State-Space Representation of Unsteady Aerodynamic Models

Steve Brunton & Clancy Rowley Princeton University 63rd APS DFD November 21, 2010

Motivation

Applications of Unsteady Models

Conventional UAVs (performance/robustness)

Micro air vehicles (MAVs)

Flow control, flight dynamic control

Autopilots

FLYIT Simulators, Inc.

Flight simulators

Safety Concerns

severe weather wake vorticity gust disturbances

Predator (General Atomics)

Flexible Wing (University of Florida)

3 Types of Unsteadiness

3 Types of Unsteadiness

Brunton and Rowley, AIAA ASM 2009

3 Types of Unsteadiness

Brunton and Rowley, AIAA ASM 2009

Candidate Lift Models

New models!

Model Criteria

Captures input output dynamics accurately

Computationally tractable

fits into control framework

Theodorsen's Model

2D Incompressible, inviscid model Unsteady potential flow (w/ Kutta condition) Linearized about zero angle of attack

Apparent Mass

Circulatory Lift

Increasingly important for lighter aircraft

Not trivial to compute, but essentially solved

force needed to move air as plate accelerates

Theodorsen, 1935.

Leishman, 2006.

Captures separation effects

Need improved models here

source of all lift in steady flight

Bode Plot of Theodorsen

Given an impulse in angle of attack, $lpha=\delta(t)$, the time history of Lift is $\ C_L^\delta(t)$

The response to an arbitrary input $\alpha(t)$ is given by linear superposition:

$$C_L(t) = \int_0^t C_L^{\delta}(t-\tau)\alpha(\tau)d\tau = \left(C_L^{\delta} * \alpha\right)(t)$$

Given a step in angle of attack, $\dot{\alpha} = \delta(t)$, the time history of Lift is $C_L^S(t)$

and the response to an arbitrary input $\alpha(t)$ is given by:

$$C_L(t) = C_L^S(t)\alpha(0) + \int_0^t C_L^S(t-\tau)\dot{\alpha}(\tau)d\tau$$

Model Summary

Reconstructs Lift for arbitrary input

Linearized about $\ \alpha=0$

Based on experiment, simulation or theory

convolution integral inconvenient for feedback control design

Wagner, 1925.

Leishman, 2006.

Reduced Order Wagner

Brunton and Rowley, in preparation.

ODE model ideal for control design

Bode Plot - Pitch (LE)

Frequency response

input is $\ddot{\alpha}$ (α is angle of attack)

output is lift coefficient C_{L}

Pitching at leading edge

Model without additional fast dynamics [QS+AM (r=0)] is inaccurate in crossover region

Models with fast dynamics of ERA model order >3 are converged

Punchline: additional fast dynamics (ERA model) are essential

Brunton and Rowley, in preparation.

Frequency response

input is \ddot{lpha} (lpha is angle of attack)

output is lift coefficient $\,C_L\,$

Pitching at quarter chord

Reduced order model with ERA r=3 accurately reproduces Wagner

Wagner and ROM agree better with DNS than Theodorsen's model.

Asymptotes are correct for Wagner because it is based on experiment

Model for pitch/plunge dynamics [ERA, r=3 (MIMO)] works as well, for the same order model

Brunton and Rowley, in preparation.

Canonical pitch-up, hold, pitch-down maneuver, followed by step-up in vertical position

OL, Altman, Eldredge, Garmann, and Lian, 2010 Brunton and Rowley, *in preparation*.

Reduced order model for Wagner's indicial response accurately captures lift coefficient history from DNS

Reduced order model for Wagner's indicial response

- Based on eigensystem realization algorithm (ERA)
- Systematic reduced order models based on step-response
- Linear input-output system ideal for flight dynamic framework

Future Directions

Combine ERA models with nonlinear heuristic and POD models

- Capture unsteady forces due to vortex shedding and stall

Generalize theory to large angle of attack

Develop H2 optimal controller to minimize gust disturbance

References:	Wagner, 1925.
Haller, 2002	Theodorsen, 1935.
Shadden et al., 2005 Leishman, 2006.	Brunton and Rowley, AIAA ASM 2009
	Brunton and Rowley, in preparation.
Brunton and Rowley, 2010	OL, Altman, Eldredge, Garmann, and Lian, 2010