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Motivation

flight 
dynamics

aerodynamics

coupled model

estimatorcontroller

trajectory error

measurementscontrol surfaces

Need for State-Space Models

Need models suitable for control

Compatible with flight models

Bio Propulsion

High propulsive efficiency, maximum lift coefficient

Efficient utilization of gusts and wake vorticity

Flow control, flight dynamic control

Autopilots / Flight simulators

Gust disturbance mitigation

Unmanned Aerial Vehicles
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Lift

Drag

2D Model Problem

Re = 300
α = 32◦

Added-Mass

Periodic Vortex Shedding
Transient

Taira & Colonius, 2007.

Immersed boundary method
2D Incompressible Navier-Stokes
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Circulatory/Viscous

Need improved models here

source of all lift in steady flight... and more

Captures separation effects

Unsteady Aerodynamic Forces

ẋ = x

ẏ = −y + x2

Added Mass

Unsteady potential flow forces (F=ma)

force needed to move air as plate accelerates

Increasingly important for small/light aircraft
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Circulatory/Viscous

Need improved models here

source of all lift in steady flight... and more

Captures separation effects

ẋ = x

ẏ = −y + x2

The mass of the body and surrounding fluid are 
being accelerated, to different extents.

Kinetic energy     will be in some manner proportional 
to      (for potential and Stokes flows)

T
U
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I
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dVwhere

If body accelerates,     probably increases,
and energy must be supplied:
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Unsteady Aerodynamic Forces

ẋ = x

ẏ = −y + x2

Added Mass

Unsteady potential flow forces (F=ma)

force needed to move air as plate accelerates

Increasingly important for small/light aircraft
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Circulatory/Viscous

Need improved models here

source of all lift in steady flight... and more

Captures separation effects

ẋ = x

ẏ = −y + x2

The mass of the body and surrounding fluid are 
being accelerated, to different extents.

Kinetic energy     will be in some manner proportional 
to      (for potential and Stokes flows)

T
U

T = ρ
I

2
U2 I =

�

V

ui

U
· ui

U
dVwhere

If body accelerates,     probably increases,
and energy must be supplied:

T

dT

dt
= −FU =⇒ Fi = − ρIij����

AM
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Newman, 1977.

Milne-Thompson, 1962

Lamb,1945.

Unsteady Aerodynamic Forces

ẋ = x

ẏ = −y + x2

Added Mass

Unsteady potential flow forces (F=ma)

force needed to move air as plate accelerates

Increasingly important for small/light aircraft

Beer bubble acceleration
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Added Mass Circulatory/Viscous

Unsteady potential flow forces (F=ma)

force needed to move air as plate accelerates

Increasingly important for small/light aircraft

Need improved models here

source of all lift in steady flight... and more

Captures separation effects

Stengel, 2004.

Milne-Thompson, 1973.

Boundary layer

Laminar separation bubble

Leading edge vortex

Periodic Vortex Shedding

Unsteady Aerodynamic Forces

ẋ = x

ẏ = −y + x2
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Theodorsen’s Model - 1935

Added Mass Circulatory/Viscous

Unsteady potential flow forces (F=ma)

force needed to move air as plate accelerates

Increasingly important for small/light aircraft

Need improved models here

source of all lift in steady flight... and more

Captures separation effects

k =
πfc

U∞

2D Incompressible, inviscid model

Unsteady potential flow (w/ Kutta condition)

Linearized about zero angle of attack

Leishman, 2006.

Theodorsen, 1935.
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π
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Lift vs.  Angle of Attack
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Low Reynolds number, (Re=100)

Hopf bifurcation at αcrit ≈ 28◦ (pair of imaginary eigenvalues pass into right half plane)
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Lift vs.  Angle of Attack
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Lift vs.  Angle of Attack
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Lift vs.  Angle of Attack
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Lift vs.  Angle of Attack
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Nonlinear Unsteady Models
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For                      ,  equilibrium x=0 is stable, with linear dynamics given by:α0 < αcrit

d

dt




x
α
α̇



 =




A B1 B2

0 0 1
0 0 0








x
α
α̇



 +




B3

0
1



 α̈

CL =
�
C Cα Cα̇

�



x
α
α̇



 + Cα̈α̈

u - input

y - output

x - state vector

   - bifurcation parameter

ẋ = f(x,u;µ)
y = g(x,u;µ)

µ

linearization at x̄(α0)

ẋ � d

dt




x
α
α̇



 =




fNS(x, α, α̇, α̈)

α̇
α̈





y = glift(x, α, α̇, α̈)
= gν(x, α, α̇) + gφ(α̇, α̈)

nonlinear lift model
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Nonlinear Unsteady Models
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   - bifurcation parameter
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Nonlinear Unsteady Models

0 10 20 30 40 50 60 70 80 90
0.4

0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Angle of Attack,  (deg)

Li
ft 

C
oe

ffi
ci

en
t, 

C
L

 

 
Average Lift pre Shedding
Average Lift post Shedding
Min/Max of Limit Cycle

For                      ,  equilibrium x=0 is stable, with linear dynamics given by:α0 < αcrit

u - input

y - output

x - state vector

   - bifurcation parameter

ẋ = f(x,u;µ)
y = g(x,u;µ)

µ

linearization at x̄(α0)

d

dt
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 =
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⇐=

transient model of 
fluid dynamics

ẋ = Ax + Bα̈

C̃L = Cx
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Nonlinear Unsteady Models
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For                      ,  equilibrium x=0 is stable, with linear dynamics given by:α0 < αcrit

u - input

y - output

x - state vector

   - bifurcation parameter

ẋ = f(x,u;µ)
y = g(x,u;µ)

µ

transient model of 
fluid dynamics

ẋ = Ax + Bα̈

C̃L = Cx
A(α0) =





µ −ω
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ω µ

0 AS





Wednesday, March 28, 2012



Nonlinear Unsteady Models
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For                      ,  equilibrium x=0 is stable, with linear dynamics given by:α0 < αcrit
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Poles and Zeros of ERA Models

As angle of attack increases, pair of poles (and pair of zeros) march towards imaginary axis.  

This is a good thing, because a Hopf bifurcation occurs at αcrit ≈ 28◦

Brunton and Rowley, AIAA ASM 2011

α

C C
Poles Zeros
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Bode Plot of Model (-) vs Data (x)

Direct numerical simulation confirms that local linearized models 
are accurate for small amplitude sinusoidal maneuvers Brunton and Rowley, AIAA ASM 2011
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Results

At larger angle of attack, phase 
converges to -180 at much lower 
frequencies.  I.e., solutions take longer 
to reach equilibrium in time domain.

Lift slope decreases for increasing 
angle of attack, so magnitude of low 
frequency motions decreases for 
increasing angle of attack.

Consistent with fact that for large 
angle of attack, system is closer to 
Hopf instability, and a pair of 
eigenvalues are moving closer to 
imaginary axis.  

Frequency response for pitching about the leading edge
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Models at various angle of attack

Impulse response simulations after rapid step-up α ∈ [0◦, 27◦]

−101 −100.8 −100.6 −100.4 −100.2 −100 −99.8 −99.6 −99.4 −99.2 −99
−101

−100.8

−100.6

−100.4

−100.2

−100

−99.8

−99.6

−99.4

−99.2

−99

 

 

0 5 10 15 20 25 30 35 40 45 50
−2

−1

0

1

2

3

4

5

6

7

8
x 10−3

Convective time (s=tU/c)

Li
ft 

C
oe

ffi
ci

en
t

 

 

simulation
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α = 0◦

α = 27◦

Initial lift                   subtracted offCL(α0)

Model with order r=7 required to capture this flow feature,
    eventually develops into vortex shedding mode
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Large Amplitude Maneuver

G(t) = log
�
cosh(a(t− t1)) cosh(a(t− t4))
cosh(a(t− t2)) cosh(a(t− t3))

�
α(t) = α0 + αmax

G(t)
max(G(t))

OL, Altman, Eldredge, Garmann, and Lian, 2010Brunton and Rowley, AIAA ASM 2011

α = 0◦

For pitching maneuver with 

α ∈ [15◦,25◦]

Model linearized at 

    captures lift response more accurately

α = 15◦

than model linearized at 
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Summary

Aerodynamic models linearized from unsteady Navier-Stokes

-  Separate terms for added-mass, quasi-steady, and fluid transients

-  Transient dynamics modeled with the eigensystem realization algorithm

-  Accurate for separated flows up to the Hopf bifurcation

Future Directions

Interpolate between models linearized at different angle of attack

-  Low-order model states are different at each angle of attack

Include nonlinear terms based on Hopf normal form

Develop H2 optimal controller for partially stalled wings
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