of applying one

step of the policy gradient algorithm in (4.20) to the optimal policies in Figure 4.3(c,d) when

νπ is merely piecewise–differentiable. Since the policy is optimal, the first–order necessary

condition for optimality (4.13) implies that the arg min in (4.20) evaluates to zero, and there-

fore the optimal policy is a fixed point of the update in (4.20) when the true (Bouligand)

derivative Dπν
π is available. However, an estimate of Dπν

π obtained via sampling or func-

tion approximation would be nonzero near θ(0) = 0, causing one step of the policy gradient

algorithm in (4.20) to diverge from the optimal policy. This can be seen in Figure 4.4,

where central finite differences was used to compute the change in policy determined by

naive application of the deterministic policy gradient algorithm [120]. Near discontinuities

in the optimal policy, the change from the optimal policy can be arbitrarily large.

Recent work employs smooth approximations of the contact–rich robot dynamics in (4.1)

to enable application of gradient–based learning [74, 79, 81] and optimization [41, 92, 93]

algorithms. This approach leverages established scalable algorithms, but does not ensure

that policies optimized for the smoothed dynamics are (near–)optimal when applied to the

original system’s nonsmooth dynamics, since the dynamics of the smooth system being op-

timized differ from those of the original system. As an alternative approach, the framework

we introduced in [96] provides design conditions that ensure trajectories of (4.1) depend

continuously–differentiably on initial conditions. Thus in future work it may be possible

to justify applying established algorithms for optimal control directly on some mechanical

systems subject to unilateral constraints.
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(a) touchdown maneuver il-

lustration

(b) liftoff maneuver illustra-

tion

(c) touchdown trajectory outcomes (d) liftoff trajectory outcomes

(e) touchdown value (f) liftoff value

Figure 4.1: Piecewise–differentiable and discontinuous trajectory outcomes in saggital–plane
biped. (a,b) Illustration of two maneuvers—touchdown and liftoff —performed under non–
optimal policies that exert different forces depending on which feet are in contact with
the ground. In the touchdown maneuver, feet are initially off the ground and trajectories
terminate when the body height reaches nadir; in the liftoff maneuver, feet are initially on
the ground and trajectories terminate when the body height reaches apex. (c,d) Trajectory
outcomes (final body angle θ(t)) as a function of initial body angle θ(0). (e,f) Performance
of trajectories as measured by the cost functions in (4.18), (4.19). Dashed colored vertical
lines on (c–f) indicate corresponding colored outcomes on (a,b).
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(a) touchdown contact modes (b) liftoff contact modes

Figure 4.2: Contact modes for touchdown and liftoff maneuvers. The saggital–plane biped
illustrated in Figure 4.1(a,b) can be in one of four contact modes corresponding to which
subset J ⊂ {1, 2} of the (two) limbs are in contact with the ground; each subset yields
different dynamics in (4.1). (a,b) System contact mode at each time t for a given initial
body rotation θ(0); the body torque input is zero (u12 = 0) and the leg forces are differ-
ent (u1 6= u2) in mode left ({1}) and right ({2}) than in aerial (∅) or ground ({1, 2}).
Dashed colored horizontal lines indicate corresponding colored trajectories in Figure 4.1.
The increase in force during the transition to modes left and right in (b) changes the ground
reaction force discontinuously, delaying liftoff and causing discontinuous trajectory outcomes
in Figure 4.1(d).
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(a) optimal touchdown trajectory outcomes (b) optimal liftoff trajectory outcomes

(c) optimal touchdown policy (d) optimal liftoff policy

(e) optimal touchdown value (f) optimal liftoff value

Figure 4.3: Optimal trajectories, values and policies for touchdown and liftoff maneuvers.
Optimizing (4.18), (4.19) for the biped in Figure 4.1 yields trajectory outcomes (a,b), poli-
cies (c,d), and values (e,f) that are nonsmooth (piecewise–differentiable or discontinuous).
Asymmetries in trajectory outcomes are due to unequal input penalty parameters (a1 6= a2)
in (a) and unequal leg forces (u1 6= u2) in (b).
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Figure 4.4: Computed the input derivative of the Q-function, the update for deterministic
policy gradient. Taken around the optimal policy for the up maneuver.
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Chapter 5

NONSMOOTH OPTIMAL VALUE AND POLICY FUNCTIONS
FOR (ANOTHER) MECHANICAL SYSTEMS SUBJECT TO

UNILATERAL CONSTRAINTS AND SIMULATION
METHODS

5.1 Introduction

In Chapter 4, the regularity changes for trajectory outcomes of a hoping the saggital-plane

biped are a consequence of the mode-dependent control policy. In the following chapter we

will look at another system, Box, whose dynamics lead to discontinuous trajectory outcomes.

Additionally, this chapter will cover simulation techniques that facilitated the implementa-

tions of both systems.

The motivation of the work in this aim was the growing popularity of reinforcement

learning algorithms, specifically policy gradients, in the robotics community and the apparent

mismatch between expected and actual performance, a discrepancy frequently referred to as

the simulation to reality divide [71]. While optimizing a policy for a robot, policy gradient

methods descend the cost landscape until performance achieves acceptable standards or a

local cost minimum is reached. There are many methods to find or estimate the gradient,

the most straightforward, if possible, is analytically differentiating the cost function with

respect to the policy parameters. After obtaining a gradient, the policy can be updated to

one that incurs a lower cost or higher reward [124]. Training a policy on a simulated model

is cheaper and faster than its physical counterpart. Unfortunately, transferring these learned

policies to physical systems leads to performance degradation [27] [12]. Transfer learning is

primarily challenging due to model fidelity.

In practice, robot control frequently relies on reduced-order models and hand-tuned con-
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trollers limiting task generalizability and flexibility. Although there are developed methods

trying to bridge the simulation to robot learning performance gap, much work remains as

the ability to control robots lags behind their physical capabilities [92]. Hybrid dynamical

systems can be used to model contact-rich legged locomotion [67]. In general, contempo-

rary RL techniques assume smoothness, oftentimes not explicitly, of trajectory outcomes.

Our work, in conjunction with Prof. Sam Burden, shows that in the case of contact-rich

dynamics where a system moves through different modes, policy gradient methods can fail

to converge, due to nonsmoothness in trajectory outcomes. Expanding upon this claim, the

regularity of the trajectory outcomes composed with the cost function is inherited by the

value function and optimal policy for the maneuver. The nonsmoothness of the trajectory

outcomes arises from the instantaneous changes in state and dynamics experienced by the

system as it switches modes. The computational results later provided, further confirm our

theoretical analysis, and provide an instantiation of nonsmooth outcomes. We would expect

the challenge in optimizing a maneuver to grow with the number of mode transitions.

5.2 (Another) Mechanical systems subject to unilateral constraints

The rest of the section will delve into perhaps the simplest mechanical system, the box, that

can exhibit the aforementioned regularities in its trajectory outcomes. The box is subject

to plastic impacts, the normal velocity is zeroed instantaneously upon impact, and contact

with the ground is frictionless mirroring assumptions made in Chapter 4.

al(q) = y − h

2
cos(θ)− w

2
sin(θ) (5.1a)

ar(q) = y − h

2
cos(θ) +

w

2
sin(θ) (5.1b)

The box has two unilateral constraints expressed in (5.1). The constraints prevent pen-

etration of the ground by the corners of the box.
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Figure 5.1: The box has three degrees of freedom which is represented by the configuration
vector for this system, q = [x, y, θ].

J = {(aerial = (al > 0, ar > 0))

, (left = (al = 0, ar > 0))

, (right = (al > 0, ar = 0))

, (ground = (al = 0, ar = 0))}

(5.2)

The set of modes are all possible contact configurations of the box with the ground

denoted by the set J and shown in (5.2).

5.3 Simulating mechanical systems subject to unilateral constraints

k1 = hF (xn) (5.3a)

k2 = hF (xn +
1

2
k1) (5.3b)

k3 = hF (xn +
1

2
k2) (5.3c)

k4 = hF (xn + k3) (5.3d)

xn+1 = xn +
1

6
(k1 + 2k2 + 2k3 + k4) (5.3e)
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To simulate the hybrid system, we needed to convert the continuous-time system into

a discrete-time system. The continuous dynamics of the hybrid system, ẋ = Fj(x), can

be discretized, F̄j(x) = hFj(x), with the x+ = Fj(x
−) describing the systems discrete-time

evolution with a step size of h. We simulated the discretized system using the Runge-Kutta

method, (5.2), a higher order variation of the Forward Euler method [65].

Figure 5.2: Relaxation solver for the simulated constraints.

At each iteration of the simulation, the guard function is evaluated. If a guard has been

violated, the simulation software next checks to see if the point lies within the relaxation dis-

tance, rx, of the guard. The computational process for finding a point within the relaxation

distance is depicted in Figure 5.2. If the point is not within the relaxation distance, the step

size is halved, and the discretized vector field is evaluated again. The relaxation distance is

chosen by the user prior to running the simulation and determines the fidelity of the guard

function. A smaller parameter value improves adherence to the guards but requires more

computations. The pseudocode is shown in (5.3). When running, the simulation checks for

Zeno which is defined as an infinite number of discrete transitions in finite time [53]. This
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pathology arises from the construction of hybrid systems and the interaction between the

vector fields and guards of the various modes. The simulation software has a basic check to

try to detect Zeno execution, once a predetermined number of discrete transitions (parameter

choice) has been met the simulation is terminated.

1.a(q) ≥ 0, 2.λ ≥ 0, 3.a(q)Tλ = 0 (5.4a)

1.∇a(q)T q̇ ≥ 0, 2.λ ≥ 0, 3.∇a(q)T q̇λ = 0 (5.4b)

Once a guard is reached, the reset function is called and the velocity vector of the box, q̇ =

[ẋ, ẏ, θ̇], is updated to prevent a corner from penetrating the ground. The complementarity

test is shown in equation (5.5a). The velocity impulse scheme, shown in equation (5.5b), is an

equivalent higher order formulation which projects the velocity of the box onto the direction

normal to the surface and is the test used in our simulation. After test is applied, the mode

of the system is updated instantaneously. The test is composed of three conditions: 1. none

of the unilateral constraints should be violated, 2. all constraint forces should be positive

or zero (there should not be adherence forces for this class of models), and 3. there should

only be a constraint force in the case of contact. By running this test, only one of the modes

will meet all three conditions for linear systems [19]. The sagittal-plane biped and box are

not linear, the application of the complementarity test is the first step in determining mode

changes in simulation [19].

J̃ = 2{1,..,n} (5.5a)

J∗ = argminJ∈J̃ (q̇J − q̇)TM(q)(q̇J − q̇) (5.5b)

If the complementarity test as described above fails to yield a single mode, we then apply

Gauss’s principle of least constraint [103]. The principle assigns each mode a real scalar,

giving us the ability to distinguish between multiple modes that may be valid or barely non-

valid according to the complementarity test. The set of all available modes, see in equation

(5.5a), is the powerset of possible unilateral constraints. We then select the mode with the
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smallest value allowing the simulation to proceed. After applying the aforementioned steps,

we were able to simulate the box in a manner that matched expected behavior.

5.4 Optimizing the Box Maneuver

Figure 5.3: Box Trajectory Outcomes

Figure 5.3 shows the initial configuration of the box for the given maneuver. The initial

cartesians positions, x, y, are held constant and the orientation of the box, θ(0), is varied.

Around θ(0) = 0, there are two distinct trajectory outcome branches. In this chapter, the

discontinuities in the trajectory outcomes are due to the dynamics of the box. This differs

from the sagittal-plane biped in Chapter 4 where the observed discontinuities are due to the

mode-dependent control policy.
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Figure 5.4: Box Maneuver

c(θ, u) = (θd − θ(t))2 + αu2 (5.6)

Next, we add a rotational control input to the box in the clockwise direction, shown in

Figure 5.4. We can then associate a cost function for the maneuver where the box is dropped

from a fixed height and time horizon with the previously stated dynamics. In equation (5.6),

θd refers to the desired final orientation of the box, θ(t) the final rotation of the box, α a

scalar used to penalize control input, and θ the rotational trajectory of the system through

the maneuver.

Figure 5.5: Optimized box trajectory outcomes.
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In Figure 5.5 we can see trajectory outcomes of the system subject to the to the optimal

policy. The dashed line indicates the desired final angle of the box. As per the previous

figures, blue indicates a final left stance and red a right stance. Therefore, the outcomes

are discontinuous for this maneuver. To find the optimal policy, a line search was conducted

along the input values. A numerical scalar optimization function was used 1. The problem is

nonlinear, making popular gradient methods lose optimality guarantees. As expected, this

analysis would becomes significantly more challenging as the number of variables increases,

indicative of optimization challenges faced by the entire robotics community [97].

In Figure 5.6, we can see the cost landscape over a range of values for the initial orientation

and control input. Depending on the two initial values, there are distinct regions for the final

configuration. This indicates that as the initial value is smoothly varied, the final contact

mode varies and the cost discontinuously changes, as seen in Figure 5.6.

Figure 5.7 shows the value function and optimal policy for each initialization of the

system. Both vary discontinuously, mirroring the trajectory outcomes of the system and

lining up with theoretical expectations.

5.5 Conclusion

The challenge of going from simulation to real, faced by the robotics community, may be a

result of smoothness assumptions we make of physical and simulated systems. In this chapter

the box showcased this pathology. Instantaneous updates to state may be more representative

when describing rigid-body impacts while operating at the time scale of interest for robotics.

This chapter also outlined contributions on how to detect and assign mode changes when

simulating hybrid dynamical systems.

1SciPy v0.19.0 minimize scalar
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(a) 3D cost landscape

(b) 2D cost landscape

(c) Policy iteration and contact se-

quence change

Figure 5.6: Cost landscape for the box maneuver.
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(a) Optimal Value

(b) Optimal Policy

Figure 5.7: Optimal box maneuvers.
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Chapter 6

CONTACT SEQUENCES FOR MECHANICAL SYSTEMS
NEAR PERIODIC ORBITS

6.1 Introduction

Figure 6.1: A mechanical system near limit cycle.

A limit cycle is an isolated closed trajectory and by definition flowing along one results

in periodic motion [123]. Near the limit cycle a Poincaré map, P , takes points, x, from

Σ, a space of codimension one, and maps them back onto Σ, otherwise called the transver-

sal section [126]. For P this defines a relation where x+ = P (x−) and x+, x− ∈ Σ. The

mapping is depicted in Figure 6.1. In this chapter, we will examine how this relation is

impacted as you move a small distance, δ, from the periodic orbit for a mechanical system

in a rhythmic motion that achieves distinct aerial (no limbs in contact with the ground) and

ground modes (both limbs in contact with the ground). When the system is perturbed by
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Figure 6.2: Hopper diagram. The mass is uniformly distributed across each of the links.
The + indicates a pin joint and actuator.

a randomly chosen δ (small in magnitude), we expect this system to potentially experience

arbitrary sequences of contact configuration.The set of contact sequences relates to the num-

ber of discrete transitions allowed (discrete time horizon), dynamics of the system, and the

numerical effects incurred while simulating. In the remainder of this chapter, we will discuss

the contact sequences experienced by a simulated mechanical system subject to unilateral

constraints that was perturbed away from its limit cycle.

6.2 Hopper system

The system in Figure 6.2 was the mechanical system simulated, the Hopper. The Hopper

has five rigid links, for each link there are two translational and one rotational degrees of

freedom resulting in a total of fifteen. The links have the following naming convention as

seen in Figure 6.2: body, upper left (ul), upper right (ur), lower left (ll) and lower right (lr).

The control input, u = [µll, µul, µur, µll], is applied as rotational torques at the actuators.

The rotational direction of the torques follows the right-hand convention.
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6.2.1 Constraints

Matching assumptions from Chapter 4 and Chapter 5, the Hopper shown in Figure 6.2

has frictionless contacts and plastic impacts. Both of the feet cannot penetrate the ground

(two unilateral constraints) and pin joints tie the links together (four bilateral constraints).

Constraint forces follow the framework from [67] and constraint stabilization from [14].

6.2.2 Motor inputs

α =
1

2
cos(

2πt

T
) +

1

2
(6.1)

q̄θ = αqθ0 + (1− α)qθ1 (6.2)

µ = Kp(qθ − q̄θ)−Kdq̇θ (6.3)

To achieve a hopping motion, a periodic control input was applied to the system. θ1

is the angle between the body and upper links and θ2 is the angle between the upper and

lower links. The configuration vector defined as qθ = [θ1, θ2]. Two reference configurations

were identified for both the open, q̄θopen , and closed, q̄θclosed contact configurations as seen in

Figure 6.3. The system minimizes error, e = qθ(t) − q̄θ(t), with the PD controller shown

in (6.3). For periodic motion to happen, a linear combination of the configurations is the

desired and is described according to function in (6.2). A smooth tracking signal was chosen

to keep the reference tracking error small to prevent the simulation from becoming unstable

due to large control inputs. The oscillations are driven by the periodic function shown in

(6.1).

6.3 Contact Configurations

fBaumgarte = c̈+ 2αċ+ β2c (6.4)

Baumgarte stabilization, seen in the function from (6.4), has two parameters, α and β,

which determine the response of the stabilizer. c is the constraint vector, a is the unilateral



50

(a) open contact configuration

(b) closed contact configuration

Figure 6.3: The Hopper impact configurations.
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constraints, and b the bilateral constraints so that c = [a, b]. The force exerted by the

stabilizer corrects for error accumulation caused by the discretization of continuous dynamics

when simulating the system. Incorporating Baumgarte stabilization into the computational

framework enabled the simulation of the Hopper, which has a greater number of bilateral

constraints than the systems in Chapter 4 (box) and Chapter 5 (hopper). Previously, the

bilateral constraint error would continue to accumulate causing the constraints to become

unstable.

6.4 Contact sequences

6.4.1 Definition

In the remainder of this chapter we will refer to aerial := (0, 0), left := (1, 0), right := (0, 1),

and ground := (1, 1). The periodic motion of the Hopper when controlled according to

Section 6.2.2 is symmetric and undergoes the following transitions (0, 0)→ (1, 1)→ (0, 0)...

indefinitely as both feet hit the ground simultaneously before sliding along the ground and

pushing off back into the aerial mode. In the chapter, we will define the transverse section,

Σ, as the apex of the hop when the vertical velocity of the body equals zero. We can further

suppress notation, by defining a sequence as (1, 1)P := (0, 0) → (1, 1) → (0, 0). Due to

the dynamics of system, both feet simultaneously lift-off, but either may come into contact

with the ground first. Thus we define the other two contact sequences that can be observed:

(1, 0)P := (0, 0)→ (1, 0)→ (1, 1)→ (0, 0) and (0, 1)P := (0, 0)→ (1, 0)→ (1, 1)→ (0, 0).

6.4.2 Perturbations applied

We sought to find all possible contact sequences for an N -cycle hop horizon of the the Hopper.

We conducted this search for both impact configurations, open and closed. A configuration

is classified as open when the horizontal position of the feet is outside the pin-joint linking

the upper and lower link as the feet come into contact with the ground. The force of gravity

acting upon the system causes the feet to splay further apart post impact. A configuration
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is classified as closed when the horizontal position of the feet is inside the pin-joint for the

upper and lower links upon impact, driving the feet closer together post impact. Since there

are three possible outcomes for each cycle, the number of sequences is bounded from above

by 3N . We applied perturbations to the rotational and velocity components of the state.

For the rotational perturbations, a random vector was generated from a normal distribution.

The rotations were then applied in the following order: body, upper links, and lower links

(the vector had a length of three). This was to ensure consistency within the kinematics

(prevent violation of the bilateral constraints). A perturbation to the velocity components

of the system was applied by projecting a randomly generated vector onto the constraint

tangent plane to the bilateral constraints. The perturbations were randomly sampled from

a normal distribution and scaled according to selected parameters, chosen to sufficiently

perturb the system and sample the area around the limit cycle in the transverse section.

6.5 Results & discussion

Contact Sequence Observed (Boolean)

(0, 1)p → (1, 0)p True

(1, 0)p → (0, 1)p True

(1, 0)p → (1, 0)p True

(0, 1)p → (0, 1)p True

Figure 6.4: Contact sequences for 2-cycle horizon for both closed and open configurations.

The Hopper was simulated 250 times for both the closed and open contact configura-

tions. Figure 6.4, Figure 6.5, and Figure 6.6 display non-trivial results, (1, 1)p occurs ad

infinitum in the absence of perturbations per our choice of limit cycle. For a 2-cycle horizon,

all of the contact sequences were observed for both contact configurations. For the 3-cycle

horizon, both contact configurations had 6 out of the possible 8 contact sequences. For
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Contact Sequence Observed (Boolean)

(0, 1)p → (0, 1)p → (0, 1)p False

(0, 1)p → (0, 1)p → (1, 0)p True

(0, 1)p → (1, 0)p → (0, 1)p True

(0, 1)p → (1, 0)p → (1, 0)p True

(1, 0)p → (0, 1)p → (0, 1)p True

(1, 0)p → (0, 1)p → (1, 0)p True

(1, 0)p → (1, 0)p → (0, 1)p True

(1, 0)p → (1, 0)p → (1, 0)p False

Figure 6.5: Contact sequences for 3-cycle horizon for closed configuration.

Contact Sequence Observed (Boolean)

(0, 1)p → (0, 1)p → (0, 1)p True

(0, 1)p → (0, 1)p → (1, 0)p True

(0, 1)p → (1, 0)p → (0, 1)p False

(0, 1)p → (1, 0)p → (1, 0)p True

(1, 0)p → (0, 1)p → (0, 1)p True

(1, 0)p → (0, 1)p → (1, 0)p False

(1, 0)p → (1, 0)p → (0, 1)p True

(1, 0)p → (1, 0)p → (1, 0)p True

Figure 6.6: Contact sequences for 3-cycle horizon for both open configuration.

the open configuration the alternating sequences, i.e. (1, 0)p → (0, 1)p → (0, 1)p, were not

observed. Repeating sequences, i.e. (1, 0)p → (0, 1)p → (1, 0)p, were not observed for the

closed configuration. The number of contact sequences stayed constant for a 4-cycle hori-
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zon. The natural dynamics of the contact configuration paired with the perturbation applied

make certain contact sequences possible and with varying levels of frequency. We believe

the reported results are due to multiple effects: numerical imprecision from the simulation

framework, the dampening effect of the PD controller, and the dynamics of the maneuvers.

A closed configuration causes the Hopper to loosely mirror the previously discussed box,

for each subsequent hop the Hopper frequently rockers (rotates around its center of mass)

resulting in alternating contact sequences. In order for a a repeating sequence to occur, we

suspect there must be a very precise perturbation onto a small area of the transverse section.

The area likely shrinks or disappears for larger cycle horizons. This is due to the decay

effects of the simulation, at each time step the discretized dynamics incur constraint error.

The enforcement and stabilization of constraints causes the Hopper to dissipate high fre-

quency energy and trend towards a (1, 1)p contact sequence. The open contact configuration

sees repeating sequences more frequently. While splaying, the Hopper dissipates rotational

velocities therefor maintaining a consistent body rotation across contact sequences.

A potential future research direction would find periodic hoping gaits that display more

than 6 contact sequences for 3-cycle or larger horizons. Increasing the precision of the

simulation would aid the search for more contact sequences by reducing the dissipation of

perturbations. In summary, this chapter has provided preliminary evidence that the num-

ber of contact sequences a mechanical systems subject to unilateral constraints experiences

increases with the cycle horizon. These findings have ramifications on smooth optimization

techniques and ties in with findings from Chapter 4 and Chapter 5, each contact sequence

propagates nonsmoothness.
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Part II

AIM 2
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Chapter 7

SUBJECT-SPECIFIC MODELS FOR PREDICTING HUMAN
LOCOMOTOR RESPONSE TO ANKLE FOOT ORTHOSES

(AFO)

7.1 Introduction

AFOs can be used to partially restore walking economy for children with cerebral palsy [17].

The potential assistive and rehabilitative properties of AFOs inspired this project [37]. The

AFO device we used is passive, a spring runs along the heel and is actuated through motion

in the sagittal plane of the ankle. Since the device is passive, the spring stores energy as the

foot comes into contact with the ground and goes into dorsiflexion. As the person toes-off

and the foot moves towards plantar flexion, the spring releases energy. The net work applied

by the device is negative because of mechanical dissipation. To motivate the application of

this aim, currently the prescription of AFOs is largely subjective in nature and places a large

reliance on the clinician [94]. Due to the cost of fabrication and clinical time required for

each device iteration, many patients end up with sub-optimal solutions. This can prevent

patient adoption and efficacy of the devices. Although there are clinical procedures available

for evaluation and prescription, no standard protocol exists, and outcomes are inconsistent,

even within a single clinical center [94] [110].

We hope to assist in the clinical prescription of AFOs and improve patient outcomes by

creating an accurate subject-specific predictive model for kinematics. Its worth noting that

the aim of this work is not to replace clinicians, but offer another tool, quantitative in nature,

to facilitate prescription and improve outcomes. The model would predict changes to kine-

matics as the torque applied by the AFO is varied throughout the gait cycle. For our device

design, the stiffness of the spring was the only parameter varied. Predicting gait kinematics
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for those with cerebral palsy is particularly challenging because they display greater gait

variation than healthy individuals [57]. Additionally, the models are only afforded clinically-

feasible amounts of data preventing the straightforward adoption of methods developed in

other data-rich environments, e.g. recurrent neural networks. To simplify the prediction

challenge and make finding subjects easier, we decided to first develop and survey a collec-

tion of models on healthy individuals. Using motion capture and electromyography (EMG)

sensors, collaborators collected kinematic and EMG data as subjects walked at a steady-state

on a treadmill. Kinetic data was estimated by taking the gradient of the kinematics and

then interpolating. The subjects had four treatments, one was a control and the rest spanned

a range of biomechanically relevant stiffnesses [28]. Data was collected on twelve subjects

walking at a steady state on a treadmill. Each subject first went through an adaptation

session and in a later session data was collected. The data processing pipeline took in raw

position measurements and used an inverse kinematics algorithm in tandem with filtering

to estimate joint angles. In the remainder of this chapter, I will describe the methods we

developed and used in Section 7.3 and their basis in previous research. Next in Section 7.6,

we will cover results from our effort to predict joint angles and EMG. Lastly in Section 7.7,

we will discuss the significance of our findings, outline research contributions, and overview

potential future research directions.

7.2 Determining & using phase

A number of our proposed models involve predicting futures states from current state, where

the input and output states are defined in relation to their position in the gait cycle. Conse-

quently, we must identify an appropriate definition of the gait cycle, over which the dominant

dynamics of human locomotion evolve. Most biomechanical studies evaluate the gait cycle

over a domain defined by initial contact events. Generally, this involves linearly interpolating

the data from heel strike to heel strike. There is evidence that biological systems operate

in a rhythmic fashion due to internal neural mechanisms versus sensory feedback [33]. The

basis of neural control for locomotion, especially in vertebrates, is likely an innate capability.
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Learned adaptive behaviors are applied on top of centrally generated patterns [54]. These

findings lend evidence to the school of thought that biological specimens operating in a rhyth-

mic fashion operate with nominal feedforward neural control. The mechanics of specimens in

turn mediate rapid perturbations giving time for neural feedback control to rectify slower de-

viations from their target rhythmic behavior [108]. This perspective supports the assumption

that the dynamics of a biological system can be represented in a lower-dimensional subspace.

This inference underlines modeling rhythmic behaviors as reduced-order dynamical systems

near a stable limit cycle [108] [89]. This contrasts with another common approach where

specific events, i.e. heel strike, are given a fixed phase and estimates of the phase are ob-

tained through interpolation [107]. In this section we will refer to the collected dataset as

D, a matrix which is an element of Rm×n. m is the number of samples, n is the dimen-

sionality of the state, joint angles, EMG, and torque profiles, and Xφ ∈ Rn a single state

sample at a specific phase, φ, of the gait cycle. The remainder of this section will utilize the

discussed prior research for the phase estimator (Section 7.2.1), set mapper (Section 7.2.2),

and predictive models (Section 7.4).

7.2.1 Phaser

We are using Phaser to estimate the gait cycle phase of the subject. Phaser, an algorithm

developed for nonlinear dynamical systems, uses multiple dimensions considered to be phase

locked to estimate the phase of the master oscillator of the system [107]. This approach

leverages our experimental design, as measurements from multiple noisy markers are used in

tandem to achieve a better estimate of the underlying phase of a walking individual. Utilizing

the configuration of the system and accounting for any changes in internal phase, allows for an

estimate of the system state that is robust to perturbations. The use of kinematic measures

to estimate the instantaneous phase is not limited to Phaser [130]. When applying Phaser

to our dataset, we looked for a subset of states whose time-series trajectories are relatively

consistent across gait cycles. Our choice was hip flexion in the pelvis (with respect to both

the left and right legs), which are indexed from the full state vector, Xφ, by Ihip flexion. We
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then apply the function Fphaser to the columns of D indexed by Ihip flexion, to receive an

estimate of the phase at each sample, denoted by φ ∈ RM .

7.2.2 Set mapper

Figure 7.1: Sampling the estimated torque signal.

The torque was sampled uniformly between the input phase, φ, and output phase, φ+ θ.

These samples were then appended to the dataset before prediction. We treat the influence

of the AFO on the subject as a perturbation and thus allow ourselves access to future

information. We sampled the signal ten times, a hyper-parameter than can be adjusted. We

selected a larger value, that yields slower run times but ensures maximal predictive accuracy

(which saturates with an increasing number of samples) possible within the framework.

To construct a training set for the phase lookahead models we find state pairings offset

by a parameter, θ, deemed the lookahead from the phase of the sample, φ. Because our data

is sampled from a continuous space, the data corresponding to the lookahead phase, θ + φ,

in the dataset matrix, D, is contained in the interval, [φ1, φ2], defined by the unrolled phase

estimate of two samples. Samples at phase lookahead, Xφ+θ ∈ Rn, are then determined with

linear interpolation whenever this condition is met.
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7.3 Dataset & input-output structure

We collected data on four stiffness from twelve healthy participants. We had subjects walk

on the treadmill for six minutes and conducted measurements at 120 Hz. The participants

were subjected to a bilateral treatment, AFOs with the same stiffness were applied to both

legs. Subjects self-selected their speeds, following instructions to maintain a natural walking

pace. When choosing the appropriate granularity for the input-output relation we ended

up deciding that subject-specific models are most appropriate when attempting to predict

the gait kinematics and EMG response of cerebral palsy (CP) and stroke survivors. In

contrast, when trying to predict joint angles and EMG for a homogenous population, you

could potentially train on a large amount of subjects and then offer effective predictions for a

separate group of test subjects. Due to the heterogenous nature of the injuries in our target

subject population, we chose to train on a sample of stiffnesses representative of the range of

viable values [57] [44]. We would then attempt to predict the subject’s response to a novel

stiffness and thus torque profile. Hopefully, this would allow clinicians to quickly evaluate

the potential effectiveness of a stiffness, matching our aim to optimize clinical outcomes and

not replace practitioners.

A definition for the state of a system is the minimum set of dimensions necessary to

predict future state of the system. Picking this representation when seeking to create data-

driven models for actual systems is a trade-off; balancing between time, money, & effort

collecting data and the expected predictive performance. The choice of dimensions collected

follows current biomechanics conventions in addition to the measurement capabilities cur-

rently available in the Amplifying Movement & Performance (AMP) Lab [28] [34]. During the

experiment, marker trajectories were collected using a motion capture system 1. To convert

marker trajectories to joint angles an inverse kinematics algorithm 2 was applied in addi-

tion to low-pass filtering, following already existing procedures [102]. The resultant 19 joint

1Qualysis AB

2OpenSim 3.3
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angles represent pelvis, hip, ankle, knee, and lumbar rotations. A custom script, standard

across AMP lab experiments, was used to process the EMG. We utilized 14 EMG mea-

surements taking muscle activity measurements from muscle groups responsible for walking.

The joint angles, EMG signals, and estimated torque applied by the AFO along with their

estimated derivatives comprise the state. We estimated the derivatives using a higher-order

finite differences scheme 3 [101].

The outputs are the predictions for the joint angle and EMG dimensions. We find this

to be the most generalized prediction task for the experiment conducted. Metabolic energy

cost, another popular metric, is not within the scope of this aim [38]. If other metrics are of

interest, particularly those with clinical significance, the general scheme of our outputs may

allow some to be computed later.

7.3.1 Studentization

Xs =
X − µx
σx

(7.1)

To improve numerical conditioning and allow for easier comparison between dimensions

we studentized the data. In (7.1), Xs denotes the studentized dataset, µx and σx, the mean

and standard deviation of the original dataset.

7.3.2 Phase lookahead

In this aim we try to predict the future state for a selected phase in the future. This can

be seen in Figure 7.2, where the state, Xφ, at phase, φ, is used to predict a constant phase,

φ+ θ, in the future.

3NumPy v1.13.3 gradient
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Figure 7.2: Phase based prediction framework

7.3.3 Training & testing procedure

Spring Name Stiffness (N
m

)

K0 (control ) 0

K1 3200

K2 9800

K3 15200

Figure 7.3: Spring stiffnesses

The springs used – K0, K1, K2 and K3 – range from the control, which has no spring

causing the AFO to act as a hinge, to the stiffest spring in our experiment. The choice

of spring stiffnesses used in our experiment is backed by prior research which has shown

these values to measurably influence the measured quantities of interest [28]. We chose our

prediction task to be an interpolation task, the values we are attempting to predict should

be within the range of values trained on. This is likely easier than extrapolating to a spring

stiffness beyond the range trained of the training set.

The estimated torque profile – torque applied by the AFO to the subject – for a single
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(a) Mean Estimated Right AFO Torque.

(b) Mean Estimated Left AFO Torque.

Figure 7.4: Average torque profiles for each spring stiffness.

subject (ID:5 ) is shown in Figure 7.4. Matching our expectations, the torque applied by

the AFO is largest while in stance phase. Additionally, we can see an ordering between the

magnitude of the profile and the value of the spring stiffness. This reaffirms our approach

to train on K0, K1, and K3 and test on K2, since we sought an interpolation prediction

task. The profiles look qualitatively symmetric, although there are differences as expected

between the right and left leg (even with the same treatment simultaneously applied to both

legs).
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7.4 Models surveyed

While selecting and devising the models for our survey of available techniques we wanted to

explore tradeoffs along two spectrums, complexity and specificity. We chose to investigate

three models that we deemed most applicable and representative: 1) Phase-Varying (PV),

2) Linear Phase-Varying (LPV), and 3) the Nonlinear Phase-Varying (NPV).

Model Name Functional Form

Phase-Varying (PV) X̂φ = Fw
pv(φ)

Linear Phase-Varying (LPV) X̂φ+θ = Fw
lpv,θ(φ)Xφ

Nonlinear Phase-Varying (NPV) X̂φ+θ = Fw
npv,θ(φ,Xφ)

Figure 7.5: Models surveyed

LPV and NPV take a state measurement at the phase, φ, and provide a state estimate,

X̂φ+θ, a constant, θ, phase in the future. PV takes a phase, φ, and returns the estimated

state mean, X̂φ, at that phase. The models in the table are ordered in increasing functional

complexity: the PV model is a function of phase, LPV is a function of phase and linearly

state, and the NPV is a function of phase and state. Generally, the first two models (PV,

LPV) would be considered specifically applicable to rhythmic phenomena while the NPV is

a general supervised learning model.

7.4.1 Phase-Varying (PV)

Fw
pv : φ→ X̂φ (7.2)

[Fw
pv]i =

1

2
w0,i +

H∑
h=1

w2h−1,i cos(hφ) +
H∑
h=1

w2h,i sin(hφ) (7.3)
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Figure 7.6: Depiction of the Phase-Varying (PV) model.

arg min
wi

M∑
m=1

(Fw
pv(Φ̂m)i −Dm,i)

2 (7.4)

The PV model is relatively simple and specific to the task of rhythmic locomotion (a

graphical depiction shown in Figure 7.8). The PV model draws on referenced work that

estimates the instantaneous phase of a mechanical system near a stable limit cycle. It encodes

the rhythmic nature of the system’s limit cycle, the phase-varying mean, with a truncated

Fourier Series, a signal composed out of the sum of sines and cosines. The function takes

in phase, φ, and returns a prediction of the system’s state, X̂φ ∈ Rn, at that moment. A

matrix, w ∈ Rn×(2H+1), parameterizes the truncated Fourier Series. Each component of the

state, i = 1, ..., n, is predicted by a Fourier Series up to order H, a hyperparameter chosen

to be 7. The periodic signal is fast enough to capture any rhythmic element 7 times faster

than the base gait frequency. Accordingly, the PV function can be defined as the function

in (7.3). The parameters, w, are chosen to minimize the error between the dataset, D, and

the predicted value of the function as seen in (7.2).
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7.4.2 Linear Phase-Varying (PV)

Figure 7.7: Depiction of the Linear Phase-Varying (LPV) model.

The LPV model builds upon the PV model with novel extensions, a graphical depiction

is shown in Figure 7.7. Previous work has viewed rhythmic human locomotion as a behavior

that can be modeled with a limit cycle oscillator [89]. The walking individual corrects for

perturbations from a desired rhythmic behavior on the treadmill. This motivates increasing

the complexity of the model, we attempt to model the stabilizing dynamics of the system

along the limit cycle. More specifically, a behavior with discrete events, i.e. foot-falls and

foot-liftoffs, can be described as a system near a stable limit cycle and thus we would expect

the trajectories to exponentially decay towards the limit cycle [22].

The LPV function takes in a phase, φ, and returns a matrix, Aφ, of dimension Rn×n+1×

Rn+1. The dimensions of the lookahead matrix is determined by the number of samples

and the number of measurements plus one to make the operator affine. The function is

parametrized by a tensor, w, of dimension Rn×n+1×x×(2H+1). The second subscript, θ, specifies
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the phase lookahead of the model.

Fw
lpv : φ→ Aφk (7.5)

We first ran Phaser on the dataset to receive phase estimates for all the samples. Next,

we use the PV model to subtract the phase mean from the dataset as the LPV model seeks

to model the recovery dynamics of the subject in a rhythmic gait.

The first step in fitting the LPV models divides the phase space into L sections. At each of

the sections we fit a discrete mapping, a matrix representative of an affine transformation. We

weight the locality of all of the available data with the matrix, GφI , indexed by I = 1, ..., L.

The Gaussian weight scheme assigns greater weight to points closer in the entire phase space,

[0, 2π], to the section. The kernel width, a hyperparameter choice, was selected to be 0.5

making it roughly 16% of the gait cycle. We solved each of the posed weighted least squares

problems with the Moore-Penrose inverse at each sample phase, φI . ÃφI represents the

discrete mapping for the section at φI . Xφ ∈ Rk×n is a matrix where each row is a single

sample of the state, Xφi , and k is the number of samples that meet inclusion criteria for

the set mapper, samples that have discrete mappings contained within the interval of phases

sampled and thus can be interpolated.

GφlXφ+θ = GφlXφÃφl for l = 1, ..., L, φl = 2π(
l − 1

L
) (7.6a)

Ãφl = (XT
φGφlXφ)−1XT

φGφlXφ+θ (7.6b)

Each of the entries in Fw
lpv,θ are represented by a 3rd-order Fourier Series, giving us a

function that can continuously return a matrix with n(n+ 1) distinct Fourier series. [AwφI ]i,j

denotes i, j entry in the matrix returned by the function Fw
lpv,θ.

[Awφ+θ]i,j =
1

2
wi,j,0 +

H∑
h=1

wi,j,2h−1 cos(hφ) +
H∑
h=1

wi,j,2h sin(hφ) (7.7)

Lastly, we solve for the LPV model weights by fitting a truncated Fourier series to the

corresponding entries in the discrete mapping matrices by minimizing deviation between the
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evaluated continuous function, AwφI , and the fitted discrete mapping, ÃφI . The optimization

procedure is run independently for each Fourier series.

arg min
wi.j

L∑
l=1

([Awφl ]i,j − [Ãwφl ]i,j)
2 (7.8)

7.4.3 Nonlinear Phase-Varying (NPV)
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Figure 7.8: Representative configuration of the Nonlinear Phase-Varying (NPV) model.

Neural networks, particularly in a deep configuration, are considered state of the art

predictors in a number of domains: image recognition, speech recognition, natural language

processing, and robotics [77] [1]. There are many viable potential configurations and acti-

vation functions, for our model we chose a feed-forward neural network with three layers of

depth to ensure the universal function approximation property [32]. Each layer is fully con-

nected and 128 units wide, greater than or equal to the number of states to prevent encoding

behaviors. Each unit used the sigmoid activation function. We implemented the model in

the Keras Python framework and optimized with RMSprop gradient descent. To ensure a

relevant comparison we picked an architecture that has the same input-output structure as
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the LPV model. This constraint ruled out another competitive model, the recurrent neural

network a state of the art predictor for time series data [85] [91]. The deep regressor takes

in phase estimate, φ, and state, Xφ, and predicts the state at a fixed phase lookahead, X̂φ+θ.

The interconnection weights and biases, the set of parameters of the used in the network are

denoted by w.

7.5 Methods

Predicting human motion is challenging due to the high dimensionality of human locomotion,

the variability in our periodic motion that in turn makes it rhythmic, and the nonlinearity

of our dynamics [108].

7.5.1 Torque Estimation

τexo(t) =

−k(θankle(t)− θ∗), if θankle(t) ≥ θ∗

0, else if θankle(t) < θ∗
(7.9)

We currently view the torque applied by the AFO as a piecewise function, as seen in (7.9).

Defining the variables used in the equation: k is the spring stiffness, θankle the time-series

of ankle angles, and θ∗ is the equilibrium point for the device. The physical interpretation

of this equation, the AFO applies a torque at the ankle when the foot’s dorsiflexion angle

is greater than the equilibrium angle. We augment the dataset with the estimated torque

applied by the device, ten samples are uniformly taken from the initial to final phase of the

lookahead window. Incorporating the torque profile in this manner assumes that the entire

signal, not just impulse or final magnitude, influences future states.

7.5.2 Relative Remaining Variance

µ = E (7.10a)

V ar(X) = E[(X − µ)2] (7.10b)
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RRV =
V ar(Ŷ − Y )

V ar(Y )
(7.11)

The following results will use the relative remaining variance metric (RRV) shown in

equation (7.9) and also used in closely related prior work [89]. The function in (7.10) defines

the standard statistical variance computation, where the variance is defined as the square

of the expected deviation from the mean. The timeseries from dataset, Y , and predictions

given by the model, Ŷ . In order to obtain confidence intervals of the mean, the data is

bootstrapped – a procedure where the residuals are repeatedly randomly sampled – and the

mean is computed. This procedure can give us a distribution of computed means and a

confidence that the mean is contained within certain intervals.

Figure 7.9: Reduction in relative remaining variance.

In Figure 7.9 we can see, for an example subject and kinematic measurement (joint angle)

the observed reduction in variance of the residuals. For the RRV statistic, 0 indicates perfect

prediction and 1 or anything greater points to a lack of any predictive power. Although

unintuitive (since simply predicting the mean yields an RRV of 1 ), RRV values greater than

1 are common with respect to predictions on real datasets. Figure 7.9 demonstrates the
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reduction in the variance of the residuals varies with respect to phase indicating that the

model’s predictive performance varies within the gait cycle.

7.5.3 Predicting deviations from the nominal limit cycle

The surveyed models provide predictions for walking individuals at any given phase through-

out the limit cycle. We adopt the assumption that the AFO acts as a perturbation, inter-

mittently applied when the subject’s foot is in contact with the ground. Deviations from the

nominal limit cycle are induced by the AFO and natural variability of a walking individual.

A PV model is trained on the control treatment for each subject. State estimates from the

control PV model are then subtracted from all of the collected time series (including the

control). The subsequent section, Section 7.6, reports the surveyed models ability to predict

the remaining residuals. This prediction task is more challenging as a fraction of the variance

is already explained by the control trained PV model. By removing the nominal limit cycle,

represented by the control PV model, we aim to tease apart the ability of models surveyed

in predicting motion relative to the limit cycle.

7.6 Results

This section covers the computational results for the surveyed models and their statistics for

predicting joint angles and EMG. Results showing the changes in the predictive performance

when varying the phase lookahead and reduction in training set size will also be presented.

For all of the RRVs covered in this section the maximum value was capped at 1. An RRV

with a value of 1 or greater suggests no predictive ability. The plots summarize across

subjects and sometimes multiple joint angles and we did not want to skew the reported

results with arbitrarily large RRV values. Lastly, the subjects had bilateral AFOs and we

expect the participants to have roughly symmetric gaits. The results reported in this section

pool predictions for the left and right joint angles when there are comparable measures, eg

ankle, knee.

The sagittal and transversal plane joint angles shown in Figure 7.10 are a subset of all
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(a) Transversal plane joint angles.

(b) Transversal plane joint angles.

(c) EMG RRV

Figure 7.10: RRV for joint angles and EMG for all subjects and surveyed models. The
phase lookahead is π

4
, an eighth of a stride.
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the available joint angles, we are reporting the dimensions most affected by the perturbation

applied by the AFO. In general, the predictive performance of the LPV and NPV surpassed

the PV. Usually, the joint angle RRVs were lower than the corresponding EMG values. We

speculate the that EMG RRVs were higher because their dynamics are faster and more

variable, making the prediction task more challenging.

The computed RRV values, shown in Figure 7.11, increase for the LPV model in tandem

with the phase lookahead, i.e. percent of gait cycle. For the hip, knee, and ankle angles, the

RRVs increase and then asymptote as the percent of gait cycle lookahead is increased. This

effect is most pronounced in the knee angle.

The positive relation between predictive ability and training set size is seen in Figure 7.12.

The data is temporally organized, the first sample corresponds to the start of the trial and

the last the finish. When reducing the size of the training set, the chosen interval starts from

beginning of the available time series and continues sequentially. This allows us to gauge

the effects of changing the duration of the trial, or the amount of clinical time, and how the

predictive performance of the models varies. As the number of samples increases to 5000,

shown in in Figure 7.12, all of the models displayed marked improvement. The NPV shows

a large improvement for the full dataset, the largest sampled training set size. The NPV

hyperparameters, along with the PV and LPV, were tuned on the full dataset. This may

explain the sudden, large improvement observed to an extent in all of the models.

7.7 Discussion

We have surveyed subject-specific models for predicting the response to AFOs. The models

are a function of the estimated phase of the walking subjects along with joint angles, EMG

measurements, and AFO torque profiles. Phaser, the algorithm we used, estimates the in-

stantaneous phase from the configuration of the subject [106,107]. We leverage the regularity

of steady-state walking to train the surveyed models and provide predictions on untrained

stiffness values. Our modeling approach assumes that the subject undergo repeated pertur-

bations from the AFO. This causes the individual to deviate from the unperturbed limit
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(a) Sagittal hip angle.

(b) Sagittal knee angle.

(c) Sagittal ankle angle.

Figure 7.11: RRV for select joint angles for all subjects and surveyed models. The phase
lookahead is varied for the LPV model. The upper bound is the .975 quantile and the lower
bound is the .025 quantile.
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cycle. The resultant shift is the basis of the proposed clinical intervention aiming to improve

gait kinematics, metabolic efficiency, or other clinically relevant outcomes. Naturally, the

applied perturbations needs to maintain or improve stability while retaining subject comfort.

Floquet theory says to a first-order dynamics are linear phase-varying near a limit cycle,

i.e. exponentially stable periodic orbit [45, 56]. This inference underlines modeling the

walking subjects with the LPV model. All of the surveyed models may apply to other

rhythmic behaviors but the PV and LPV do not extend to aperiodic behaviors. The LPV and

NPV are sensitive to the size of the training set size as seen in the eventual downward trend of

RRV values as the number of samples increases in Figure 7.12. Requiring larger training set

sizes reduces the viability of subject-specific models in a clinical setting. This is particularly

relevant to the target patient population, e.g. cerebral palsy survivors, which display greater

gait heterogeneity and are therefor more suited to subject-specific predictive models (versus

population level models) [57]. For a more homogeneous target patient population, training

models on a separate group of individuals before application in a clinical setting may reduce

clinical time.

The results presented in the previous section build upon previous work where the Phaser

algorithm was used on running individuals [89]. In this experiment, the individuals ran at

a steady-state and were unperturbed. Additionally, the trials were significantly longer for

each of the subjects, 24 minutes, and many were disqualified. In this paper, the authors were

able to find discrete mappings which were stable. We speculate that the length of trials and

more stringent exclusion criteria yielded a more consistent dataset to fit stable models i.e.

discrete mappings.

All of the models surveyed are functions of phase. The PV model offers the best predic-

tions at the lowest number of samples, seen in Figure 7.12, and offers a comparison baseline

for the other two models (LPV, NPV). The PV model does not directly take into account

state information and thus relies on deviations of the walking individuals to trend towards

the mean. The PV model does not account for the magnitude of deviations from the es-

timated limit cycle and associated recovery dynamics. The LPV builds upon the previous
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phase-based estimation techniques and theory while effectively matching the predictive per-

formance of the NPV [56, 89]. At a given phase, the LPV returns an affine operator which

allows it to predict first-order dynamics near a limit cycle. Finally, the NPV does not in-

corporate any a priori model structure for the task of predicting rhythmic locomotion. We

suspect that the lack of in-built assumptions along with the universal function approxima-

tion property allows this model to scale with data. If future experiments were be run for

longer periods of time we think that the inherent representational capabilities of the NPV

would allow it to continue to scale. This potential capability comes with the trade off that

the NPV may not have enough data to be effectively trained in a time constrained setting

e.g. clinical.

This chapter reports on the phase lookahead modeling structure discussed in Section 7.3.2.

An alternate structure we explored was predicting the state on a shorter time or phase scale.

We first fitted discrete state to state mappings. In order to generate predictions over a longer

time or phase scale, the given state would be propagated forward with the iterated mappings.

Inspecting the eigenvalues of the fitted discrete mappings informed us of their stability. The

mappings when fit to our experimental data had some eigenvalues outside of the unit circle,

indicating instability. This posed problems when attempting to generate predictions as

the iterated state would diverge from the limit cycle. As previously noted, this approach

succeeded in prior work and we suspect our inability to find stable models was due to the

length of trials [89]. Proposed future experiments would collect longer datasets, allowing the

iterated models to provide additional insight into the dynamics of walking individuals and

offer another tool in clinical interventions.

7.7.1 Generalizability

The results reported in Section 7.6 illustrate a tradeoff faced in model selection balancing

between predictive performance and model simplicity [46]. The PV mode is simple and

gives reasonable RRVs while the LPV and NPV model scale with additional data. This

coincides with the notion that the quantity of data, to successfully train a model, increases
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with the lack of assumptions built into the model. When we cannot a priori glean a model

that predicts the desired task, collecting data and fitting a model presents an alternative.

In a clinical setting collecting data is costly and time-consuming. We balance this with an

attempt to provide the best possible clinical outcomes by finding an effective, reliable model

which requires the least amount of data. Asurvey of available methods can help find the

Pareto optimum where the ability to predict joint angles and EMG is not compromised by

the choice of model.

7.7.2 Functional Complexity

All of the models surveyed, as seen in Figure 7.5, display different functional complexities.

The PV is nonlinearly a function of phase, LPV is nonlinearly a function of phase and linearly

a function of state, and NPV is nonlinearly a function of phase and state. Although the

functional forms do not provide any guarantees on the amount of data required for a chosen

predictive performance, we suspect and Figure 7.12 serves as evidence, that their exists a

relationship where a greater functional complexity offers a higher ceiling for goodness-of-fit

provided the training data is representative of the testing data.

7.7.3 Conclusion

The surveyed models exhibited an ordering in predicting joint angles as the LPV and NPV

surpassed the performance of the PV model, seen in Figure 7.10. No clear trend was observed

in EMG, seen in Figure 7.10, as all of the models were almost non-predictive. Naturally, the

computational time to train the models went in reverse order of their predictive performance.

The NPV was the slowest, then LPV, and PV was the fastest. Once trained, the speed of

predictions was relatively similar for all of the surveyed models. If the AFO was actively

controlled - all the models surveyed could offer sufficiently fast predictions to enable real-time

control. Overall, the results of this section indicate that the LPV approximately matches

the predictive performance of the NPV, providing experimental evidence that individuals

engaged in steady-state walking can be modeled with a linear phase-varying model.
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(a) Training set size for the PV model.

(b) Training set size for the LPV model.

(c) Training set size for the NPV model.

Figure 7.12: The computed RRV across all joint angles and subjects. The size of the
training set size is varied. The upper bound is the .975 quantile and the lower bound is the
.025 quantile.
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Chapter 8

CONCLUSION & FUTURE RESEARCH DIRECTIONS

8.1 Part I

In Chapter 4, we showed that nonsmoothness in trajectory outcomes is inherited in the re-

sulting optimal policy and value functions. This nonsmoothness precludes the application of

gradient-based optimization methods for controlling systems with contact-rich dynamics. A

natural extension would be the subsequent development of theory and algorithms that enable

optimization over discontinuous state transitions [95]. A hybrid dynamical system operating

on or near a limit cycle can be described by a smooth reduced-order model [22]. Extend-

ing this result to finite time-horizon maneuvers would allow the application of optimization

techniques that make smoothness assumptions. Alternatively, computational methods which

can optimize over nonsmooth cost landscapes may be developed. A potential new optimiza-

tion technique would smooth discontinuous trajectory outcomes with a kernel and then show

that the resultant policy approximates the true optimal one. Both approaches outlined would

further the ability to control mechanical systems subject to unilateral constraints and if suc-

cessful would at least partially address the challenge associated with the transfer of control

from simulation to real.

For the Hopper, described in Chapter 7, we suspect that for some parameters choices –

reference configurations, controller parameters, and state initialization– all possible contact

sequences could be observed for a given number of cycles. We have already found all contact

sequences for a 2-cycle hop as discussed in Chapter 7. Matching the upper bound, nm –

where n is the number of contact sequences possible per cycle and m is the cycle horizon, for

three or more hop cycles remains an open task. Increasing the sensitivity of the simulation

may produce more contact sequences. Decreasing each time-step will yield a more accurate
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discretization of the continuous dynamics and less constraint error will accumulate over

time. This would decrease the decay of perturbations over time, a consequence of constraint

stabilization, and would give more accurate simulation results. Second, we suspect that a

hopping maneuver where both lower links are perpendicular to ground upon contact, splitting

the closed and open contact configuration incidence angles, would display both alternating

and repeating sequences when subjected to small perturbations away from the limit cycle.

To find the parameters of this configuration, we could solve an optimization problem where

the angle error from the desired trajectory would be minimized with respect to the parameter

choices of the maneuver.

8.2 Part II

Now that we have run a pilot study on able-bodied subjects, a logical extension for the

surveyed models is predicting locomotion for patient populations. Cerebral palsy survivors

may be more challenging, due to greater gait heterogeneity, and therefor longer datasets

or more stiffness training values may be required [57]. The subject (ID:4) has the largest

reaction to the AFO torque applied and subsequently had the lowest RRV values for both

joint angles and EMG. Additionally, increasing the range of spring stiffnesses may allow

for more effective interventions by exploring a greater range of outcomes and thus clinical

intervention.

All of the models surveyed follow the phase lookahead structure described in Chapter 6.

When we attempted to fit small timescale models to the dynamics of the walking subject the

resultant models were not stable, the linear models had eigenvalues which sat outside the unit

circle. If we forward simulated the nonlinear models some of dimensions would exponentially

diverge from the limit cycle. Prior work has indicated that a 24 minute experiment of steady-

state running yielded stable linear models [89]. This suggests, that if we increase the length

of the experiment we should be able to fit stable small timescale models. This would allow

us to analyze and quantify the stability of the resultant AFO stiffness. Finally, attempting

to fit a dynamical system to each contact configuration may prove more representative than
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the input-output relation of the current surveyed models.

8.3 Data-driven hybrid dynamical systems

The contents of this thesis have sought to further the practical application of data-driven

hybrid dynamical systems. The two applications in this thesis, legged locomotion and re-

habilitative medicine, constitute a subset of all potential ones. Advancements in computing

and sensing offer new tools to the engineering discipline, augmenting historical pen and pa-

per analysis. Harnessing greater quantities and quality of data presents new avenues for the

modeling and control of hybrid dynamical systems. The field of data-driven methods, fitting

models and solving for control, contains many open problems with promise for substantial

impact.
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Matthew T. Mason, and Patrick Henry Winston. Robot motion: Planning and control.
MIT press, 1982.

[17] Merel-Anne Brehm, Jaap Harlaar, and Michael Schwartz. Effect of ankle-foot orthoses
on walking efficiency and gait in children with cerebral palsy. Journal of Rehabilitation
Medicine, 40(7):529–534, 2008.

[18] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman,
Jie Tang, and Wojciech Zaremba. OpenAI Gym. arXiv preprint arXiv:1606.01540,
2016.

[19] Bernard Brogliato, A.A. ten Dam, Laetitia Paoli, Frank Genot, and Michel Abadie.
Numerical simulation of finite dimensional multibody nonsmooth mechanical systems.
Applied Mechanics Reviews, 55(2):107–150, 2002.

[20] Samuel Burden, Shai Revzen, and S. Shankar Sastry. Dimension reduction near peri-
odic orbits of hybrid systems. In Decision and Control and European Control Confer-
ence. IEEE, 2011.

[21] Samuel A. Burden, Humberto Gonzalez, Ramanarayan Vasudevan, Ruzena Bajcsy,
and S. Shankar Sastry. Metrization and simulation of controlled hybrid systems. IEEE
Transactions on Automatic Control, 60(9):2307–2320, 2015.



84

[22] Samuel A. Burden, Shai Revzen, and S. Shankar Sastry. Model reduction near peri-
odic orbits of hybrid dynamical systems. IEEE Transactions on Automatic Control,
60(10):2626–2639, 2015.

[23] Martin Buss, Markus Glocker, Michael Hardt, Oskar Von Stryk, Roland Bulirsch, and
Günther Schmidt. Nonlinear hybrid dynamical systems: modeling, optimal control,
and applications. In Modelling, Analysis, and Design of Hybrid Systems, pages 311–
335. Springer, 2002.

[24] John Carling, Thelma L. Williams, and Graham Bowtell. Self-propelled anguilliform
swimming: simultaneous solution of the two-dimensional Navier-Stokes equations and
Newton’s laws of motion. Journal of Experimental Biology, 201(23):3143–3166, 1998.

[25] Dean R. Chapman. Computational aerodynamics development and outlook. AIAA
Journal, 17(12):1293–1313, 1979.

[26] Hsinchun Chen, Roger H.L. Chiang, and Veda C. Storey. Business intelligence and
analytics: From big data to big impact. MIS Quarterly, 36(4), 2012.

[27] Paul Christiano, Zain Shah, Igor Mordatch, Jonas Schneider, Trevor Blackwell, Joshua
Tobin, Pieter Abbeel, and Wojciech Zaremba. Transfer from simulation to real world
through learning deep inverse dynamics model. arXiv preprint arXiv:1610.03518, 2016.

[28] Steven H. Collins, M. Bruce Wiggin, and Gregory S. Sawicki. Reducing the energy
cost of human walking using an unpowered exoskeleton. Nature, 522(7555):212, 2015.

[29] Steven H. Collins, Martijn Wisse, and Andy Ruina. A three-dimensional passive-
dynamic walking robot with two legs and knees. The International Journal of Robotics
Research, 20(7):607–615, 2001.

[30] Nikolaus Correll, Kostas E. Bekris, Dmitry Berenson, Oliver Brock, Albert Causo, Kris
Hauser, Kei Okada, Alberto Rodriguez, Joseph M. Romano, and Peter R. Wurman.
Analysis and observations from the first Amazon Picking Challenge. IEEE Transac-
tions on Automation Science and Engineering, 15(1):172–188, 2016.

[31] C.F. Curtiss and Joseph O. Hirschfelder. Integration of stiff equations. Proceedings of
the National Academy of Sciences of the United States of America, 38(3):235, 1952.

[32] George Cybenko. Approximation by superpositions of a sigmoidal function. Mathe-
matics of Control, Signals and Systems, 2(4):303–314, 1989.



85

[33] Fred Delcomyn. Neural basis of rhythmic behavior in animals. Science, 210(4469):492–
498, 1980.

[34] Scott L. Delp, Frank C. Anderson, Allison S Arnold, Peter Loan, Ayman Habib,
Chand T. John, Eran Guendelman, and Darryl G. Thelen. OpenSim: open-source
software to create and analyze dynamic simulations of movement. IEEE Transactions
on Biomedical Engineering, 54(11):1940–1950, 2007.

[35] Michael H. Dickinson, Claire T. Farley, Robert J. Full, M.A.R. Koehl, Rodger Kram,
and Steven Lehman. How animals move: an integrative view. Science, 288(5463):100–
106, 2000.

[36] Ye Ding, Myunghee Kim, Scott Kuindersma, and Conor J. Walsh. Human-in-the-loop
optimization of hip assistance with a soft exosuit during walking. Science Robotics,
3(15), 2018.

[37] Aaron M. Dollar and Hugh Herr. Lower extremity exoskeletons and active orthoses:
challenges and state-of-the-art. IEEE Transactions on Robotics, 24(1):144–158, 2008.

[38] J. Maxwell Donelan, Rodger Kram, and Arthur D. Kuo. Mechanical work for step-
to-step transitions is a major determinant of the metabolic cost of human walking.
Journal of Experimental Biology, 205(23):3717–3727, 2002.

[39] Kenji Doya. Reinforcement learning in continuous time and space. Neural Computa-
tion, 12(1):219–245, January 2000.

[40] Michael F. Eilenberg, Hartmut Geyer, and Hugh Herr. Control of a powered ankle–foot
prosthesis based on a neuromuscular model. IEEE transactions on Neural Systems and
Rehabilitation Engineering, 18(2):164–173, 2010.

[41] Tom Erez and Emo Todorov. Trajectory optimization for domains with contacts using
inverse dynamics. In Intelligent Robots and Systems. IEEE, 2012.

[42] Nima Fazeli, Samuel Zapolsky, Evan Drumwright, and Alberto Rodriguez. Learning
data-efficient rigid-body contact models: Case study of planar impact. arXiv preprint
arXiv:1710.05947, 2017.

[43] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast
adaptation of deep networks. arXiv preprint arXiv:1703.03400, 2017.

[44] Ulla-Britt Flansbjer, Anna Maria Holmbäck, David Downham, Carolynn Patten, and
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