Angle of Attack

C[x] 4 0 0] [x] [B
p al=[0 0 1 al + | 0 | «
_éz_ I 0O O O_ _éz_ I 1 ]
input
_X_
Cr=1[Cr CL, CiL.||a|+CL.d
ERA Model \ t | )

quasi- steady and added- m/




Applications of Unsteady Models
Conventional UAVs (performance/robustness)
Micro air vehicles (MAVs)
Flow control, flight dynamic control
Autopilots / Flight simulators FLYIT Simulators, Inc.
Gust disturbance mitigation

Predator (General Atomics)
Understand bird/insect flight

Need for State-Space Models

Need models suitable for control

Combining with flight models

Flexible Wing
(University of Florida)




3 Types of Unsteadiness

1. High angle-of-attack 2. Strouhal number 3. Reduced frequency

Q& > Oligtall St = —
Uoo
Large amplitude, slow Moderate amplitude, fast Small amplitude, very fast

N ——  p—

Closely related
Qg = tan~* (mSt)

Brunton and Rowley, AIAA ASM 2009



. 3 Types of Unsteadiness ~$ QYLK

3. Reduced frequency

Small amplitude, very fast

Brunton and Rowley, AIAA ASM 2009



Rk Candidate Lift Models ~5 CORBR

CL — 2T«
CL — CLaa
CL — CL(()&)

t
CL (t) — 015; (t)Oé(O) -+ / 015; (t — T)o}(*r)d’r Wagner’s Indicial Response
0

Cp = = {h+a—3@}+2w {a+h+1a <l—a>}0(k)

2 2 2 2
— D e Y ——— Theodorsen’s Model
Added-Mass Circulatory

Motivation for State-Space Models

Captures input output dynamics accurately W 1925
agner, .

Theodorsen, 1935.
Leishman, 2006.

Computationally tractable

fits into control framework




o\ Lift vs Angle of Attack <5 66K
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o\ Lift vs Angle of Attack <5 66K

Models based on Hopf normal form capture vortex shedding
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Hopf bifurcation at o it ~ 28° (pair of imaginary eigenvalues pass into right half plane)



1.8

—DNS |
- =-Model

—_
(o))
T

Lift Coefficient
~

—_
N

&= (a — a.)pr —wy — ax(z?® + y?)
g = (a—ac)uy +wz —ay(z® + y°)

zZ = —A\z

20 25

Galerkin Projection onto POD

Full DNS

Reconstruction



High angle of attack models ~S26060K

Galerkin Projection onto POD

—DNS |
- --Model

LA
1.8,
J 1

—_
(©2)]

Lift Coefficient
~

—
N

/\ Full DNS

0.8
0

Time
&= (a — a)pr —wy — ax(z? + y?) F=r[(a—a)p—ar’]
y=(a—auytwr—ay@@®+y°) p = f=uw
Z ==Xz Z=—\z

Reconstruction



Lift Coefficient, CL

Lift vs. Angle of Attack
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Need model that captures lift due to moving airfoil!




Lift Coefficient, CL

1.6

1.4

1.2

0.8

0.6

0.4

0.2
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Need model that captures lift due to moving airfoil!




Lift Coefficient, CL
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Need model that captures lift due to moving airfoil!




Lift Coefficient, CL
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Need model that captures lift due to moving airfoil!




N Lift vs. Angle of Attack ~ @G@@

1.6 l l l l | l | |
Average Lift pre-Shedding
1.4+ e | T T Average Lift post-Shedding 4
T B E Min/Max of Limit Cycle
. ’ \l
1.2 ., - e — = - N\ 7
s - T~ S
1+ /\/ - = N S —
7z~ S N\
— == N . - ~ \
O_I N - N ‘N
- "~ N\ i ]
= 0.8 < . N R N
% N \ \,
£ 0.6 N \ AP ]
8 N N\ \
O N N\ \
= — N\ N\ ’\ _
T Y S '
. N\ \
N N '
0.2 N, N
N, \
N N
Y 7
\/
-0.2 \':
Wagner and Theodorsen models linearized at v = (°
_0.4 1 1 1 1 1 1 1 1
10 20 30 40 50 60 70 80 90

Angle of Attack, a (deg)



Theodorsen’s Model

T . Q. . 1. /1
Crp == {h%—oz— —Oz} +2r la+h+=-a|=—a]|C(k)
2 2 2 2
——r N—— ——_——-—-—-—
Added-Mass Circulatory
2
H;”) (k)
Ck) = 7@y g @
1 (k) +iHy (k)
2D Incompressible, inviscid model
Unsteady potential flow (w/ Kutta condition) 7ch
Linearized about zero angle of attack k = []
3o
Apparent Mass Circulatory Lift
Increasingly important for lighter aircraft Captures separation effects
Not trivial to compute, but essentially solved Need improved models here
force needed to move air as plate accelerates source of all lift in steady flight

Theodorsen, 1935.
Leishman, 2006.



N Empirical Theodorsen ~5 YRk
=" lh+a- 2| +om|ath+a(s—a)| o)
_ — o — — 7T — -
S 2 2\ 2
—_— _
Added-Mass Circulatory
. a. 1. (1
Generalized Coefficients CL — Cl {Oé — 50&} -+ CQ Q. + 50& 5 — C(k)
| e )
Transfer Function [ L] — Cl (% — §) -+ C2 [312 | 218 (% — CL)} C(S)
Lé]
Quasi-Steady
¢ 11 (1 Cr(aer)
> [—+—(——a>] > C(s)
s?2 25\ 2 \
C

C L
Added Mass /

1 a
g 01(5‘5)




B\ 04 Pade Approximate C(k) ~ 06060

C(k)

2
_ HP (k)
Hy? (k) + iHg (k)

C(k)

Theodorsen Function C(s) S = 2k‘

Theodorsen C(s)
Pade Approximation

Magnitude (dB)
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Breuker, Abdalla, Milanese, and Marzocca,

~ .99612 — .1666—%_ - — .3119—2%

k+4+.0553 k+.28606

O(s) 129452 + .1376s + .01576
S) =~
2582 + .1707s + .01582

Lift Model (Leading Edge Pitch)
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AIlAA Structures, Structural Dynamics, and Materials Conference 2008.



Empirical C(s) ~ S 06HRHR

Quasi-Steady

e 1 1 /1 Cr(es)
EIERAERD) 1 AN
(D—"
Added Mass /

— C(s), Theodorsen
— C(s), ERA/Wagner r=2| 7

Isolating C(k)

Magnitude (dB)
A

Start with empirical ERA model

10 10 10 10 10 10 10

Subtract off quasi-steady and divide
through by added-mass

Phase

Remainder is C(k)

10 10 10 10° 10 10 10
Frequency



N Alternative Representation
. a., 1. /1
Generalized Theodorsen CL — Cl {OK — 50&} -+ CQ o+ §C¥ 5 — C(k)
Cy (1 1 1
Cp = —sCha+|Ch+22(2—a)lat Cy a—Cl'(k) |lat~al=—a
2 2 \ 2 —~— 2 2
W_/ N -~ 7 CLa \ -~
CLg CL, fast dynamics
CL(O‘? Q, a, X) — CL@ O+ CLa Q + CLd a+ Cx Sta:Iillli:)i"ac;ircil‘;;tai‘r’:isc:s
1] 6828 —.0633 Oy Co(l—2a)/4] [z1] [0
d T2 L 1 0 0 0 ) 0] ..
State-Space Representation dt | o - 0 0 0 1 Q ™ 0 o
2 0 0 0 0 InEa 1]
Cp =[197 0303 .5176C; C + 5176C5(1 —2a)/4] | 72| — 252a




.. 6 Bode Plot of Theodorsen

T . Q. . 1. /1
Crp == {h%—oz— —Oz} +2r la+h+=-a|=—a]|C(k)
2 2 2 2
—_— e — . e—
Added-Mass Circulatory
k . 7ch 100 T T T T T T T T T T T
Une - |
Frequency response 5 | '
=
input is Q ( & is angle of attack) -50- :
output is lift coefficient Cy, B e T ”
Low frequencies dominated by ool X/c=0.00
quasi-steady forces a0l 222828
. —60 [ X/C=O:30
High frequencies dominated by g -eor voco 50
added-mass forces g ~1001 | - — —xlc=060
£ _120F |~ — —x/c=0.70
140k — — —x/c=0.80
Crossover region determined by el | e
Theodorsen’s function C(k) 180




- Zeros of Theodorsen’s Model mﬁ@'@@

Zeros of Theodorsen Model, Varying Pitch Point

x/c=1.0
0.6
x/c=.75
04l ‘ x/c=.50
x/c=.25
0.2r x/c=0.0
0 ©) @ BEE5500
-0.2
-04r l’
<)
-0.6
-5 -4 -3 -2 -1 0 1 2 3 4 5

As pitch point moves aft of center,
zero enters RHP at +infinity.



N Wagner’s Indicial Response

Given an impulse in angle of attack, @ = d(t) , the time history of Lift is C? (t)

The response to an arbitrary input (t) is given by linear superposition:

Cpr(t) = /0 C’%(t — T)a(r)dr = (C’g * a) (t)

Given a step in angle of attack, & = d(t) , the time history of Lift is C7 (¢)

The response to an arbitrary input () is given by:

Cr(t) = C7 (H)a(0) + /t C2(t — 1)a(r)dr

Model Summary

Reconstructs Lift for arbitrary input
Linearized about & = ()
Based on experiment, simulation or theory

Wagner, 1925. convolution integral inconvenient for
Leishman, 2006. feedback control design




Reduced Order Wagner

Stability derivatives
plus fast dynamics

Transfer Function

State-Space Form

CL(a, &, G, x) Q(JLMCD@

Quasi-steady and added-mass

Fast

dynamics
C Cr.
Y(s) = { SZO‘ I io‘ -C'p, —I—G(s)} s*U(s)
q X A, 0 0] [x] B, |
o al =10 0 1| |Ja|l+ ]| 0|
Q. 0 0 0] [a 1
i
Cr = [Cr CLQ CLCJ Qo —I—CLd&
Q




. Reduced Order Wagner ~S26060K
fast dynamics \

t
S S .
Cr(t) = C2(H)a(0) + / CE(t — T)a(r)dr N e ——
0 T r
di al=10 0 1| ]al+ |0 |«
"la] o o o] la] |1
________ quasi-steady & added mass Pyt
| | L
’ . C i x ..
: L | Cr = [Cr CLa CLd] Qo —|—CLdOz
: : ERA Model K A( —d- )
| | —
E > CL@ E quasi-steady and added-mé
| S |
oo |
x L—p- =0y
| |
| Cr. |
: " — :
: S ! Model Summary
:::::::::::::::::::::::::::::::: Linearized about v = ()
| |
: > G(S) E Based on experiment, simulation or theory
|

Recovers stability derivatives C,_,Cp.,Cp.

fast dynamlcs associated with quasi-steady and added-mass

Brunton and Rowley, in preparation. ODE model ideal for control design



- Bode Plot - Pitch (LE) ~ 506068

60 T T 0 T
40 T
) _
g | Frequency response
g ° ) inputis (v ( (¢ is angle of attack)
20 5 Or;gr# 15 20 output is lift coefficient Cj,
-40 . L] . Ll . — | L
107 107" 10° 10’ 10° Pitching at leading edge
0 T T
ool Model without additional fast
ol dynamics [QS+AM (r=0)] is
— QS+AM (r=0) inaccurate in crossover region
= 001 ERA r=2
S _sol ERA r=3 B
0 i ERA r=4 |
g ~100 522 tg Models with fast dynamics of ERA
—120} ~ | model order >3 are converged
-140 .
~160 .
_18100'2 | o' 1<|)° - 161 T Punchline: additional fast dynamics
Frequency (rad Urc) (ERA model) are essential

Brunton and Rowley, in preparation.



Bode Plot - Pitch (QC)

Frequency response
input is (v ( ¢ is angle of attack)

output is lift coefficient Cy,

Pitching at quarter chord

Reduced order model with ERA r=3
accurately reproduces Wagner

Wagner and ROM agree better with
DNS than Theodorsen’s model.

Asymptotes are correct for Wagner
because it is based on experiment

Model for pitch/plunge dynamics
[ERA, r=3 (MIMO)] works as well,
for the same order model

Brunton and Rowley, in preparation.

Magnitude (dB)

Phase (deg)
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NoF Pitch/Plunge Maneuver

Canonical pitch-up, hold, pitch-down maneuver, followed by step-up in vertical position

10 I | | | |
0.5
/8\) Angle of Attack
o Vertical Position %
o O I
3 T
C
<C
0 | | .
Time
0.6 | |
P
. IS DNS
T \\ -7 \\~__ — — — Wagner 1
NP R ERA, r=3 (MIMO)
il | S — — — ERA, r=3 (2xSISO) n
- v/~ N — — — QS+AM (r=0) / PN
o O \/ SN a - —
< \
\ \
/ N\
—0.21 . \ -
\
-04+ | | AN . |
\ i
| l | \/

Time

OL, Altman, Eldredge, Garmann, and Lian, 2010 Reduced order model for Wagner’s indicial response

Brunton and Rowley, in preparation accurately captures lift coefficient history from DNS
A .



N Lift vs. Angle of Attack ~ @G@@
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| . Lift vs. Angle of Attack ~526060K
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Bode Plot of ERA Models

Results

Lift slope decreases for increasing angle of
attack, so magnitude of low frequency
motions decreases for increasing angle of
attack.

At larger angle of attack, phase converges
to -180 at much lower frequencies. l.e.,
solutions take longer to reach equilibrium
in time domain.

Consistent with fact that for large angle of
attack, system is closer to Hopf instability,
and a pair of eigenvalues are moving closer
to imaginary axis.

Frequency Response for Leading—Edge Pitching
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.. Q Poles and Zeros of ERA Models

Poles, a € [0,25] . Zeros, o € [0,25] .
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As angle of attack increases, pair of poles (and pair of zeros) march towards imaginary axis.

This is a good thing, because a Hopf bifurcation occurs at Q.;jit ~ 28°



.. Q Poles and Zeros of ERA Models
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As angle of attack increases, pair of poles (and pair of zeros) march towards imaginary axis.

This is a good thing, because a Hopf bifurcation occurs at Q.;jit ~ 28°



Nt Bode Plot of Model (-) vs Data (x)
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Direct numerical simulation confirms that local linearized models
are accurate for small amplitude sinusoidal maneuvers



N2 Large Amplitude Maneuver
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captures lift response more accurately

cosh(a(t —t1)) cosh(a(t —t4))
cosh(a(t — t2)) cosh(a(t — t3))

G(1)
max(G(t))

G(t) = log

Of(t) = 0 T+ O'max

OL, Altman, Eldredge, Garmann, and Lian, 2010



- Conclusions <5 @@6@(

Reduced order model based on indicial response at non-zero angle of attack

- Based on eigensystem realization algorithm (ERA)
- Models appear to capture dynamics near Hopf bifurcation
- Locally linearized models outperform models linearized at o = 0°

Empirically determined Theodorsen model

- Theodorsen’s C(k) may be approximated, or determined via experiments
- Models are cast into state-space representation
- Pitching about various points along chord is analyzed

Future Work:

- Combine models linearized at different angles of attack
- Add large amplitude effects such as LEV and vortex shedding

Wagner, 1925. Brunton and Rowley, AIAA ASM 2009-2011

Theodorsen, 1935. OL, Altman, Eldredge, Garmann, and Lian, 2010

Leishman, 2006. Breuker, Abdalla, Milanese, and Marzocca, AIAA 2008.
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Bode Plot - Plunge -~ CHOROR

Sinusoidal Plunging

60 F | T T ]
Frequency response
50 n
input is y ( vertical acceleration ) @, ]
output is lift coefficient Cy, 2 4 ]
=
Plunging changes flight path angle 20 ]
and free stream velocity ok i
! Ll ~ == T -0 o
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Reduced order model with ERA r=3
accurately reproduces Wagner
180 . ' ' =
Wagner and ROM agree better with 160l |
DNS than Theodorsen’s model.
@ 140 - ERA, r=3 |
=) - — — Wagner
Asymptotes are correct for Wagner 3 Theodorsen
because it is based on experiment =z °f © DNS i
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. . O  ERA, r=3 (MIMO-QC)
Model for pitch/plunge dynamics 100 il
[ERA, r=3 (MIMO)] works as well, — o
for the same order model Y
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Brunton and Rowley, in preparation.



