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FLYIT Simulators, Inc.

Motivation

Predator (General Atomics)

Flexible Wing
 (University of Florida)

Applications of Unsteady Models

Conventional UAVs (performance/robustness)

Micro air vehicles (MAVs)

Flow control, flight dynamic control

Autopilots / Flight simulators

Gust disturbance mitigation

Need for State-Space Models

Need models suitable for control

Combining with flight models

Understand bird/insect flight

Bio-locomotion



3 Types of Unsteadiness

1. High angle-of-attack

α > αstall

Large amplitude, slow Moderate amplitude, fast

2. Strouhal number

St =
Af

U∞

3.  Reduced frequency

k =
πfc

U∞

Small amplitude, very fast

� �� �
Closely related

αeff = tan−1 (πSt)

Brunton and Rowley, AIAA ASM 2009



3 Types of Unsteadiness

3.  Reduced frequency

k =
πfc

U∞

Small amplitude, very fast

1. High angle-of-attack

α > αstall

Large amplitude, slow Moderate amplitude, fast

2. Strouhal number
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Candidate Lift Models

CL = CL(α)

CL = CLαα

CL = 2πα

Motivation for State-Space Models

Computationally tractable

fits into control framework

Captures input output dynamics accurately

CL(t) = Cδ
L(t)α(0) +

� t

0
Cδ

L(t− τ)α̇(τ)dτ Wagner’s Indicial Response

Theodorsen’s Model

CL =
π
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Leishman, 2006.

Theodorsen, 1935.

Wagner, 1925.
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Low Reynolds number, (Re=100)

Hopf bifurcation at αcrit ≈ 28◦ (pair of imaginary eigenvalues pass into right half plane)
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Average Lift pre Shedding
Average Lift post Shedding
Min/Max of Limit Cycle

Models based on Hopf normal form capture vortex shedding

Lift vs Angle of Attack

Low Reynolds number, (Re=100)

Hopf bifurcation at αcrit ≈ 28◦ (pair of imaginary eigenvalues pass into right half plane)
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ẋ = (α− αc)µx− ωy − ax(x2 + y2)
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Full DNS
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Lift vs.  Angle of Attack
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Need model that captures lift due to moving airfoil!



Lift vs.  Angle of Attack
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Lift vs.  Angle of Attack
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Need model that captures lift due to moving airfoil!
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Need model that captures lift due to moving airfoil!



Lift vs.  Angle of Attack
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Wagner and Theodorsen models linearized at α = 0◦



Theodorsen’s Model

Apparent Mass

Not trivial to compute, but essentially solved

force needed to move air as plate accelerates

Increasingly important for lighter aircraft

Circulatory Lift

Need improved models here

source of all lift in steady flight

Captures separation effects

k =
πfc

U∞

2D Incompressible, inviscid model

Unsteady potential flow (w/ Kutta condition)

Linearized about zero angle of attack

Leishman, 2006.

Theodorsen, 1935.
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Empirical Theodorsen
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Pade Approximate C(k)
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Theodorsen C(s)
Pade Approximation
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Theodorsen
Approximation

C(k) ≈ .99612− .1666 k
k+.0553 − .3119 k

k+.28606

C(s) ≈ .1294s2 + .1376s + .01576
.25s2 + .1707s + .01582

s = 2k

Breuker, Abdalla, Milanese, and Marzocca,
AIAA Structures, Structural Dynamics, and Materials Conference 2008.
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C(s), Theodorsen
C(s), ERA/Wagner r=2

Isolating C(k)

Subtract off quasi-steady and divide 
through by added-mass

Start with empirical ERA model

Remainder is C(k)



Alternative Representation
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State-Space Representation

Stability derivatives 
plus fast dynamics



Bode Plot of Theodorsen

Frequency response

Low frequencies dominated by 
quasi-steady forces

High frequencies dominated by 
added-mass forces

output is lift coefficient CL

input is       (       is angle of attack)

Crossover region determined by 
Theodorsen’s function 
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Zeros of Theodorsen’s Model
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As pitch point moves aft of center, 
zero enters RHP at +infinity.



Wagner’s Indicial Response

Model Summary

convolution integral inconvenient for 
    feedback control design

Reconstructs Lift for arbitrary input

Linearized about 

Based on experiment, simulation or theory

α = 0

Leishman, 2006.

Wagner, 1925.

u(t)

τ1 τ2 τ3 t

!"#$%

&$%#$%

τ1

τ2

τ3

!'#$()*+,*)#&")*

t0

yδ(t − τ1)

yδ(t − τ2)

yδ(t − τ3)

y(t) = yδ ∗ u

yδ(t − t0)

CL(t) = CS
L(t)α(0) +

� t

0
CS

L(t− τ)α̇(τ)dτ

CL(t) =

� t

0
Cδ

L(t− τ)α(τ)dτ =
�
Cδ

L ∗ α
�
(t)

Given an impulse in angle of attack,               , the time history of Lift is

   The response to an arbitrary input         is given by linear superposition:α(t)

Cδ
L(t)α = δ(t)

Given a step in angle of attack,               , the time history of Lift is

   The response to an arbitrary input         is given by:

CS
L(t)α̇ = δ(t)

α(t)



Reduced Order Wagner
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Stability derivatives 
    plus fast dynamics

Transfer Function

State-Space Form

Quasi-steady and added-mass Fast
dynamics



Reduced Order Wagner

+ CL

G(s)
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Brunton and Rowley, in preparation.

Model Summary

ODE model ideal for control design 

Based on experiment, simulation or theory

Linearized about α = 0

Recovers stability derivatives 
   associated with quasi-steady and added-mass

CLα , CLα̇ , CLα̈

quasi-steady and added-mass

ERA Model

input

fast dynamics
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Bode Plot - Pitch (LE)

Frequency response

Model without additional fast 
dynamics [QS+AM (r=0)] is 
inaccurate in crossover region

Models with fast dynamics of ERA 
model order >3 are converged

output is lift coefficient CL

Punchline: additional fast dynamics 
(ERA model) are essential

input is       (       is angle of attack)α̈ α

Brunton and Rowley, in preparation.
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Pitching at leading edge



Bode Plot - Pitch (QC)

Frequency response

Reduced order model with ERA r=3
    accurately reproduces Wagner

Wagner and ROM agree better with   
    DNS than Theodorsen’s model.

output is lift coefficient CL

input is       (       is angle of attack)α̈ α

Brunton and Rowley, in preparation.

Pitching at quarter chord

Asymptotes are correct for Wagner 
    because it is based on experiment

Model for pitch/plunge dynamics 
    [ERA, r=3 (MIMO)] works as well, 
    for the same order model
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Wagner
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Quarter-Chord Pitching
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Wagner
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ERA, r=3 (2xSISO)
QS+AM (r=0)

Pitch/Plunge Maneuver

Brunton and Rowley, in preparation.

Canonical pitch-up, hold, pitch-down maneuver, followed by step-up in vertical position

Reduced order model for Wagner’s indicial response
accurately captures lift coefficient history from DNS

OL, Altman, Eldredge, Garmann, and Lian, 2010



Lift vs.  Angle of Attack
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Wagner and Theodorsen models linearized at α = 0◦
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Bode Plot of ERA Models
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Results

At larger angle of attack, phase converges 
to -180 at much lower frequencies.  I.e., 
solutions take longer to reach equilibrium 
in time domain.

Lift slope decreases for increasing angle of 
attack, so magnitude of low frequency 
motions decreases for increasing angle of 
attack.

Consistent with fact that for large angle of 
attack, system is closer to Hopf instability, 
and a pair of eigenvalues are moving closer 
to imaginary axis.  



Poles and Zeros of ERA Models
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As angle of attack increases, pair of poles (and pair of zeros) march towards imaginary axis.  

This is a good thing, because a Hopf bifurcation occurs at αcrit ≈ 28◦



Poles and Zeros of ERA Models
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This is a good thing, because a Hopf bifurcation occurs at αcrit ≈ 28◦
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Direct numerical simulation confirms that local linearized models 
are accurate for small amplitude sinusoidal maneuvers



0 10 20 30 40 50 60 70 80 90
0.4

0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Angle of Attack,  (deg)

Li
ft 

C
oe

ffi
ci

en
t, 

C
L

 

 
Average Lift pre Shedding
Average Lift post Shedding
Min/Max of Limit Cycle

! " # $ % & ' (
"&

#!

#&

)*
+,
-.
/0
.)
112
34

! " # $ % & ' (

!5&

"

"5&

#

6
7

89:-

.

.
;<=
>?).@A$B. A!
>?).@A$B. A"&

! " # $ % & ' (
"&

#!

#&

)*
+,
-.
/0
.)
112
34

! " # $ % & ' (

!5&

"

"5&

#

6
7

89:-

.

.
;<=
>?).@A$B. A!
>?).@A$B. A"&

Large Amplitude Maneuver

G(t) = log
�
cosh(a(t− t1)) cosh(a(t− t4))
cosh(a(t− t2)) cosh(a(t− t3))

�
α(t) = α0 + αmax

G(t)
max(G(t))

Compare models linearized at 

andα = 0◦ α = 15◦

For pitching maneuver with 

α ∈ [15◦,25◦]

Model linearized at 

    captures lift response more accurately

α = 15◦

OL, Altman, Eldredge, Garmann, and Lian, 2010



Conclusions

Reduced order model based on indicial response at non-zero angle of attack

-  Based on eigensystem realization algorithm (ERA)
-  Models appear to capture dynamics near Hopf bifurcation
-  Locally linearized models outperform models linearized at α = 0◦

Empirically determined Theodorsen model

-  Theodorsen’s C(k) may be approximated, or determined via experiments
-  Models are cast into state-space representation
-  Pitching about various points along chord is analyzed

Brunton and Rowley, AIAA ASM 2009-2011

OL, Altman, Eldredge, Garmann, and Lian, 2010

Leishman, 2006.

Wagner, 1925.

Theodorsen, 1935.

Breuker, Abdalla, Milanese, and Marzocca, AIAA 2008.

Future Work:

-  Combine models linearized at different angles of attack 
-  Add large amplitude effects such as LEV and vortex shedding
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Wagner and Theodorsen models linearized at α = 0◦

Models based on Hopf normal form capture vortex shedding
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Bode Plot - Plunge

Brunton and Rowley, in preparation.

Sinusoidal Plunging

Frequency response

Reduced order model with ERA r=3
    accurately reproduces Wagner

Wagner and ROM agree better with 
    DNS than Theodorsen’s model.

output is lift coefficient CL

input is       ( vertical acceleration )

Asymptotes are correct for Wagner 
    because it is based on experiment

Plunging changes flight path angle 
    and free stream velocity

Model for pitch/plunge dynamics 
    [ERA, r=3 (MIMO)] works as well, 
    for the same order model

ÿ


