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Organization of Talk
� Theory of Invariant Manifold Tubes
•Restricted Three Body Problem (R3BP)

� Computational Methods
•High order normal form expansions

•Monte Carlo sampling of energy surface

� Chemical Reaction Dynamics
•Electron scattering in the Rydberg atom

•Planar scattering of H2O with H2
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A Historical Perspective
•Appleyard [1970]: Invariant sets near unstable
Lagrange points of R3BP.
◦ First picture of transport tube.
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Invariant Manifold Tubes
� What are tubes and where do they live?
•Geometry

� What do tubes do (prediction/control)?
•Dynamics

Figure from Gomez, Koon, Lo, Marsden, Masdemont, & Ross 2001
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Restricted Three Body Problem

Figures from Marsden and Ross 2006

� Left: Fixed points viewed in rotating frame

� Right: Hill’s Region (potential energy surface)
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Low Energy Saddle Points

Figure from Koon, Lo, Marsden, & Ross 2000

� Reduce out rotations and work at fixed ang. mom.

� L1 & L2 are low energy saddle points
•mediate transport from inner and outer realms
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L1,2,3 are Rank-1 Saddles

Figure from Koon, Lo, Marsden & Ross 1999a
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Figure from Gomez, Koon, Lo, Marsden, Masdemont, & Ross 2001
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Rank-1 Saddle Geometry

Figure from Gomez, Koon, Lo, Marsden, Masdemont, & Ross 2001

� Energy is shared between saddle and two centers
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Orbit Structures

Figure from Koon, Lo, Marsden, & Ross 1999b

� Conley [1968]: Low energy transit orbits

� McGehee [1969]: Homoclinic orbits
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Symbolic Dynamics

Figure from Koon, Lo, Marsden, & Ross 1999b

� Symbolic/horseshoe dynamics

� Thm. [Koon, Lo, Marsden, Ross, Chaos 2000]:
•There is an orbit with any admissible itinerary
•Example: (. . . ,X,J,S,J,X,. . . )
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Manifold Tube Intersections

Figure from Gomez, Koon, Lo, Marsden, Masdemont, & Ross 2001
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Patched Three Body Problem

Figure from Gomez, Koon, Lo, Marsden, Masdemont, & Ross 2001

� Jupiter Icy Moons Orbiter (JIMO)

� Arbitrarily many flyby’s of each moon
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Normal Forms
� Integrable approximation to chaotic dynamics

� Linearize Vector Field at fixed pt.
• ż = DJ∇H(z) = Az; z = (q, p)
•Matrix A has eigenvalues ±λ,±iω1,±iω2, . . . ,±iωn

◦ ±iωk corresponds to elliptic motion (center)

◦ ±λ corresponds to hyperbolic motion (saddle)

•Transport is governed by ±λ direction

� NF decouples saddle & center modes to high order

Figure from Gomez, Koon, Lo, Marsden, Masdemont, & Ross 2001
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Normal Form at Rank-1 Saddle
� Quadratic Normal Form:
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� Successive transformations eliminate nth order terms
•Computations use Lie Transform method:

Ĥ = H+{H, G}+ 1

2!
{{H, G}, G}+ 1

3!
{{{H, G}, G}, G}+

•Each change depends only on A

•Kill all terms qi
1p

j
1 for i 6= j

� Action-angle variables (I = q1p1, θk)
• I = 0 is reduction to center manifold

• I = ε nudges orbits in saddle direction

� Implemented for 3DOF systems by A. Jorba (1999)
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Other Methods
� Global Analysis of Invariant Objects (GAIO)
•Transfer operators on box subdivisions

•Tree structured box elimination

� Statistical Sampling of Trajectories
•Monte Carlo sample initial conditions from phase
space box surrounding tubes

• Integrate forwards and backwards to determine
which tubes the i.c. are in

•After a relatively small number of samples one
obtains a good estimate of volume ratios

•Applies well to higher dimensional systems (∼5
or ∼10 DOF)
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Overview of Method
� Identify Saddle/TS & Hill Region

� Find Box Bounding Reactive Trajectories (outcut)
• in & out cuts make “airlock”
•Monte Carlo sample energy surface in box

� Integrate traj’s into bound state until escape
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Bounding Box Method
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Sampling the Energy Surface
•Randomly select points in bounding box

•Project (using momentum variables) until in-
tersects energy surface
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Transition State Theory

� Transition State: Joins Reactants & Products
•Bottleneck near rank-1 saddle

•Opens for energies larger than saddle

� TST Assumes Unstructured Phase Space
•Even Chaotic Phase Space is Structured
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What is a Scattering Reaction?

� Bound vs. Unbound States (Hill Region)

� Zero Angular Momentum not always valid
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Example - Rydberg Atom
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Rydberg Atom Cont’d

• ∼3 minutes :: 4,000 pts :: < .5% error
• ∼1 hour :: 140,000 pts :: < .1% error
• ∼2 days :: 1,000,000 pts ::
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Planar Scattering of H2O-H2
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• V = dipole/quadrupole + dispersion + induc-
tion + Leonard-Jones. (Wiesenfeld, 2003)

•Reduce out θ and work on pθ ≡ J > 0 level set.
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H2O-H2 Saddles

Linearization near rank-1 saddle
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H2O-H2 Hill Region
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H2O-H2 Collision Dynamics

� Unrealistic Potential?

� Numerically Volatile Collisions

� Is Non-Scattering Reaction Occurring?

� More Realistic Potential Surface (Wiesenfeld)
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H2O-H2 Lifetime Distribution

• Locally structured (fine scale)
•Globally RRKM (coarse scale)
◦ Does structure persist w/ error in energy samples?
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Gaussian Energy Sampling
� Experimental verification of lifetime distribution
•Fixed energy slice is not realistic

•Gaussian around target energy is more physical

•Do nonRRKM features persist?
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≥ 3 DOF Rydberg Analog
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Comparison of Methods
� High Order Normal Form Expansion
•Compute Transit Tubes directly

•NF expansion becomes involved for > 3 DOF

� Almost Invariant Set Methods (GAIO)
•Transfer operators on box subdivisions

• Increasing memory demands w/ higher DOF

� Bounding Box Method
• Lifetime Distribution essentially 1D problem

• Scales well to higher DOF systems

• Integration & sampling become bottleneck
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Future Work
� Tighter Bounding Box

� Variational Integrator
• Larger time steps, faster runtime

•Computes collisions more accurately

•Bulk of computation is integration

� Asteroid Capture Rates
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Conclusions & Open Questions
� Conclusions
•Bounding Box Method is very efficient

•Requires minor modification for new systems

•Remains fast for high DOF systems

� Next Steps
•Apply method to higher DOF chemical system

•Obtain experimental verification of method

� Open Problems
• Is there an estimate for how small energy must
be for linear dynamics to persist?

•Perron-Frobenius operator (coarse grained reac-
tion coordinate)

•Apply tube dynamics to stochastic models

• Solve Rank-2 sampling problem (non-compact)
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The End
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