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FLYIT Simulators, Inc.

Motivation

Predator (General Atomics)

Applications of Unsteady Models

Conventional UAVs (performance/robustness)

Flow control, flight dynamic control

Autopilots / Flight simulators

Gust disturbance mitigation

Need for State-Space Models

Need models suitable for control

Combining with flight models

Wake Vortex Shadow  (Aerocam)
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2.7.2.2 Unmanned Aircraft Systems
UAS operations are some of the most demanding operations in NextGen. UAS operations 
include scheduled and on-demand flights for a variety of civil, military, and state missions.

Because of the range of operational uses, UAS operators may require access to all NextGen 
airspace. ...

5.3.3 Weather Information Enterprise Services
•! Enterprise Service 3: UASs Are Used for Weather Reconnaissance. [R-169]
En route weather reconnaissance UASs are equipped to collect and report in-flight weather data. 
Specialized weather reconnaissance UASs are used to scout potential flight routes and 
trajectories to identify available “weather-favorable” airspace...

2.7.2.3 Vertical Flight
... Rotorcraft are also used for UAS applications for commercial, police, and security 
operations. These operations add to the density and complexity of operations, particularly in 
and around urban areas.

3.3.1.2.3 Integrated Environmental Operations
UAS performing security functions and the airport perimeter security intrusion detection 
system may have the capability to assist with wildlife management programs.

NextGen ConOps V2.0:  UAVs
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U/25/88 

2.3.3 ENCOUNTER ON APPROACH 

Analysis of a typical windshear en- 
counter on approach provided evidence 
of an increasing downdraft and tailwind 

along the approach flight path (Figure 
20). The airplane lost airspeed, 
dropped below the target glidepath, 
and contacted the ground short of the 
runway threshold. 

Figure 20. Windshear encounter during approach. (1) Approach initially appeared normal. 
(2) Increasing downdraft and tailwind encountered at transition. (3) Airspeed 
decrease combified with reduced visual cues resulted in pitch attitude 
reduction. (4) Airplane crashed short of approach end of runway. 
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2.3.1 ENCOUNTER DURING TAKEOFF - AFTER off the runway (Figure 13). For the 
LIFTOFF first 5 seconds after liftoff the 

takeoff appeared normal, but the air- 
In a typical accident studied, the plane crashed off the end of the run- 
airplane encountered an increasing way about 20 seconds after liftoff. 
tailwind shear shortly after lifting 

3 

~ 
2 

1 4 

Runway 

Figure 13. Windshear encounter during takeoff after liftoff. (1) Takeoff initially appeared 
normal. (2) Windshear encountered just after liftoff. (3) Airspeed decrease resulted 
in pitch attitude reduction. (4) Aircraft crashed off departure end of runway 
20 set after liftoff. 
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o The Microburst as a Windshear Threat 

Identification of concentrated, more 
powerful downdrafts--known as micro- 
bursts--has resulted from the inves- 
tigation of windshear accidents and 
from meteorological research. Micro- 
bursts can occur anywhere convective 
weather conditions (thunderstorms, 
rain showers, virga) occur. Observa- 
tions suggest that approximately five 
percent of all thunderstorms produce a 
microburst. 

Downdrafts associated with microbursts 
are typically only a few hundred to 
3,000 feet across. When the downdraft 
reaches the ground, it spreads out 
horizontally and may form one or more 
horizontal vortex rings around the 
downdraft (Figure 7). The outflow 
region is typically 6,000 to 12,000 
feet across. The horizontal vortices 
may extend to over 2,000 feet AGL. 

Cloud Base 

0 

Downdraft 

1 Scale 
1OOOft 

I Xl\\ I 
I 

Figure 7. Symmetric microburst An airplane transiting the microburst would 
experience equal headwinds and tailwinds. 
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Microburst outflows are not always 
symmetric (Figure 8). Therefore, a 
significant airspeed increase may not 
occur upon entering the outflow, or 

may be much less than the subsequent 
airspeed loss experienced when exiting 
the microburst. 

Cloud Base \ 
toooft 

Approx 

L- 
Scale 

0 lOOOft 

Wind 

-Downdraft 

Horizontal 
Vortex- 

Outflow Front1 -outflow- 
Figure 8. Asymmetric microburst. An airplane transiting the microburst from left to 

right would experience a small headwind followed by a large failwiqd. 
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Microburst Windshear

Navigating a microburst requires 
counterintuitive piloting

M.L. Psiaki and R.F. Stengel, J. Aircraft: vol. 23, no. 8, 1986.

S.S. Mulgund and R.F. Stengel, J. Guidance: vol. 16, no. 6, 1993.

D.A. Stratton and R.F. Stengel, J. Guidance: vol. 15, no. 5, 1992.
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Stall velocity and size

RQ-1 Predator 
(27 m/s stall)

Daedalus Dakota 
(18m/s stall)

Puma AE
(10 m/s stall)

Smaller, lower stall velocity

Vstall =
�

2
ρ

(CLmaxS)−1 W

S

W

L

CL

V

Wing surface area

Aircraft weight

Lift force

Lift coefficient

Velocity of aircraft
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UAV Flight Envelope

1.  Landing approach speed is 30% higher than stall speed

Vstall =
�

2
ρ

(CLmaxS)−1 W

2.              occurs at the stall speed CLmax Vstall

CLmax ∈ [1, 1.5]

for reasonable aspect ratio

W = Lmax = CLmax q̄S

= CLmax ·
�

1
2
ρV 2

stall

�
· S

i.e.

S

W

L

CL

V

Wing surface area

Aircraft weight

Lift force

Lift coefficient

Velocity of aircraft
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3 Types of Unsteadiness

1. High angle-of-attack

α > αstall

Large amplitude, slow Moderate amplitude, fast

2. Strouhal number

St =
Af

U∞

3.  Reduced frequency

k =
πfc

U∞

Small amplitude, very fast

� �� �
Closely related

αeff = tan−1 (πSt)

Brunton and Rowley, AIAA ASM 2009
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3 Types of Unsteadiness

3.  Reduced frequency

k =
πfc

U∞

Small amplitude, very fast

1. High angle-of-attack

α > αstall

Large amplitude, slow Moderate amplitude, fast

2. Strouhal number

St =
Af

U∞

� �� �
Closely related

αeff = tan−1 (πSt)

Brunton and Rowley, AIAA ASM 2009

(flutter instability,
    fast gust disturbance,
    rapid maneuver)
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D V

γ

α

Iyy q̇ = M

mV γ̇ = L + T sin(α) − mg sin(γ)
mV̇ = T cos(α) − D − mg sin(γ)

α̇ = q − (L + T sin(α) − mg cos(γ)) /mV

ẋ = Ax + Bu

y = Cx + Du

!"#$%&'()*+,#-.

/0123)*+,#-.

T
L

M

q

coupled model

Coupled Flight Dynamic Model

Interesting control scenario when time-scales of flight 
dynamics are close to time-scales of aerodynamics
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Candidate Lift Models

CL = CL(α)

CL = CLαα

CL = 2πα

Motivation for State-Space Models

Computationally tractable

fits into control framework

Captures input output dynamics accurately

CL(t) = Cδ
L(t)α(0) +

� t

0
Cδ

L(t− τ)α̇(τ)dτ Wagner’s Indicial Response

Theodorsen’s Model

CL =
π

2

�
ḧ+ α̇− a

2
α̈
�

� �� �
Added-Mass

+2π

�
α+ ḣ+

1

2
α̇

�
1

2
− a

��

� �� �
Circulatory

C(k)

Leishman, 2006.

Theodorsen, 1935.

Wagner, 1925.
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Lift vs.  Angle of Attack

0 10 20 30 40 50 60 70 80 90
0.4

0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Angle of Attack,  (deg)

Li
ft 

C
oe

ffi
ci

en
t, 

C L

 

 
Average Lift pre Shedding
Average Lift post Shedding
Min/Max of Limit Cycle

Low Reynolds number, (Re=100)

Hopf bifurcation at αcrit ≈ 28◦ (pair of imaginary eigenvalues pass into right half plane)
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Lift vs.  Angle of Attack
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Need model that captures lift due to moving airfoil!

Monday, March 21, 2011



Lift vs.  Angle of Attack
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Need model that captures lift due to moving airfoil!
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Lift vs.  Angle of Attack
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Need model that captures lift due to moving airfoil!
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Need model that captures lift due to moving airfoil!
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Lift vs.  Angle of Attack
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Wagner and Theodorsen models linearized at α = 0◦
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Theodorsen’s Model

Apparent Mass

Not trivial to compute, but essentially solved

force needed to move air as plate accelerates

Increasingly important for lighter aircraft

Circulatory Lift

Need improved models here

source of all lift in steady flight

Captures separation effects

k =
πfc

U∞

2D Incompressible, inviscid model

Unsteady potential flow (w/ Kutta condition)

Linearized about zero angle of attack

Leishman, 2006.

Theodorsen, 1935.

CL =
π

2

�
ḧ+ α̇− a

2
α̈
�

� �� �
Added-Mass

+2π

�
α+ ḣ+

1

2
α̇

�
1

2
− a

��

� �� �
Circulatory

C(k)

C(k) =
H

(2)
1 (k)

H
(2)
1 (k) + iH

(2)
0 (k)
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Empirical Theodorsen

CL =
π

2

�
ḧ + α̇− a

2
α̈
�

� �� �
Added-Mass

+ 2π

�
α + ḣ +

1
2
α̇

�
1
2
− a

��

� �� �
Circulatory

C(k)

CL = C1

�
α̇− a

2
α̈
�

+ C2

�
α +

1
2
α̇

�
1
2
− a

��
C(k)

L [CL]
L [α̈]

= C1

�
1
s −

a
2

�
+ C2

�
1
s2 + 1

2s

�
1
2 − a

��
C(s)

Generalized Coefficients

Transfer Function

Added Mass
CL+

Quasi-Steady
C̄L(αeff)

C(s)
α̈

C2

[
1
s2

+
1
2s

(
1
2
− a

)]

C1

(
1
s
− a

2

)
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Wagner’s Indicial Response

Model Summary

convolution integral inconvenient for 
    feedback control design

Reconstructs Lift for arbitrary input

Linearized about 

Based on experiment, simulation or theory

α = 0

Leishman, 2006.

Wagner, 1925.

u(t)

τ1 τ2 τ3 t

!"#$%

&$%#$%

τ1

τ2

τ3

!'#$()*+,*)#&")*

t0

yδ(t − τ1)

yδ(t − τ2)

yδ(t − τ3)

y(t) = yδ ∗ u

yδ(t − t0)

CL(t) = CS
L(t)α(0) +

� t

0
CS

L(t− τ)α̇(τ)dτ

CL(t) =

� t

0
Cδ

L(t− τ)α(τ)dτ =
�
Cδ

L ∗ α
�
(t)

Given an impulse in angle of attack,               , the time history of Lift is

   The response to an arbitrary input         is given by linear superposition:α(t)

Cδ
L(t)α = δ(t)

Given a step in angle of attack,               , the time history of Lift is

   The response to an arbitrary input         is given by:

CS
L(t)α̇ = δ(t)

α(t)
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Reduced Order Wagner

CL(α, α̇, α̈,x) = CLαα+ CLα̇ α̇+ CLα̈ α̈+ Cx

Y (s) =

�
CLα

s2
+

CLα̇

s
+ CLα̈ +G(s)

�
s2U(s)

d

dt




x
α
α̇



 =




Ar 0 0
0 0 1
0 0 0








x
α
α̇



+




Br

0
1



 α̈

CL =
�
Cr CLα CLα̇

�



x
α
α̇



+ CLα̈ α̈

Stability derivatives 
    plus fast dynamics

Transfer Function

State-Space Form

Quasi-steady and added-mass Fast
dynamics
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Reduced Order Wagner

+ CL

G(s)

!"#$%&$'(#)*+,+#))()+-#$$

.#$'+)*/#-%0$

CLα̈

CLα̇

s

CLα

s2

α̈

Brunton and Rowley, in preparation.

Model Summary

ODE model ideal for control design 

Based on experiment, simulation or theory

Linearized about α = 0

Recovers stability derivatives 
   associated with quasi-steady and added-mass

CLα , CLα̇ , CLα̈

quasi-steady and added-mass

ERA Model

input

fast dynamics

d

dt




x
α
α̇



 =




Ar 0 0
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0 0 0
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
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
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
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

 α̈

CL =
�
Cr CLα CLα̇

�



x
α
α̇



+ CLα̈ α̈

CL(t) = CS
L(t)α(0) +

� t

0
CS

L(t− τ)α̇(τ)dτ
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Bode Plot - Pitch (LE)

Frequency response

Model without additional fast 
dynamics [QS+AM (r=0)] is 
inaccurate in crossover region

Models with fast dynamics of ERA 
model order >3 are converged

output is lift coefficient CL

Punchline: additional fast dynamics 
(ERA model) are essential

input is       (       is angle of attack)α̈ α

Brunton and Rowley, in preparation.
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Bode Plot - Pitch (QC)

Frequency response

Reduced order model with ERA r=3
    accurately reproduces Wagner

Wagner and ROM agree better with   
    DNS than Theodorsen’s model.

output is lift coefficient CL

input is       (       is angle of attack)α̈ α

Brunton and Rowley, in preparation.

Pitching at quarter chord

Asymptotes are correct for Wagner 
    because it is based on experiment

Model for pitch/plunge dynamics 
    [ERA, r=3 (MIMO)] works as well, 
    for the same order model
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Brunton and Rowley, in preparation.

Canonical pitch-up, hold, pitch-down maneuver, followed by step-up in vertical position

Reduced order model for Wagner’s indicial response
accurately captures lift coefficient history from DNS

OL, Altman, Eldredge, Garmann, and Lian, 2010
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Lift vs.  Angle of Attack
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Wagner and Theodorsen models linearized at α = 0◦
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Lift vs.  Angle of Attack
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Bode Plot of ERA Models
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Results

At larger angle of attack, phase converges 
to -180 at much lower frequencies.  I.e., 
solutions take longer to reach equilibrium 
in time domain.

Lift slope decreases for increasing angle of 
attack, so magnitude of low frequency 
motions decreases for increasing angle of 
attack.

Consistent with fact that for large angle of 
attack, system is closer to Hopf instability, 
and a pair of eigenvalues are moving closer 
to imaginary axis.  
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Poles and Zeros of ERA Models
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As angle of attack increases, pair of poles (and pair of zeros) march towards imaginary axis.  

This is a good thing, because a Hopf bifurcation occurs at αcrit ≈ 28◦
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Poles and Zeros of ERA Models
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Direct numerical simulation confirms that local linearized models 
are accurate for small amplitude sinusoidal maneuvers
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Large Amplitude Maneuver

G(t) = log
�
cosh(a(t− t1)) cosh(a(t− t4))
cosh(a(t− t2)) cosh(a(t− t3))

�
α(t) = α0 + αmax

G(t)
max(G(t))

Compare models linearized at 

andα = 0◦ α = 15◦

For pitching maneuver with 

α ∈ [15◦,25◦]

Model linearized at 

    captures lift response more accurately

α = 15◦

OL, Altman, Eldredge, Garmann, and Lian, 2010
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Conclusions

Reduced order model based on indicial response at non-zero angle of attack

-  Based on eigensystem realization algorithm (ERA)
-  Models appear to capture dynamics near stall
-  Locally linearized models outperform models linearized at α = 0◦

Empirically determined Theodorsen model

-  Theodorsen’s C(k) may be approximated, or determined via experiments
-  Models are cast into state-space representation
-  Pitching about various points along chord is analyzed

Brunton and Rowley, AIAA ASM 2009-2011

OL, Altman, Eldredge, Garmann, and Lian, 2010

Leishman, 2006.

Wagner, 1925.

Theodorsen, 1935.

Breuker, Abdalla, Milanese, and Marzocca, AIAA 2008.

Future Work:

-  Combine models linearized at different angles of attack 
-  Add large amplitude effects such as gust disturbance or wake vortex
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Daedalus Dakota (18m/s stall)

Questions?

Steve Brunton  & Clancy Rowley
Princeton University

FAA/JUP January 20, 2011
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