Global Analysis w/ Invariant Mänifold Tube Transport

Organization of Talk

\square Theory of Invariant Manifold Tubes

- Restricted Three Body Problem (R3BP)
\square Computational Methods
- High order normal form expansions
- Monte Carlo sampling of energy surface
\square Chemical Reaction Dynamics
- Electron scattering in the Rydberg atom
- Planar scattering of $\mathrm{H}_{2} \mathrm{O}$ with H_{2}

A Historical Perspective

- Appleyard [1970]: Invariant sets near unstable Lagrange points of R3BP.
- First picture of transport tube.

Invariant Manifold Tubes

\square What are tubes and where do they live?

- Geometry
\square What do tubes do (prediction/control)?
- Dynamics

Figure from Gomez, Koon, Lo, Marsden, Masdemont, \& Ross 2001

Restricted Three Body Problem

Figures from Marsden and Ross 2006
\square Left: Fixed points viewed in rotating frame \square Right: Hill's Region (potential energy surface)

Low Energy Saddle Points

Effective Potential

Level set shows the Hill's region Figure from Koon, Lo, Marsden, \& Ross 2000
\square Reduce out rotations and work at fixed ang. mom.
$\square \mathrm{L}_{1} \& \mathrm{~L}_{2}$ are low energy saddle points

- mediate transport from inner and outer realms

$L_{1.2 .3}$ are Rank-1 Saddles

x (nondimensional units, rotating frame)

Figure from Koon, Lo, Marsden \& Ross 1999a

$$
H_{2}=\lambda q_{1} p_{1}+\frac{1}{2} \omega_{1}\left(q_{2}^{2}+p_{2}^{2}\right)+\frac{1}{2} \omega_{2}\left(q_{3}^{2}+p_{3}^{2}\right)
$$

planar oscillations projection

vertical oscillations projection

Figure from Gomez, Koon, Lo, Marsden, Masdemont, \& Ross 2001

Rank-1 Saddle Geometry

planar oscillations projection

vertical oscillations projection
saddle projection
Figure from Gomez, Koon, Lo, Marsden, Masdemont, \& Ross 2001
\square Energy is shared between saddle and two centers $S^{3} \cong\left\{\frac{\omega_{1}}{2}\left(q_{2}^{2}+p_{2}^{2}\right)+\frac{\omega_{2}}{2}\left(q_{3}^{2}+p_{3}^{2}\right)=H-\lambda q_{1} p_{2}\right\}$
 $+$

Orbit Structures

Figure from Koon, Lo, Marsden, \& Ross 1999b
\square Conley [1968]: Low energy transit orbits
\square McGehee [1969]: Homoclinic orbits

Symbolic Dynamics

Figure from Koon, Lo, Marsden, \& Ross 1999b
\square Symbolic/horseshoe dynamics
Thm. [Koon, Lo, Marsden, Ross, Chaos 2000]:

- There is an orbit with any admissible itinerary
- Example: (...,X,J,S,S,J,X,...)

Manifold Tube Intersections

Figure from Gomez, Koon, Lo, Marsden, Masdemont, \& Ross 2001

Patched Three Body Problem

Figure from Gomez, Koon, Lo, Marsden, Masdemont, \& Ross 2001
\square Jupiter Icy Moons Orbiter (JIMO)
\square Arbitrarily many flyby's of each moon

Normal Forms

\square Integrable approximation to chaotic dynamics
\square Linearize Vector Field at fixed pt.

- $\dot{z}=D \mathbb{J} \nabla H(z)=A z ; \quad z=(q, p)$
- Matrix A has eigenvalues $\pm \lambda, \pm i \omega_{1}, \pm i \omega_{2}, \ldots, \pm i \omega_{n}$
- $\pm i \omega_{k}$ corresponds to elliptic motion (center)
$\circ \pm \lambda$ corresponds to hyperbolic motion (saddle)
- Transport is governed by $\pm \lambda$ direction
\square NF decouples saddle \& center modes to high order

Center Projections

Saddle Proiection
Figure from Gomez, Koon, Lo, Marsden, Masdemont, \& Ross 2001

Normal Form at Rank-1 Saddle

\square Quadratic Normal Form:

$$
H_{2}=\lambda q_{1} p_{1}+i \frac{\omega_{1}}{2}\left(q_{2}^{2}+p_{2}^{2}\right)+i \frac{\omega_{2}}{2}\left(q_{3}^{2}+p_{3}^{2}\right)
$$

\square Successive transformations eliminate $n^{\text {th }}$ order terms

- Computations use Lie Transform method:

$$
\hat{H}=H+\{H, G\}+\frac{1}{2!}\{\{H, G\}, G\}+\frac{1}{3!}\{\{\{H, G\}, G\}, G\}+
$$

- Each change depends only on A
- Kill all terms $q_{1}^{i} p_{1}^{j}$ for $i \neq j$
\square Action-angle variables $\left(I=q_{1} p_{1}, \theta_{k}\right)$
- $I=0$ is reduction to center manifold
- $I=\epsilon$ nudges orbits in saddle direction
\square Implemented for 3DOF systems by A. Jorba (1999)

Other Methods

\square Global Analysis of Invariant Objects (GAIO)

- Transfer operators on box subdivisions
- Tree structured box elimination
\square Statistical Sampling of Trajectories
- Monte Carlo sample initial conditions from phase space box surrounding tubes
- Integrate forwards and backwards to determine which tubes the i.c. are in
- After a relatively small number of samples one obtains a good estimate of volume ratios
- Applies well to higher dimensional systems (~5 or ~10 DOF)

Overview of Method

\square Identify Saddle/TS \& Hill Region
\square Find Box Bounding Reactive Trajectories (outcut)

- in \& out cuts make "airlock"
- Monte Carlo sample energy surface in box
\square Integrate traj's into bound state until escape

Bounding Box Method

Integrate Trajectories Backwards Until Out Cut

Refine Bounding Box
Until It Contains All
Reactive Trajectories

Sampling the Energy Surface

- Randomly select points in bounding box
- Project (using momentum variables) until intersects energy surface

Bounding Box

Transition State Theory

Reaction Coordinate

saddle projection

planar oscillations projection

vertical oscillations projection
\square Transition State: Joins Reactants \& Products

- Bottleneck near rank-1 saddle
- Opens for energies larger than saddle
\square TST Assumes Unstructured Phase Space - Even Chaotic Phase Space is Structured

What is a Scattering Reaction?

Bound State

Unbound State

\square Bound vs. Unbound States (Hill Region)
\square Zero Angular Momentum not always valid

Example - Rydberg Atom

$$
\begin{gathered}
H=\frac{1}{2}\left(p_{x}^{2}+p_{y}^{2}+p_{z}^{2}\right)+\frac{1}{2}\left(x p_{y}-y p_{x}\right)+\frac{1}{8}\left(x^{2}+y^{2}\right) \\
-\epsilon x-\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}}
\end{gathered}
$$

- ~ 3 minutes :: $4,000 \mathrm{pts}::<.5 \%$ error
- ~ 1 hour :: 140,000 pts :: < . 1% error
- ~ 2 days :: 1,000,000 pts ::

Planar Scattering of $\mathrm{H}_{2} \mathrm{O}-\mathrm{H}_{2}$

$$
H=\frac{p_{R}^{2}}{2 m}+\frac{\left(p_{\theta}-p_{\alpha}\right)^{2}}{2 m R^{2}}+\frac{\left(p_{\alpha}-p_{\beta}\right)^{2}}{2 I_{a}}+\frac{p_{\beta}^{2}}{2 I_{b}}+V
$$

- $V=$ dipole/quadrupole + dispersion + induction + Leonard-Jones. (Wiesenfeld, 2003)
- Reduce out θ and work on $p_{\theta} \equiv J>0$ level set.

Body Frame
Lab Frame

Fixed Axis Frame

$\mathrm{H}_{2} \mathrm{O}-\mathrm{H}_{2}$ Saddles

planar oscillations projection

vertical oscillations projection
saddle projection
Linearization near rank-1 saddle

$\mathrm{H}_{2} \mathrm{O}-\mathrm{H}_{2}$ Hill Region

$\mathrm{H}_{2} \mathrm{O}-\mathrm{H}_{2}$ Collision Dynamics

\squareUnrealistic Potential?
\square Numerically Volatile Collisions
\square Is Non-Scattering Reaction Occurring?
\square More Realistic Potential Surface (Wiesenfeld)

$\mathrm{H}_{2} \mathrm{O}-\mathrm{H}_{2}$ Lifetime Distribution

CollisionDistributionfor $\mathrm{H} 2 \mathrm{O}-\mathrm{H} 2(<1000)$

- Locally structured (fine scale)
- Globally RRKM (coarse scale)
- Does structure persist w/ error in energy samples?

Gaussian Energy Sampling

\square Experimental verification of lifetime distribution

- Fixed energy slice is not realistic
- Gaussian around target energy is more physical
- Do nonRRKM features persist?

LifetimeDistribution $\epsilon=.58$

Energy Distributionof SamplePoints

$$
\begin{aligned}
& \geq 3 \text { DOF Rydberg Analog } \\
& H=\frac{1}{2}\left(p_{x}^{2}+p_{y}^{2}+p_{z}^{2}+p_{w}^{2}\right)+\frac{1}{2}\left(x p_{y}-y p_{x}\right)+\frac{1}{8}\left(x^{2}+y^{2}\right) \\
& -\epsilon x-\frac{}{\sqrt{x^{2}+y^{2}+z^{2}+w^{2}}}
\end{aligned}
$$

Comparison of Methods

\square High Order Normal Form Expansion

- Compute Transit Tubes directly
- NF expansion becomes involved for > 3 DOF
\square Almost Invariant Set Methods (GAIO)
- Transfer operators on box subdivisions
- Increasing memory demands w/ higher DOF
\square Bounding Box Method
- Lifetime Distribution essentially 1D problem
- Scales well to higher DOF systems
- Integration \& sampling become bottleneck

Future Work

\square Tighter Bounding Box

\square Variational Integrator

- Larger time steps, faster runtime
- Computes collisions more accurately
- Bulk of computation is integration
\square Asteroid Capture Rates

Conclusions \& Open Questions

\square Conclusions

- Bounding Box Method is very efficient
- Requires minor modification for new systems
- Remains fast for high DOF systems
\square Next Steps
- Apply method to higher DOF chemical system
- Obtain experimental verification of method
\square Open Problems
- Is there an estimate for how small energy must be for linear dynamics to persist?
- Perron-Frobenius operator (coarse grained reaction coordinate)
- Apply tube dynamics to stochastic models
- Solve Rank-2 sampling problem (non-compact)

Acknowledgements

\square Jerry Marsden (Caltech)
\square Wang Sang Koon (Caltech)
\square Shane Ross (Virginia Tech)
\square Frederic Gabern (University of Barcenlona)
\square Katalin Grubits (Caltech)
\square Laurent Wiesenfeld (Grenoble University, France)
\square Bing Wen (Princeton)
\square Tomohiro Yanao (Nagoya University, Japan)

References

- Appleyard, D. F., Invariant sets near the collinear Lagrangian points of the nonplanar restricted three-body problem, Ph.D. thesis, University of Wisconsin, (1970).
- Conley, C., Low energy transit orbits in the restricted three-body problem. SIAM J. Appl. Math. 16, (1968), 732-746.
- Dellnitz, M., K. Grubits, J. E. Marsden, K. Padberg, and B. Thiere, Set-oriented computation of transport rates in 3-degree of freedom systems: the Rydberg atom in crossed fields, Regular and Chaotic Dynamics, 10, (2005), 173-192.
- Dellnitz, M., O. Junge, W. S. Koon, F. Lekien, M. W. Lo, J. E. Marsden, K. Padberg, R. Preis, S. D. Ross, and B. Thiere, Transport in dynamical astronomy and multibody problems, International Journal of Bifurcation and Chaos, 15, (2005), 699-727.
- Gabern, F., W. S. Koon, J. E. Marsden and S. D. Ross, Theory \& computation of non-RRKM lifetime distributions and rates of chemical systems with three and more degrees of freedom, preprint, (2005).
- Gomez, G., W. S. Koon, M. W. Lo, J. E. Marsden, J. Masdemont and S. D. Ross, Invariant manifolds, the spatial three-body problem and space mission design, AIAA/AAS Astrodynamics Specialist Meeting, Quebec City, Quebec, Canada, (2001).

References

- Jorba, A., A methodology for the numerical computation of normal forms, centre manifolds, and first integrals of Hamiltonian systems, Experimental Mathematics, 8, (1999), 155-195.
- Koon, W. S., M. W. Lo, J. E. Marsden and S. D. Ross, Dynamical systems, the Three-body problem and space mission design, Proc. Equadiff99, Berlin, Germany, (1999a).
- Koon, W. S., M. W. Lo, J. E. Marsden and S. D. Ross, The Genesis trajectory and heteroclinic connections, AAS/AIAA Astrodynamics Specialist Conference, Girwood, Alaska, (1999b).
- Koon, W. S., M. W. Lo, J. E. Marsden and S. D. Ross, Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics, Chaos, 10, (2000), 427-469.
- McGehee, R. P., Some homoclinic orbits for the restricted three-body problem, Ph.D. thesis, University of Wisconsin, (1969).
- Wiesenfeld, L., A. Faure, and T. Johann, Rotational transition states: relative equilibrium points in inelastic molecular collisions, J. Phys. B: At. Mol. Opt. Phys., 36, (2003), 1319-1335.

The End

Questions...

Typesetting Software: TEX, Textures, LATEX, hyperref, texpower, Adobe Acrobat 4.05 Illustrations: Adobe Illustrator 8.1
LateX Slide Macro Packages: Wendy McKay, Ross Moore

