



### **Motivation**



#### **Applications of Unsteady Models**

**Conventional UAVs (performance/robustness)** 

Micro air vehicles (MAVs)

Flow control, flight dynamic control

**Autopilots / Flight simulators** 

**Gust disturbance mitigation** 

Understand bird/insect flight

#### **Need for State-Space Models**

**Need models suitable for control** 

**Combining with flight models** 

#### **FLYIT Simulators, Inc.**





**Predator (General Atomics)** 



Flexible Wing (University of Florida)





# Flow Control (expert)





# Flow Control (expert)

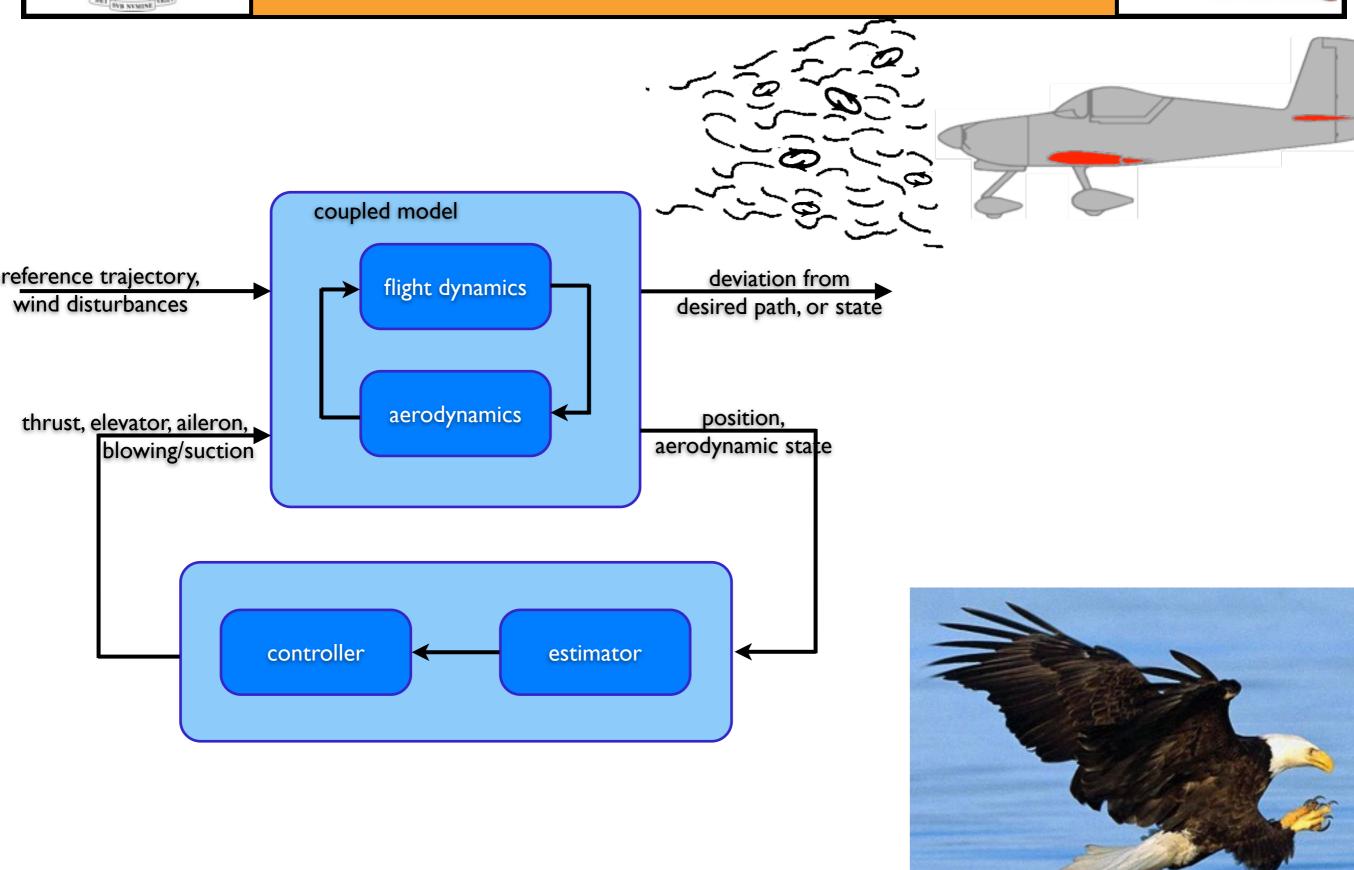






# Flight Dynamic Control



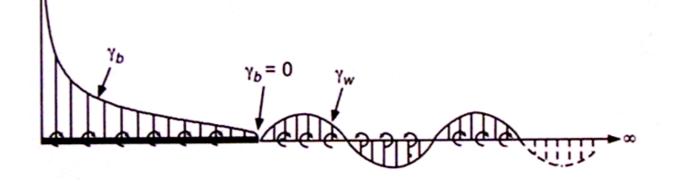




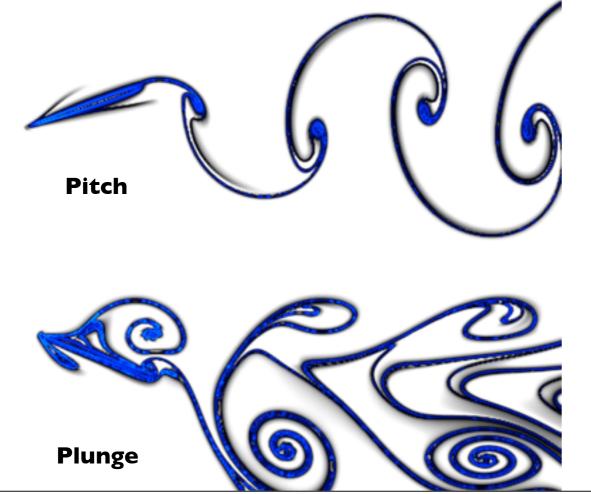
# Three Aerodynamic Models



#### Idealized airfoil, analytical expression



### Direct numerical simulations, Re=100



#### Wind tunnel experiment, Re=65,000





### 2D Incompressible Flow, (Re=100)





Stationary, AoA = 25



Stationary, AoA = 35





### **Immersed boundary method**

Multi-domain approach

Boundary forces computed as Lagrangemultipliers to enforce no slip

Colonius & Taira, 2008.

#### **2D Incompressible Navier-Stokes:**

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} = -\nabla p + \frac{1}{\text{Re}} \nabla^2 \mathbf{u} + \int_s \mathbf{f} \left( \xi(s, t) \right) \delta(\xi - \mathbf{x}) ds$$

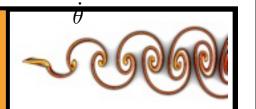
$$\nabla \cdot \mathbf{u} = 0$$

$$\mathbf{u} \left( \xi(s, t) \right) = \int \mathbf{u}(\mathbf{x}) \delta(\mathbf{x} - \xi) d\mathbf{x} = \mathbf{u}_B \left( \xi(s, t) \right)$$

$$\mathbf{u}\left(\xi(s,t)\right) = \int_{\mathbf{x}} \mathbf{u}(\mathbf{x}) \delta(\mathbf{x} - \xi) d\mathbf{x} = \mathbf{u}_B\left(\xi(s,t)\right)$$



### Unsteady Base Flow



#### Idea: Instead of moving body, move base flow!



Base flow velocity:

$$\theta \quad \mathbf{V} \quad \alpha$$

Vorticity:

$$u(x, y, t) = \|\mathbf{V}\|\cos(\alpha) - \dot{\theta}(y - y_C)$$

$$v(x, y, t) = \|\mathbf{V}\|\sin(\alpha) + \dot{\theta}(x - x_C)$$

$$\nabla \times (u, v) = v_x - u_y = \dot{\theta} + \dot{\theta} = 2\dot{\theta}$$

where  $(x_C, y_C)$  is the center of mass.

#### **Unsteady Base Flow**

Faster simulations (Cholesky decomposition) allows more aggressive maneuvers and gusts 24X faster, n

#### **Immersed Boundary Method**

T. Colonius and K. Taira, 2008

A fast immersed boundary method using a nullspace approach and multi-domain far-field boundary conditions.





#### Finite Time Lyapunov Exponents (FTLE)

Measure of stretching between neighboring particles

 $\sigma$  is time-dependent for unsteady flows

$$\sigma(\Phi_0^T; \mathbf{x_0}) = \frac{1}{|T|} \log \sqrt{\lambda_{\max}(\Delta(\mathbf{x_0}))}$$

where 
$$\Delta = \left(\mathbf{D}\Phi_0^T\right)^*\mathbf{D}\Phi_0^T$$

#### **Lagrangian Coherent Structures (LCS)**

LCS are hyperbolic ridges in the FTLE field

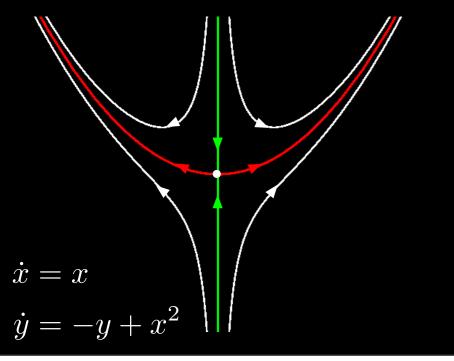
Generalize invariant manifolds for time varying flows

 $\Phi_0^{
m T}$  - particle flow map

pLCS - positive-time LCS (repelling)

**nLCS** - negative-time LCS (attracting)

Haller, 2002; Shadden et al., 2005



Attracting nLCS





#### Finite Time Lyapunov Exponents (FTLE)

Measure of stretching between neighboring particles

 $\sigma$  is time-dependent for unsteady flows

#### **Lagrangian Coherent Structures (LCS)**

LCS are hyperbolic ridges in the FTLE field

Generalize invariant manifolds for time varying flows

$$\sigma(\Phi_0^T; \mathbf{x_0}) = \frac{1}{|T|} \log \sqrt{\lambda_{\max}(\Delta(\mathbf{x_0}))}$$

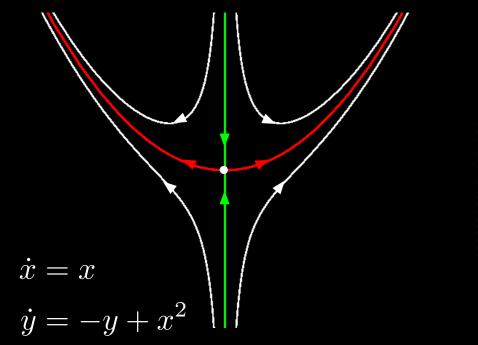
where 
$$\Delta = \left(\mathbf{D}\Phi_0^T\right)^*\mathbf{D}\Phi_0^T$$

 $\Phi_0^{
m T}$  - particle flow map

pLCS - positive-time LCS (repelling)

**nLCS** - negative-time LCS (attracting)

Haller, 2002; Shadden *et al.*, 2005









#### Finite Time Lyapunov Exponents (FTLE)

Measure of stretching between neighboring particles

 $\sigma$  is time-dependent for unsteady flows

#### **Lagrangian Coherent Structures (LCS)**

LCS are hyperbolic ridges in the FTLE field

Generalize invariant manifolds for time varying flows

$$\sigma(\Phi_0^T; \mathbf{x_0}) = \frac{1}{|T|} \log \sqrt{\lambda_{\max}(\Delta(\mathbf{x_0}))}$$

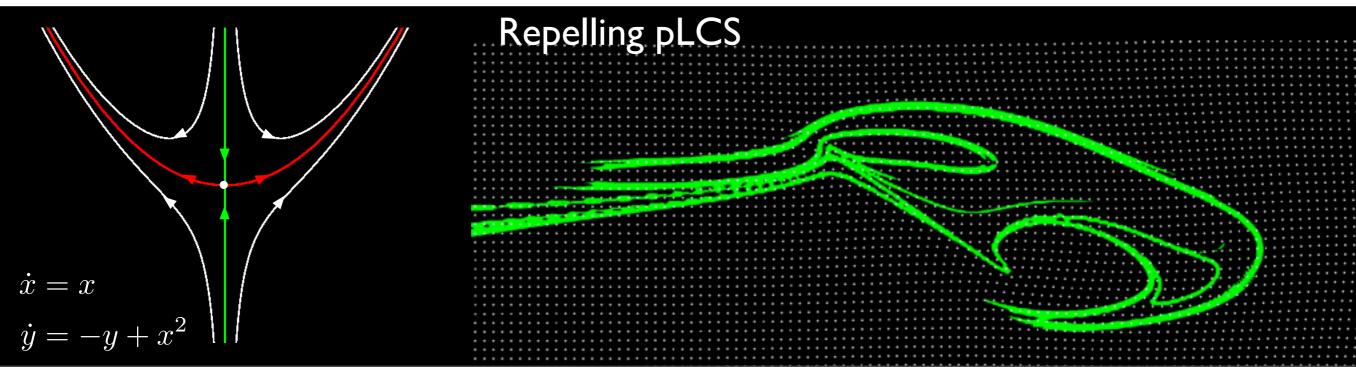
where 
$$\Delta = \left(\mathbf{D}\Phi_0^T\right)^*\mathbf{D}\Phi_0^T$$

 $\Phi_0^{
m T}$  - particle flow map

pLCS - positive-time LCS (repelling)

**nLCS** - negative-time LCS (attracting)

Haller, 2002; Shadden et al., 2005







#### Finite Time Lyapunov Exponents (FTLE)

Measure of stretching between neighboring particles

 $\sigma$  is time-dependent for unsteady flows

## Lagrangian Coherent Structures (LCS)

LCS are hyperbolic ridges in the FTLE field

Generalize invariant manifolds for time varying flows

$$\sigma(\Phi_0^T; \mathbf{x_0}) = \frac{1}{|T|} \log \sqrt{\lambda_{\max}(\Delta(\mathbf{x_0}))}$$

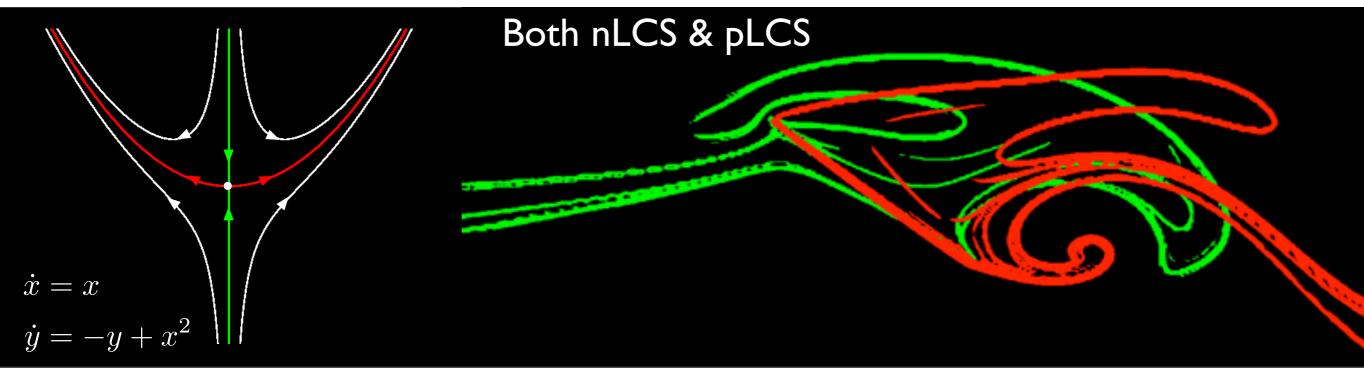
where 
$$\Delta = \left(\mathbf{D}\Phi_0^T\right)^*\mathbf{D}\Phi_0^T$$

 $\Phi_0^{
m T}$  - particle flow map

pLCS - positive-time LCS (repelling)

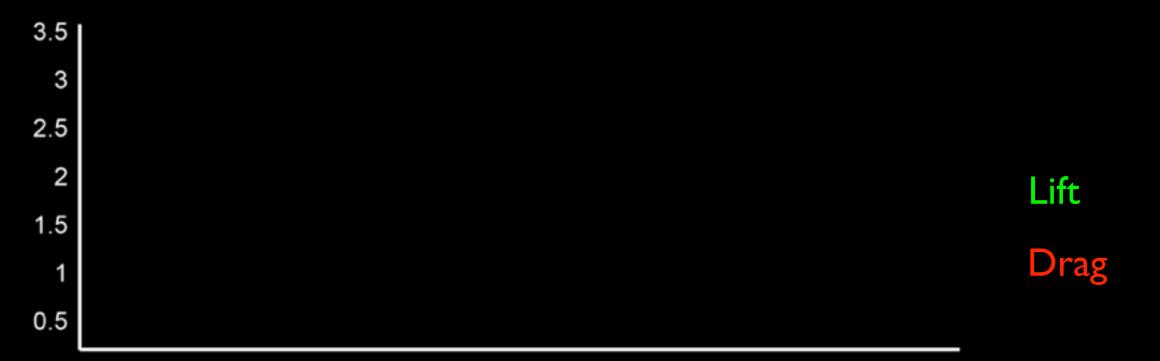
**nLCS** - negative-time LCS (attracting)

Haller, 2002; Shadden et al., 2005





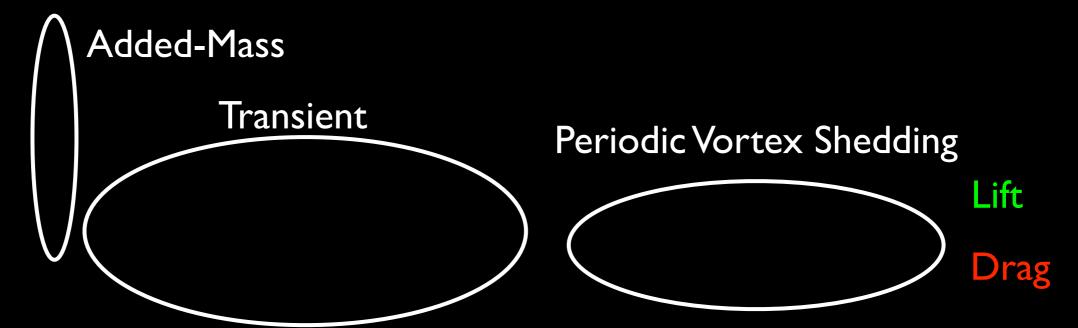




$$Re = 300$$
  
 $\alpha = 32^{\circ}$ 



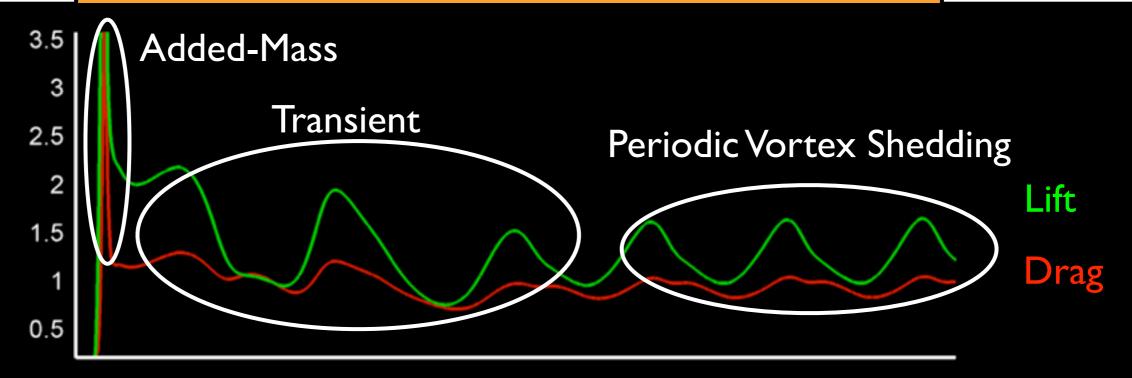




$$Re = 300$$
  
 $\alpha = 32^{\circ}$ 



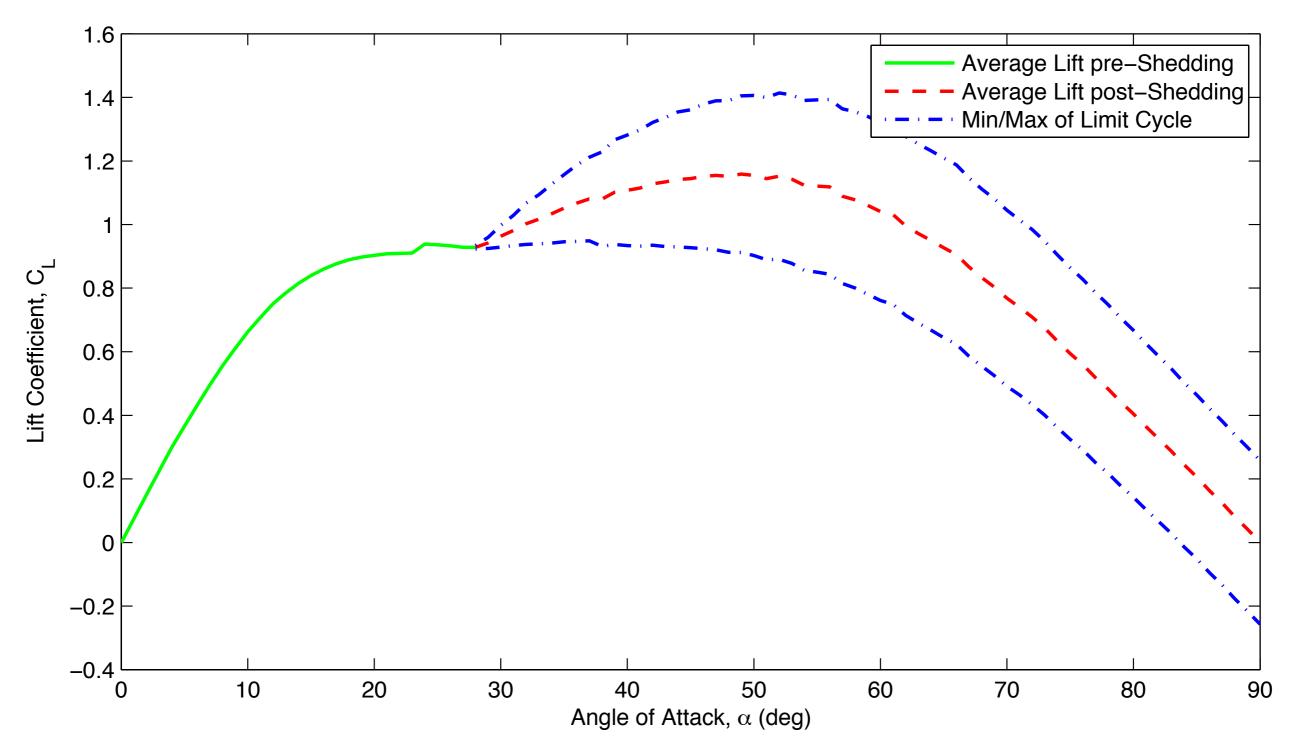










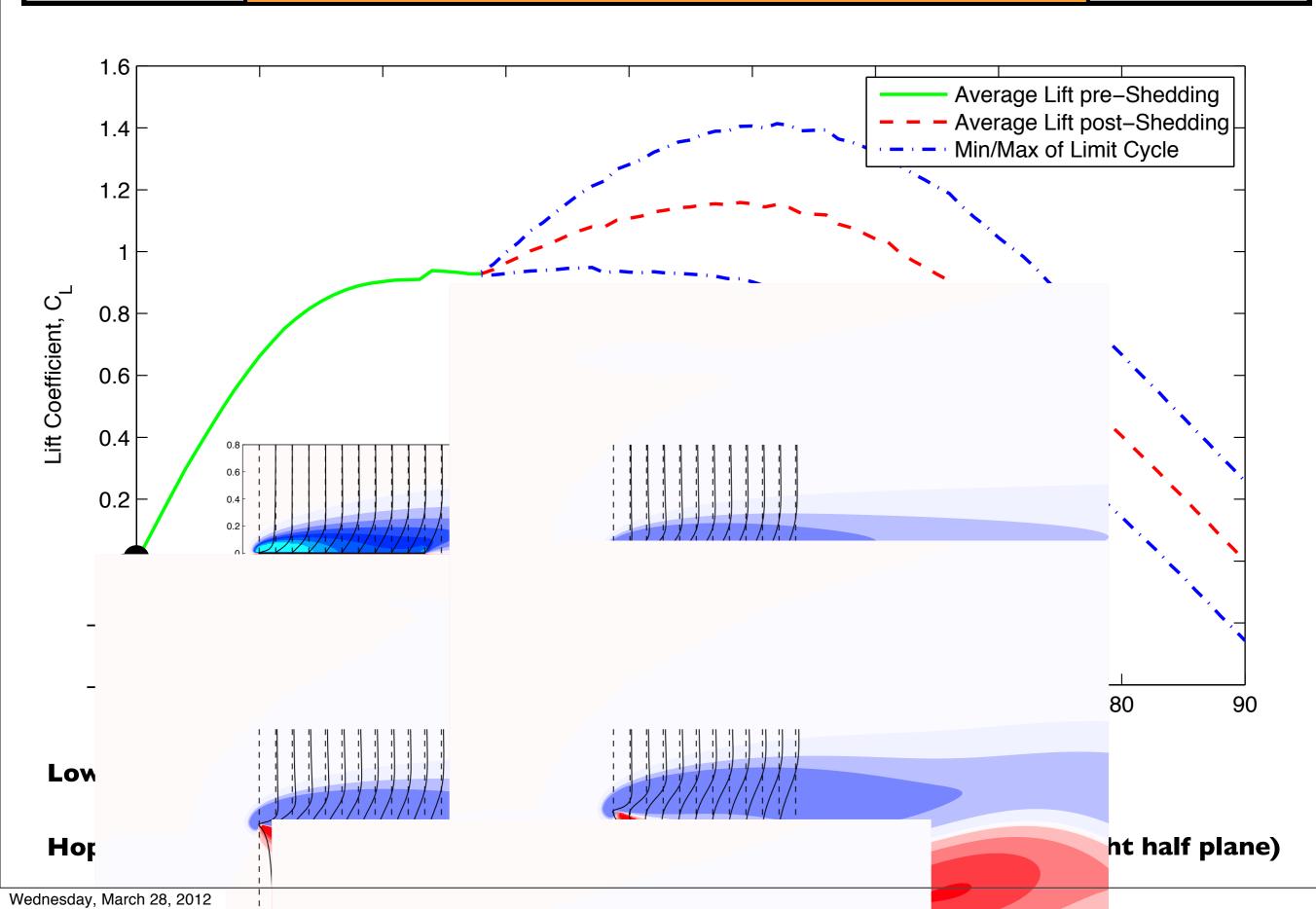


Low Reynolds number, (Re=100)

Hopf bifurcation at  $\,lpha_{
m crit}pprox{28}^\circ$ 

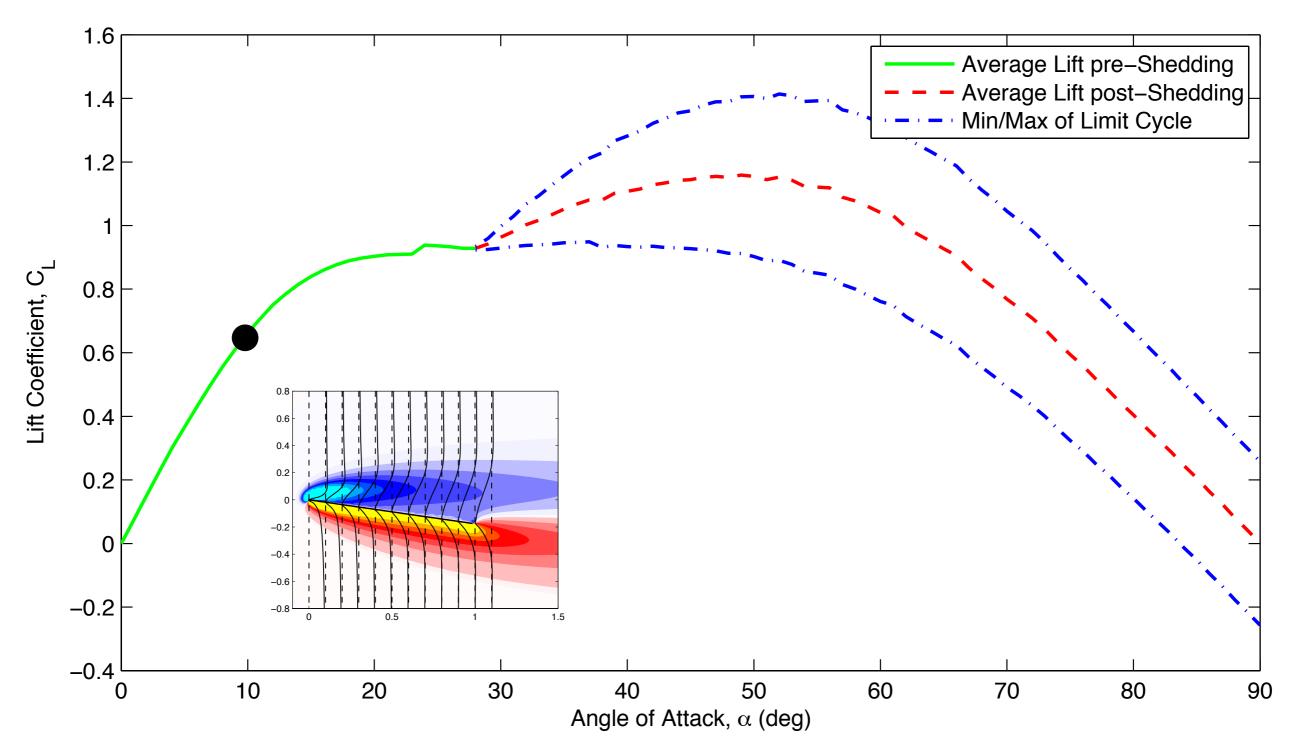










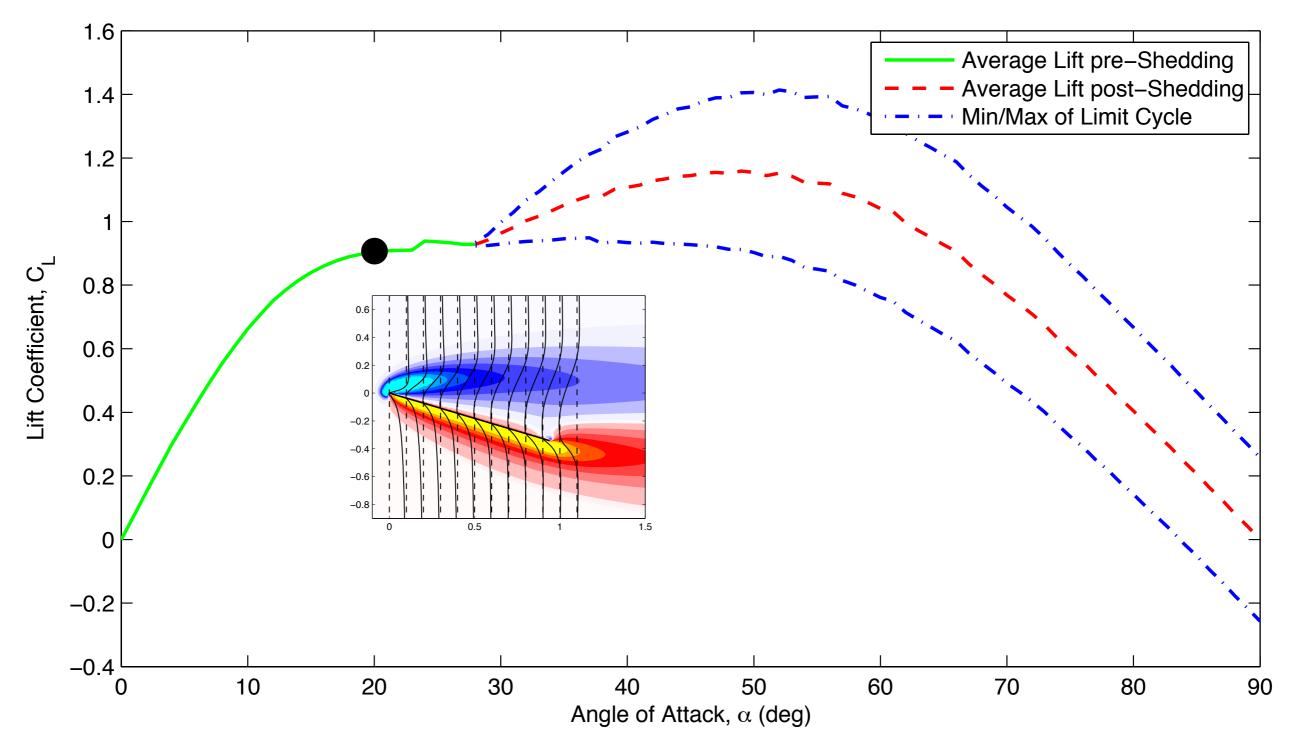


Low Reynolds number, (Re=100)

Hopf bifurcation at  $\,lpha_{
m crit}pprox{28}^\circ$ 





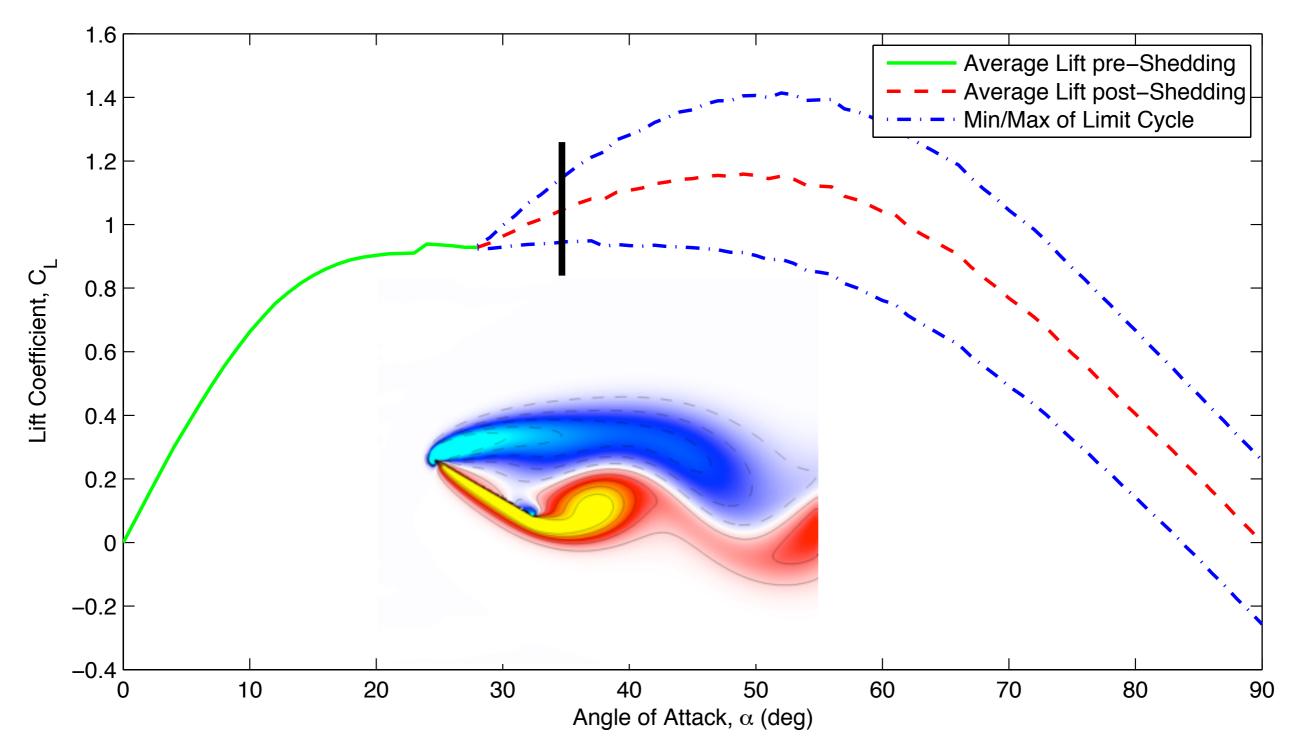


Low Reynolds number, (Re=100)

Hopf bifurcation at  $\,lpha_{
m crit}pprox{28}^\circ$ 





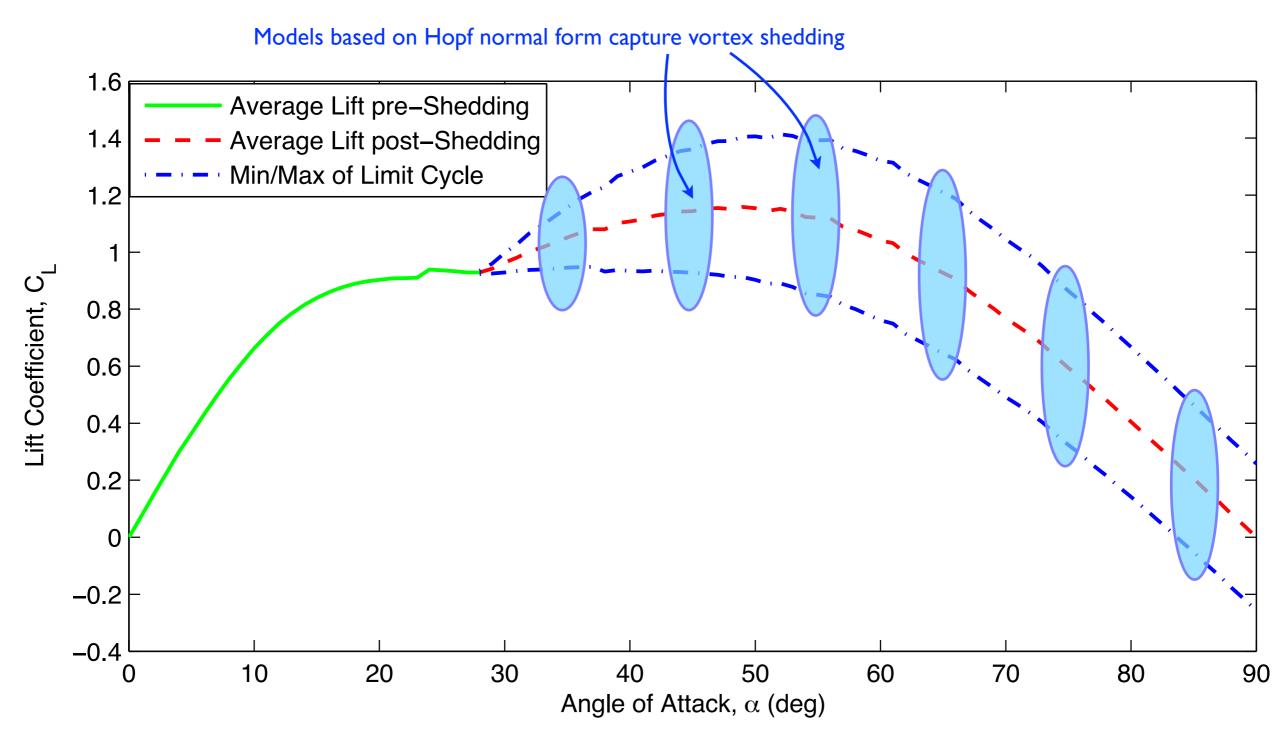


Low Reynolds number, (Re=100)

Hopf bifurcation at  $\,lpha_{
m crit}pprox{28}^\circ$ 







Low Reynolds number, (Re=100)

Hopf bifurcation at  $\,lpha_{
m crit}pprox{28}^\circ$ 



## High angle of attack models



# **Heuristic Model** -DNS ---Model Lift Coefficient 1.4 1.2 0.8<sup>L</sup> 15 Time

$$\begin{vmatrix}
\dot{x} = (\alpha - \alpha_c)\mu x - \omega y - ax(x^2 + y^2) \\
\dot{y} = (\alpha - \alpha_c)\mu y + \omega x - ay(x^2 + y^2) \\
\dot{z} = -\lambda z
\end{vmatrix}
\Rightarrow
\begin{vmatrix}
\dot{r} = r \left[ (\alpha - \alpha_c)\mu - ar^2 \right] \\
\dot{\theta} = \omega \\
\dot{z} = -\lambda z
\end{vmatrix}$$

#### **Galerkin Projection onto POD**



Full DNS



Reconstruction



# High angle of attack models



# **Heuristic Model** —DNS ---Model Lift Coefficient 0.8 10 15 20 Time



Full DNS



Reconstruction

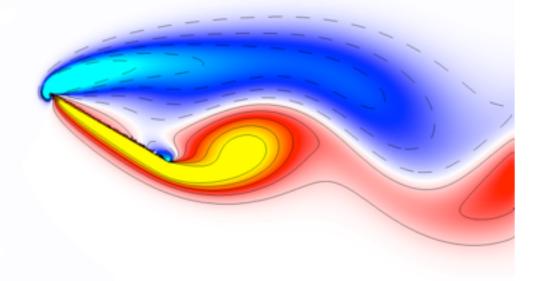
| $\dot{x} = (\alpha - \alpha_c)\mu x - \omega y - ax(x^2 + y^2)$ |                   | $\dot{r} = r \left[ (\alpha - \alpha_c)\mu - ar^2 \right]$ |
|-----------------------------------------------------------------|-------------------|------------------------------------------------------------|
| $\dot{y} = (\alpha - \alpha_c)\mu y + \omega x - ay(x^2 + y^2)$ | $\longrightarrow$ | $\dot{	heta} = \omega$                                     |
| $\dot{z} = -\lambda z$                                          | J                 | $\dot{z} = -\lambda z$                                     |



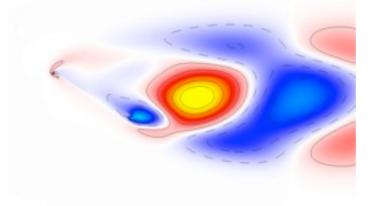
## POD Modes for Stationary Plate



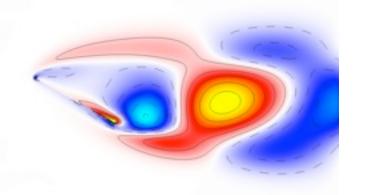
**Full Flow** 



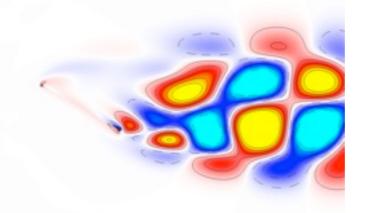
Mode I



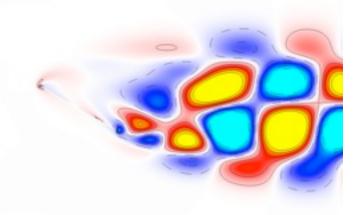
Mode 2



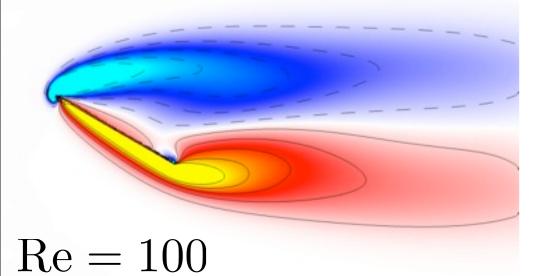
Mode 3



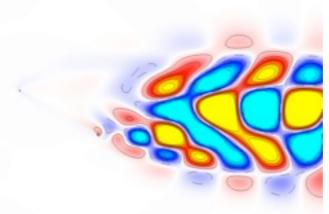
Mode 4



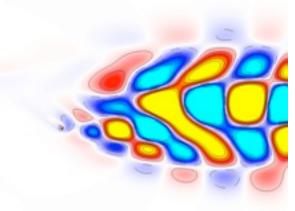
Mean Flow



Mode 5



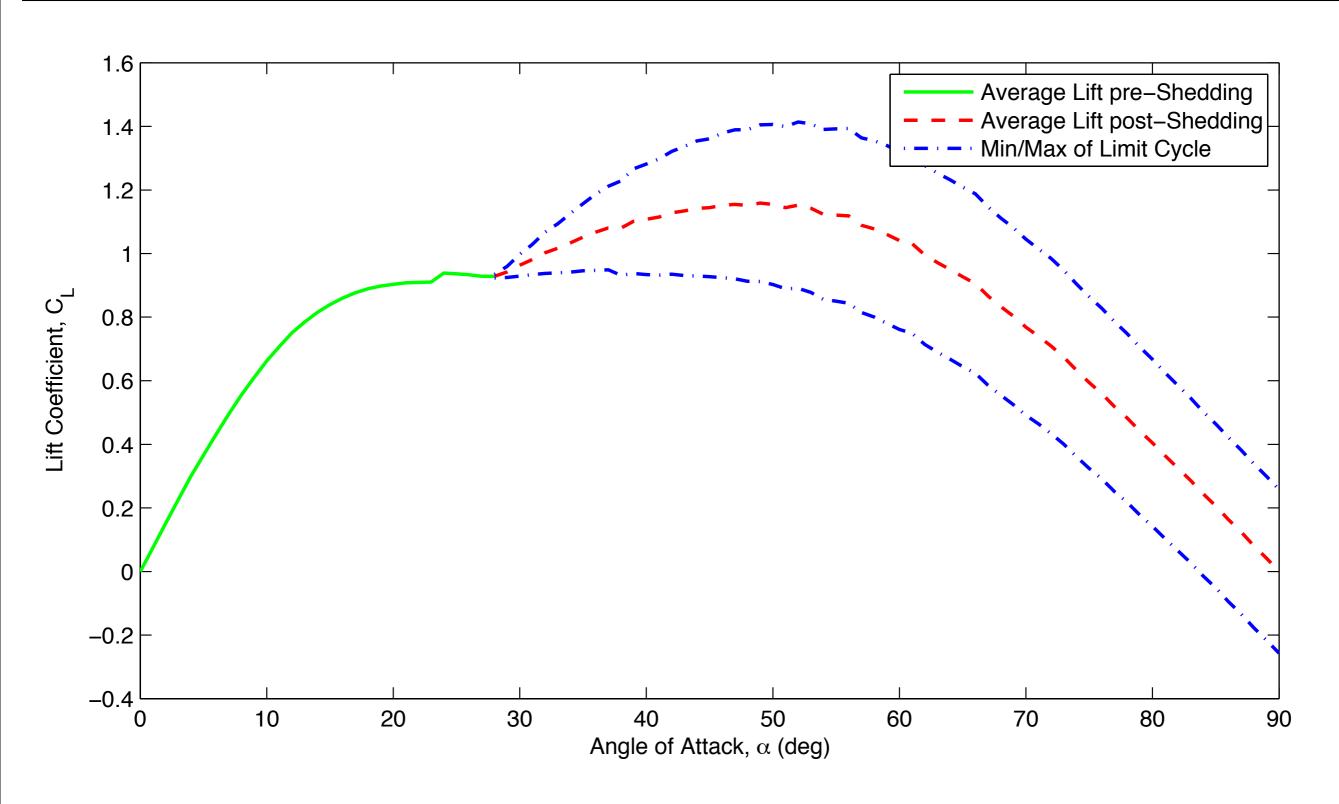
Mode 6



 $\alpha = 30^{\circ}$ 



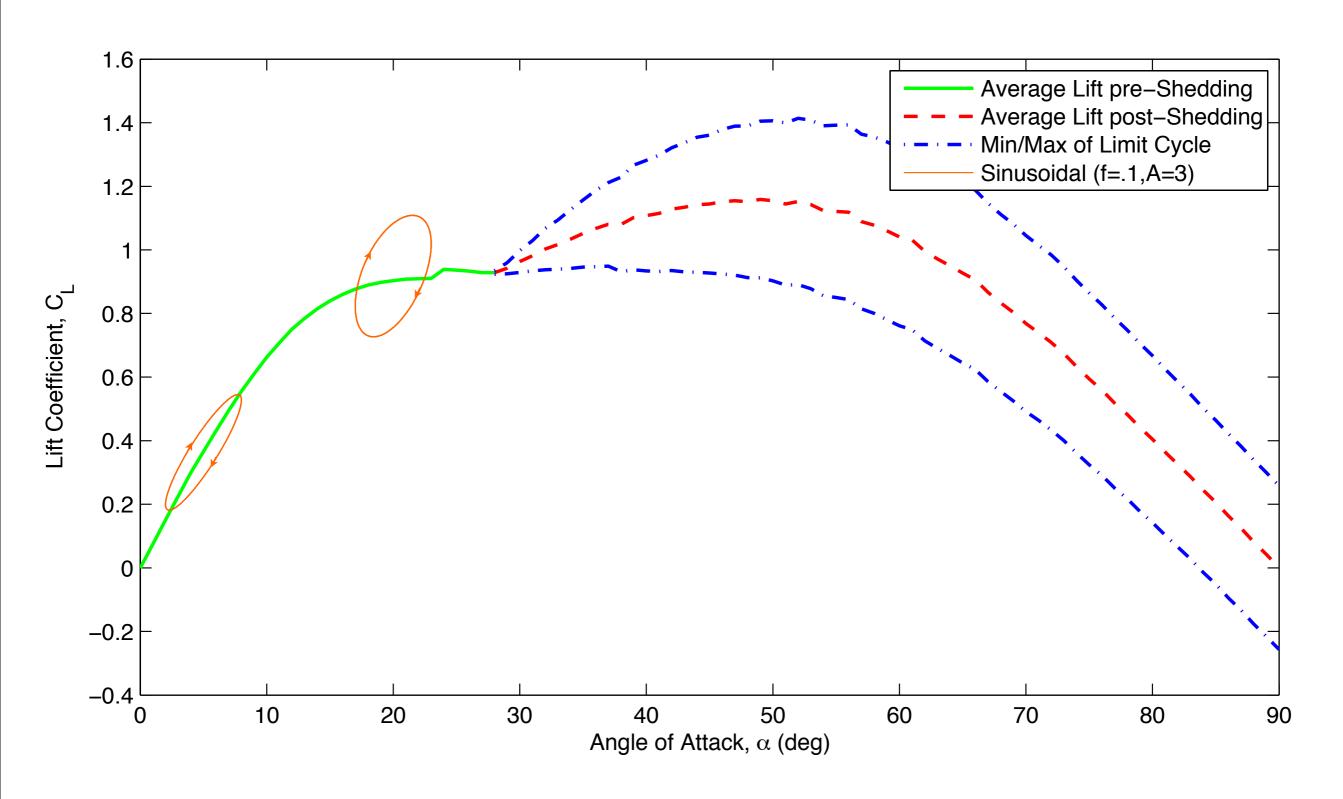




Need model that captures lift due to moving airfoil!



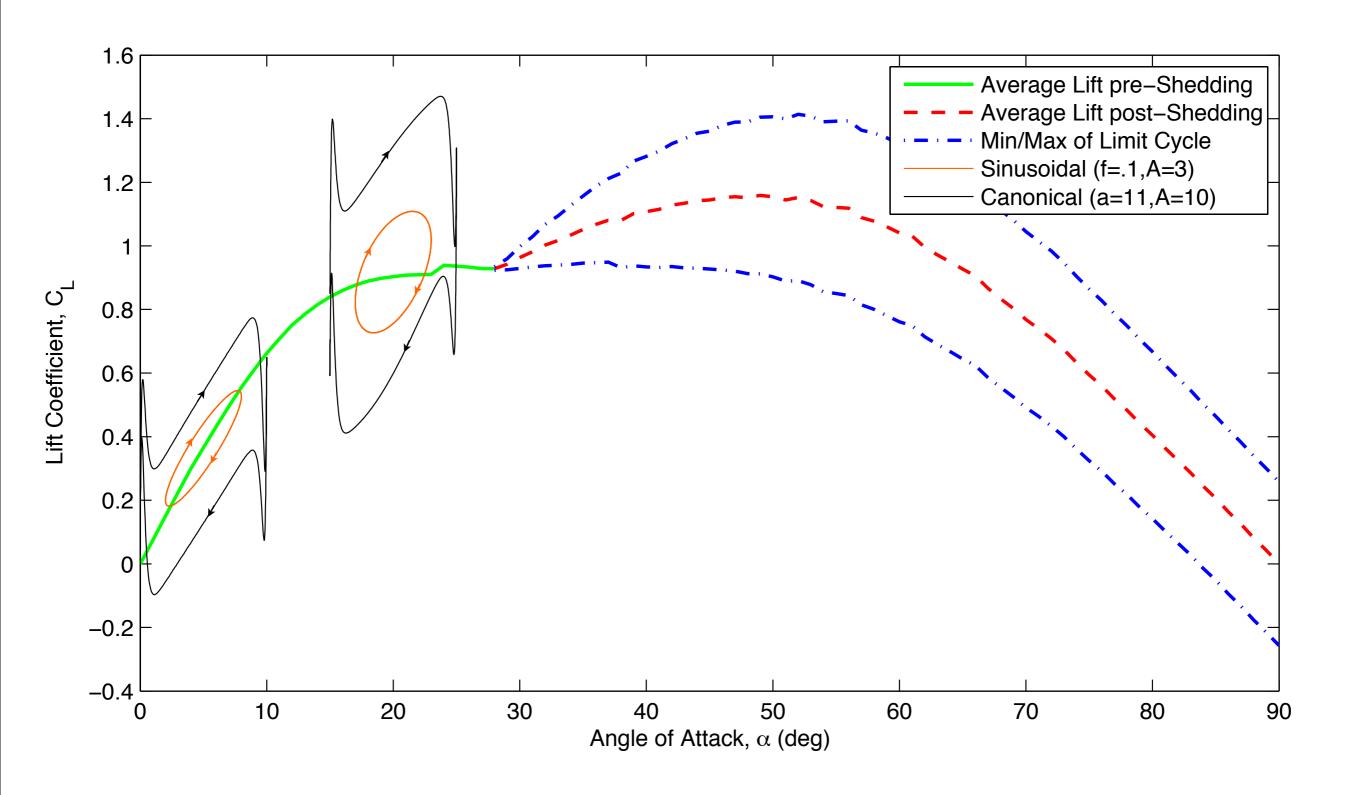




Need model that captures lift due to moving airfoil!



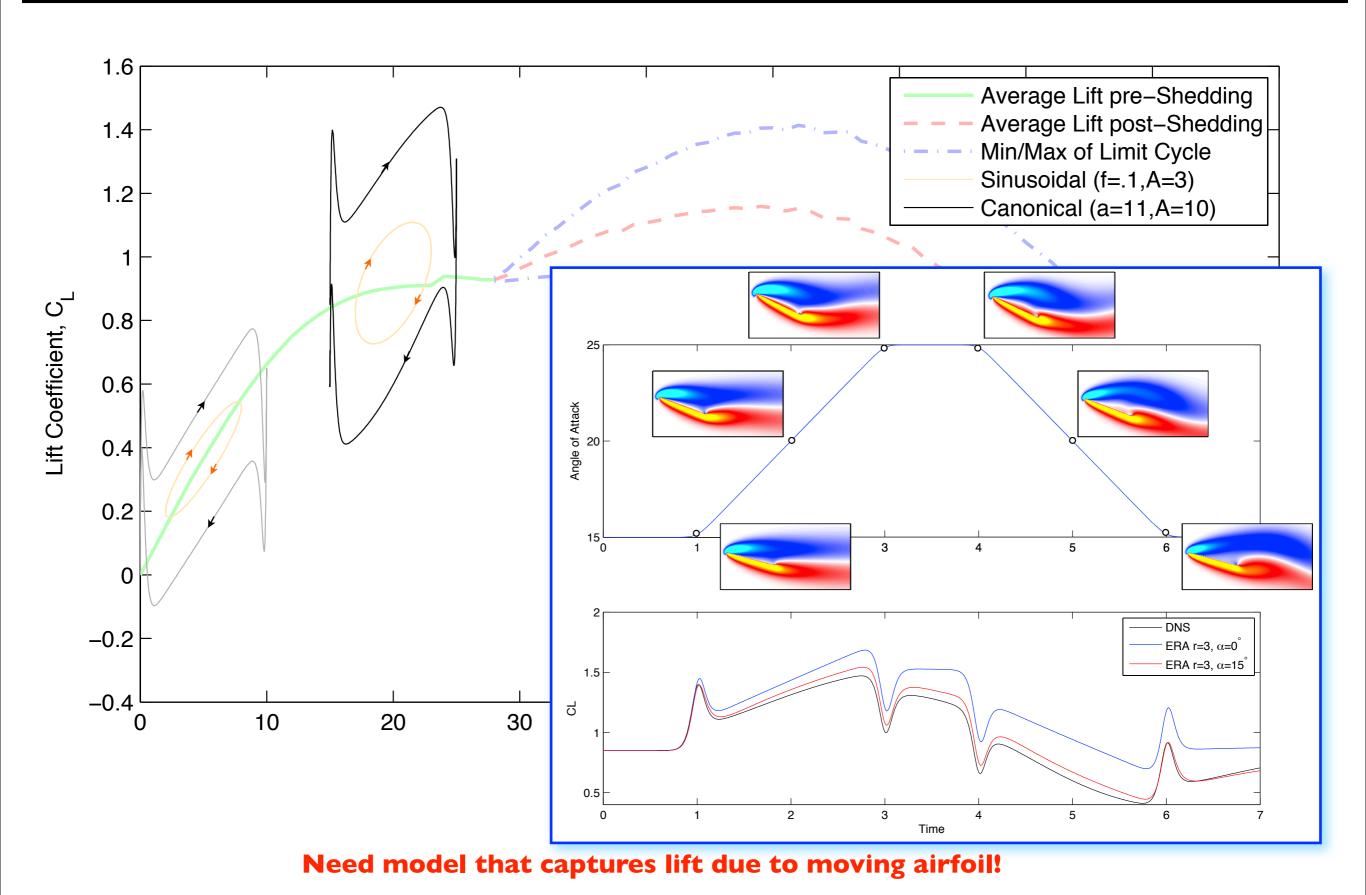




Need model that captures lift due to moving airfoil!

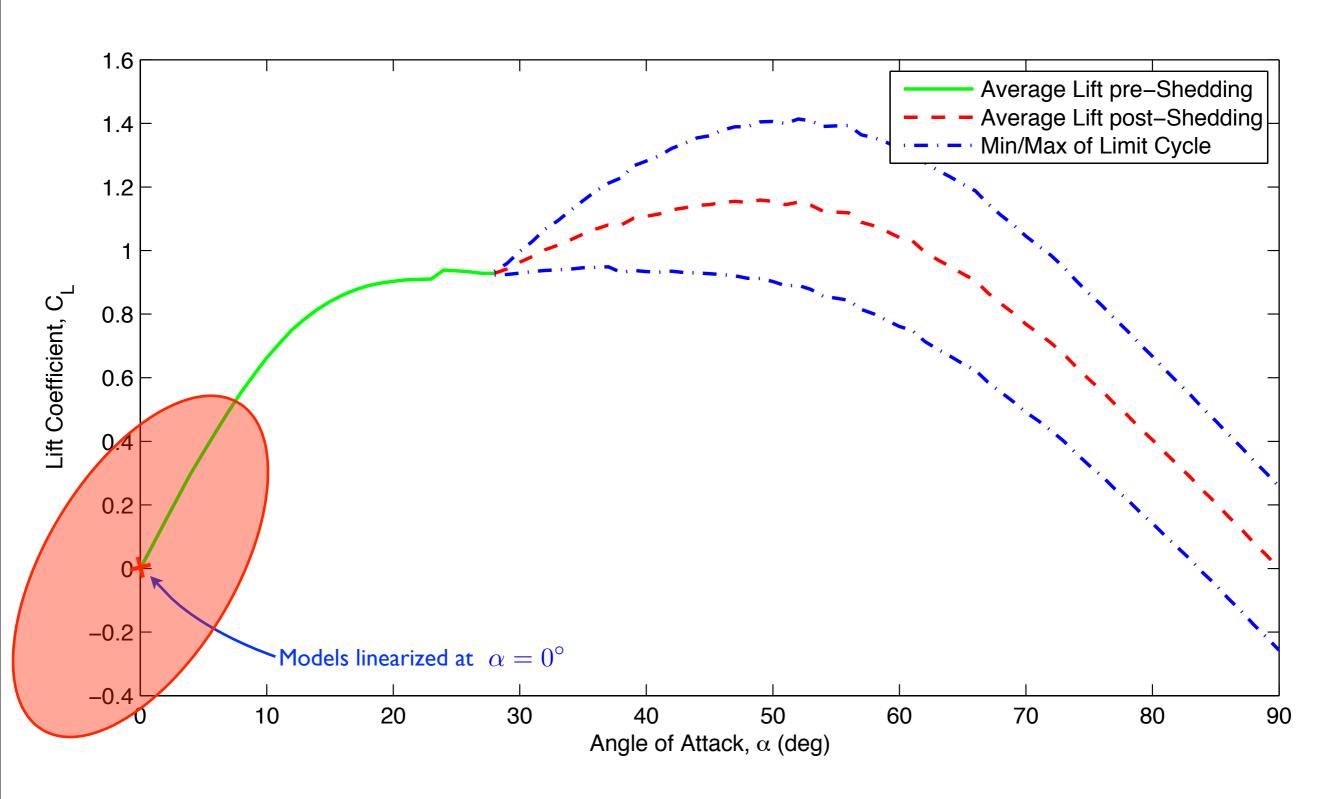






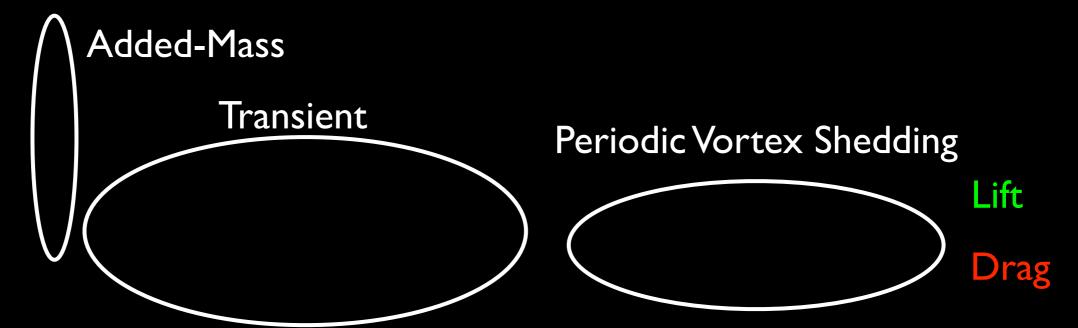








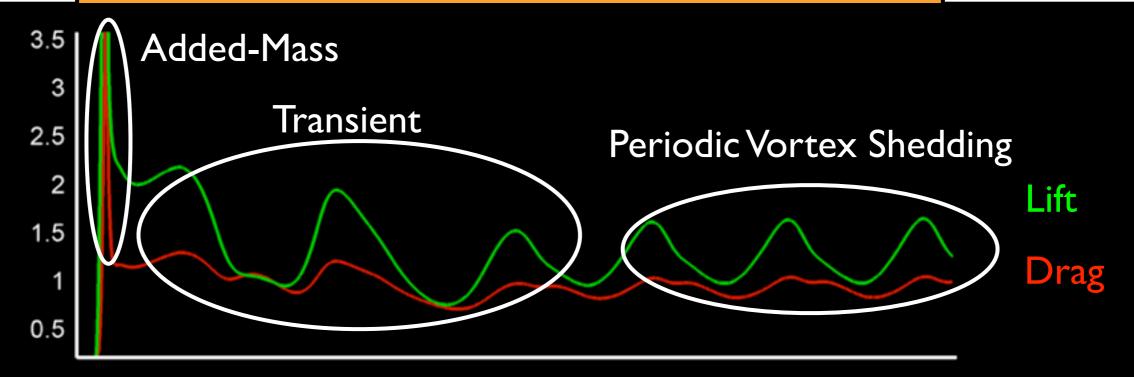




$$Re = 300$$
  
 $\alpha = 32^{\circ}$ 













#### **Added Mass**

Increasingly important for small/light aircraft

Unsteady potential flow forces (F=ma)

force needed to move air as plate accelerates

#### Circulatory/Viscous

Captures separation effects

Need improved models here

source of all lift in steady flight... and more





#### **Added Mass**

Increasingly important for small/light aircraft

Unsteady potential flow forces (F=ma)

force needed to move air as plate accelerates

#### Circulatory/Viscous

Captures separation effects

Need improved models here

source of all lift in steady flight... and more

The mass of the body and surrounding fluid are being accelerated, to different extents.

Kinetic energy T will be in some manner proportional to U (for potential and Stokes flows)

$$T = \rho \frac{I}{2} U^2 \qquad \text{where} \qquad I = \int_V \frac{u_i}{U} \cdot \frac{u_i}{U} dV$$

If body accelerates, T probably increases, and energy must be supplied:

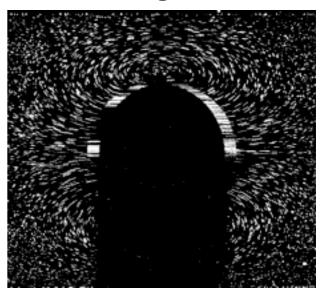
$$\frac{dT}{dt} = -FU \quad \Longrightarrow \quad F_i = -\underbrace{\rho I_{ij}}_{\mathrm{AM}} \dot{U}_j$$

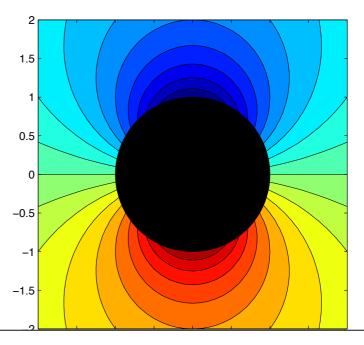
Lamb, 1945.

Milne-Thompson, 1962

Newman, 1977.

cylinder moving in Lab frame









#### **Added Mass**

Increasingly important for small/light aircraft

Unsteady potential flow forces (F=ma)

force needed to move air as plate accelerates

#### Circulatory/Viscous

Captures separation effects

Need improved models here

source of all lift in steady flight... and more

The mass of the body and surrounding fluid are being accelerated, to different extents.

Kinetic energy T will be in some manner proportional to U (for potential and Stokes flows)

$$T = \rho \frac{I}{2} U^2 \qquad \text{where} \qquad I = \int_V \frac{u_i}{U} \cdot \frac{u_i}{U} dV$$

If body accelerates, T probably increases, and energy must be supplied:

$$\frac{dT}{dt} = -FU \quad \Longrightarrow \quad F_i = -\underbrace{\rho I_{ij}}_{\mathrm{AM}} \dot{U}_j$$

Lamb, 1945.

Milne-Thompson, 1962

**Newman, 1977.** 

#### **Beer bubble acceleration**







#### **Added Mass**

Increasingly important for small/light aircraft

Unsteady potential flow forces (F=ma)

force needed to move air as plate accelerates

#### Circulatory/Viscous

Captures separation effects

Need improved models here

source of all lift in steady flight... and more



**Boundary layer** 

Laminar separation bubble

Leading edge vortex

**Periodic Vortex Shedding** 



Stengel, 2004.





### Theodorsen's Model - 1935



#### **Added Mass**

#### Circulatory/Viscous

Increasingly important for small/light aircraft

Unsteady potential flow forces (F=ma)

Offsteady potential flow forces (F-ma)

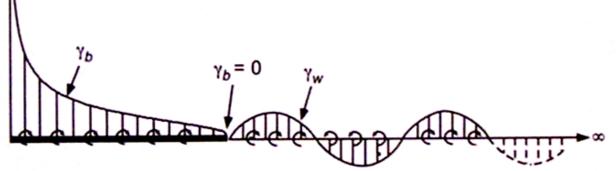
force needed to move air as plate accelerates

Captures separation effects

Need improved models here

source of all lift in steady flight... and more

$$C_{L} = \underbrace{\frac{\pi}{2} \left[ \ddot{h} + \dot{\alpha} - \frac{a}{2} \ddot{\alpha} \right]}_{\text{Added-Mass}} + \underbrace{2\pi \left[ \alpha + \dot{h} + \frac{1}{2} \dot{\alpha} \left( \frac{1}{2} - a \right) \right]}_{\text{Circulatory}} C(k)$$



$$C(k) = \frac{H_1^{(2)}(k)}{H_1^{(2)}(k) + iH_0^{(2)}(k)}$$

2D Incompressible, inviscid model
Unsteady potential flow (w/ Kutta condition)
Linearized about zero angle of attack

$$k = \frac{\pi f c}{U_{\infty}}$$

Theodorsen, 1935.

Leishman, 2006.



### **Bode Plot of Theodorsen**



$$C_L = \underbrace{\frac{\pi}{2} \left[ \ddot{h} + \dot{\alpha} - \frac{a}{2} \ddot{\alpha} \right]}_{} + 2\pi \left[ \alpha + \dot{h} + \frac{1}{2} \dot{\alpha} \left( \frac{1}{2} - a \right) \right] C(k)$$

$$k = \frac{\pi f c}{U_{\infty}}$$

#### **Frequency response**

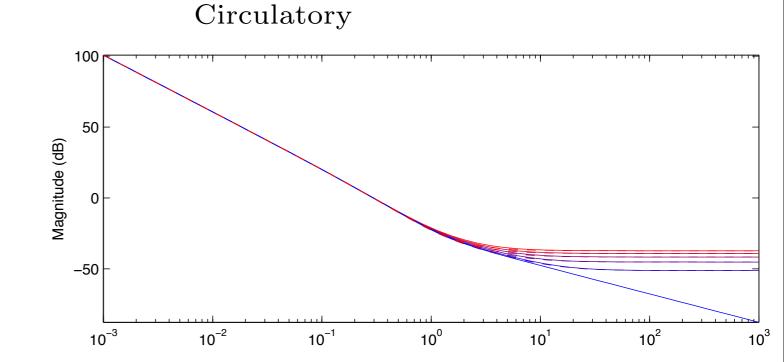
input is  $\ddot{\alpha}$  (  $\alpha$  is angle of attack) output is lift coefficient  $C_{\rm L}$ 

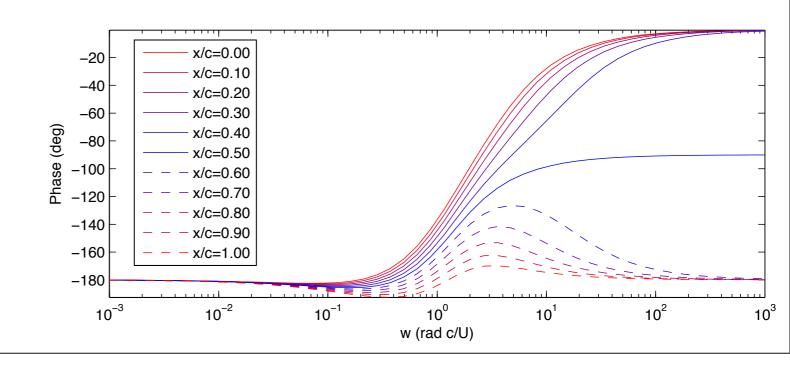
Added-Mass

Low frequencies dominated by quasi-steady forces

High frequencies dominated by added-mass forces

Crossover region determined by Theodorsen's function  $\,C(k)\,$ 





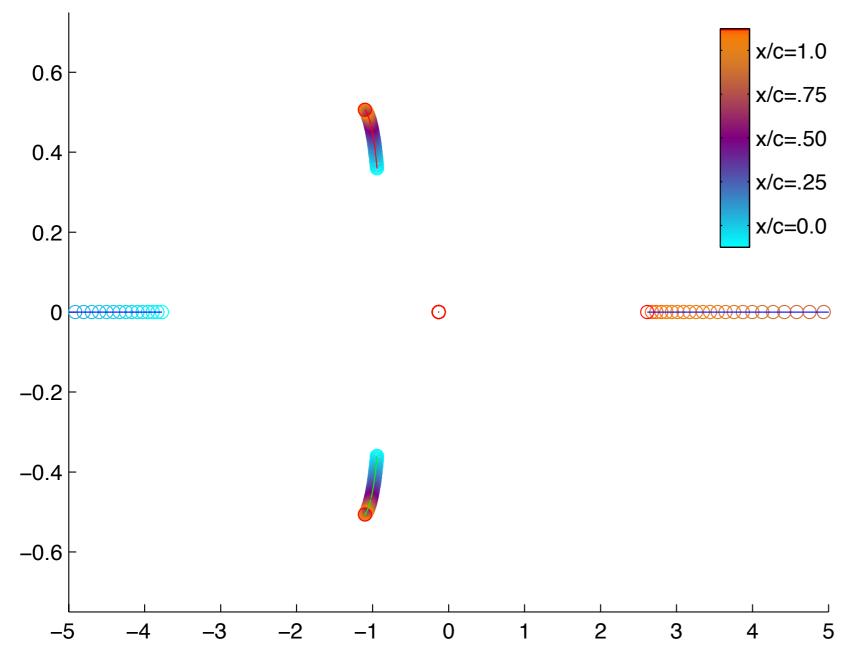
Brunton and Rowley, AIAA ASM 2011



### Zeros of Theodorsen's Model







All Theodorsen pitch models have same poles, different zeros

As pitch point moves aft of center, zero enters RHP at +infinity.

#### non-minimum phase response:

Given a step in angle of attack, lift initially moves in opposite direction (because of negative added-mass forces), before the circulatory lift forces have a change to catch up and system relaxes to a positive lift steady state.

#### Brunton and Rowley, AIAA ASM 2011



### Indicial Response Models



Given an impulse in angle of attack,  $lpha=\delta(t)$  , the time history of Lift is  $C_L^\delta(t)$ 

The response to an arbitrary input  $\alpha(t)$  is given by linear superposition:

$$C_L(t) = \int_0^t C_L^{\delta}(t - \tau)\alpha(\tau)d\tau = (C_L^{\delta} * \alpha)(t)$$

Given a step in angle of attack,  $\dot{\alpha}=\delta(t)$ , the time history of Lift is  $C_L^S(t)$ . The response to an arbitrary input  $\alpha(t)$  is given by:

$$C_L(t) = C_L^S(t)\alpha(0) + \int_0^t C_L^S(t-\tau)\dot{\alpha}(\tau)d\tau$$

### **Model Summary**

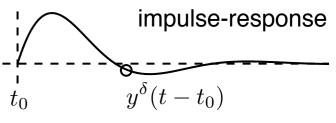
**Reconstructs Lift for arbitrary input** 

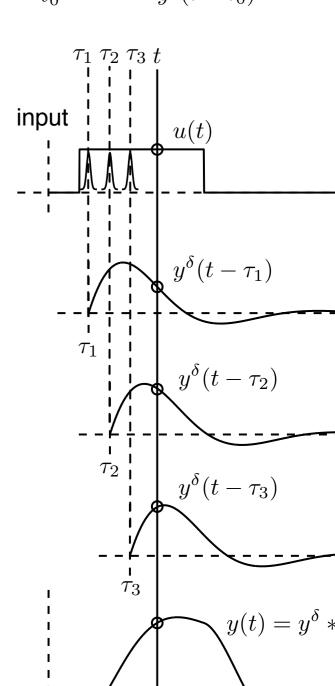
Linear time-invariant (LTI) models

Based on experiment, simulation or theory

Wagner developed indicial response analytically using same approximations as Theodorsen

convolution integral inconvenient for feedback control design





output

Wagner, 1925. Reisenthel, 1996. Leishman, 2006.



### Indicial Response Models



Given an impulse in angle of attack,  $lpha=\delta(t)$  , the time history of Lift is  $C_L^\delta(t)$ 

The response to an arbitrary input  $\alpha(t)$  is given by linear superposition:

$$C_L(t) = \int_0^t C_L^{\delta}(t - \tau)\alpha(\tau)d\tau = (C_L^{\delta} * \alpha)(t)$$

Given a step in angle of attack,  $\dot{\alpha}=\delta(t)$  , the time history of Lift is  $\,C_L^S(t)$ 

The response to an arbitrary input  $\alpha(t)$  is given by:

$$C_L(t) = C_L^S(t)\alpha(0) + \int_0^t C_L^S(t-\tau)\dot{\alpha}(\tau)d\tau$$

### **Model Summary**

**Reconstructs Lift for arbitrary input** 

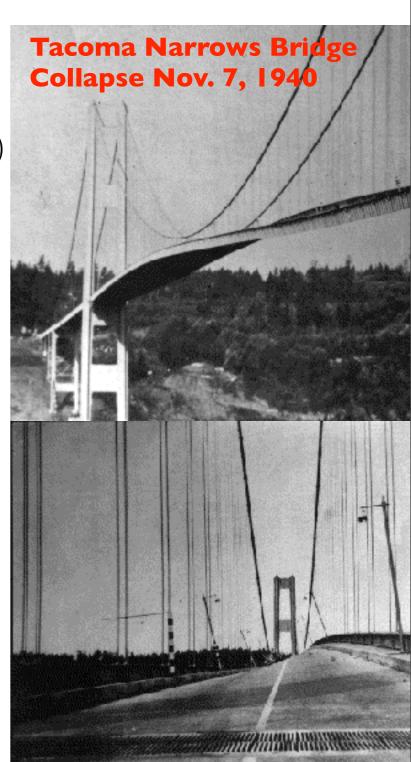
Linear time-invariant (LTI) models

Based on experiment, simulation or theory

Wagner developed indicial response analytically using same approximations as Theodorsen

convolution integral inconvenient for feedback control design

Wagner, 1925. Reisenthel, 1996. Leishman, 2006.





### State-Space Indicial Response



#### **Indicial Response**

Tuned to specific geometry, Re #

$$C_L(t) = C_L^{\delta}(t)\alpha(0) + \int_0^t C_L^{\delta}(t-\tau)\dot{\alpha}(\tau)d\tau$$

#### **Theodorsen's Model**

Physically motivated components

Parametrized by pitch point

Frequency domain, idealized assumptions

$$C_{L} = \underbrace{\frac{\pi}{2} \left[ \ddot{h} + \dot{\alpha} - \frac{a}{2} \ddot{\alpha} \right]}_{\text{Added-Mass}} + \underbrace{2\pi \left[ \alpha + \dot{h} + \frac{1}{2} \dot{\alpha} \left( \frac{1}{2} - a \right) \right]}_{\text{Circulatory}} C(k)$$

#### **State-Space Model**

Captures input output dynamics accurately

Computationally tractable

fits into control framework

transient dynamics-

$$\frac{d}{dt} \begin{bmatrix} \mathbf{x} \\ \alpha \\ \dot{\alpha} \end{bmatrix} = \begin{bmatrix} A_r & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \alpha \\ \dot{\alpha} \end{bmatrix} + \begin{bmatrix} B_r \\ 0 \\ 1 \end{bmatrix} \ddot{\alpha}$$

$$C_L = egin{bmatrix} C_T & C_{L_lpha} & C_{L_{\dotlpha}} \end{bmatrix} egin{bmatrix} \mathbf{x} \\ lpha \\ \dot{\dot{lpha}} \end{bmatrix} + C_{L_{\ddotlpha}} \ddot{lpha} \\ \dot{\dot{lpha}} \end{bmatrix}$$
 quasi-steady and added-mass



### State-Space Indicial Response



Stability derivatives plus fast dynamics

$$C_L(\alpha, \dot{\alpha}, \ddot{\alpha}, \mathbf{x}) = C_{L_{\alpha}}\alpha + C_{L_{\dot{\alpha}}}\dot{\alpha} + C_{L_{\ddot{\alpha}}}\ddot{\alpha} + C_{L_{\ddot{\alpha}}}\ddot{\alpha} + C_{L_{\ddot{\alpha}}}\ddot{\alpha}$$
Transient

Quasi-steady and added-mass

Transient dynamics

**Transfer Function** 

$$Y(s) = \left[\frac{C_{L_{\alpha}}}{s^2} + \frac{C_{L_{\dot{\alpha}}}}{s} + C_{L_{\ddot{\alpha}}} + G(s)\right] s^2 U(s)$$

#### **State-Space Model**

Captures input output dynamics accurately

Computationally tractable

fits into control framework

transient dynamics-

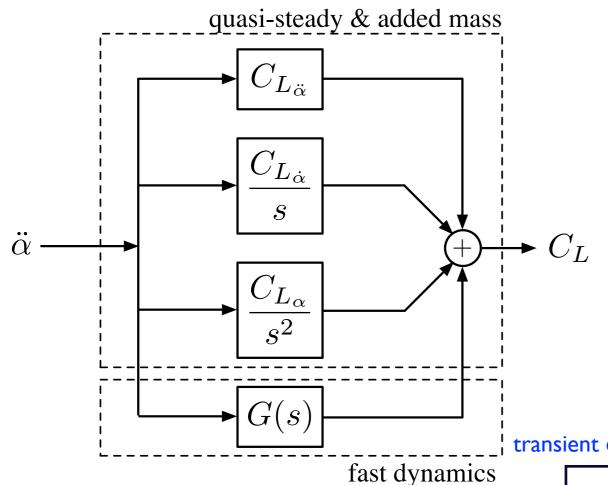
$$\frac{d}{dt} \begin{bmatrix} \mathbf{x} \\ \alpha \\ \dot{\alpha} \end{bmatrix} = \begin{bmatrix} A_r & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \alpha \\ \dot{\alpha} \end{bmatrix} + \begin{bmatrix} B_r \\ 0 \\ 1 \end{bmatrix} \ddot{\alpha}$$

$$C_L = \begin{bmatrix} C_r & C_{L_lpha} & C_{L_{\dotlpha}} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ lpha \\ \dot{\dot{lpha}} \end{bmatrix} + C_{L_{\ddotlpha}} \ddot{lpha}$$
 quasi-steady and added-mass



### State-Space Indicial Response





### **Model Summary**

Linearized about  $\alpha=0$ 

Based on experiment, simulation or theory

Recovers stability derivatives  $C_{L_{\alpha}}, C_{L_{\dot{\alpha}}}, C_{L_{\dot{\alpha}}}$ associated with quasi-steady and added-mass

**ODE** model ideal for control design

transient dynamics-

$$\frac{d}{dt} \begin{bmatrix} \mathbf{x} \\ \alpha \\ \dot{\alpha} \end{bmatrix} = \begin{bmatrix} A_r & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \alpha \\ \dot{\alpha} \end{bmatrix} + \begin{bmatrix} B_r \\ 0 \\ 1 \end{bmatrix} \ddot{\alpha}$$

$$C_{L} = \begin{bmatrix} C_{r} & C_{L_{\alpha}} & C_{L_{\dot{\alpha}}} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \alpha \\ \dot{\alpha} \end{bmatrix} + C_{L_{\ddot{\alpha}}} \ddot{\alpha}$$

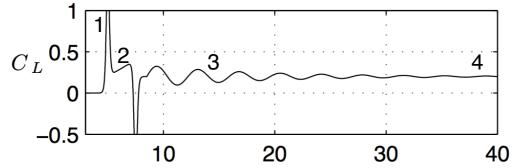
quasi-steady and added-mass

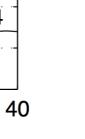
Brunton and Rowley, in preparation.

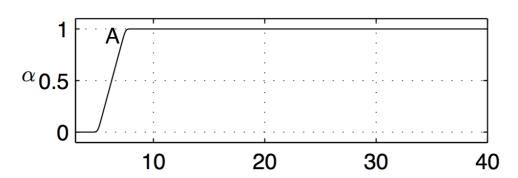


### Identifying Model from Simulations

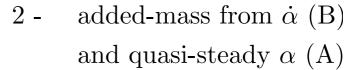


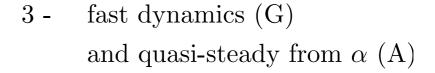




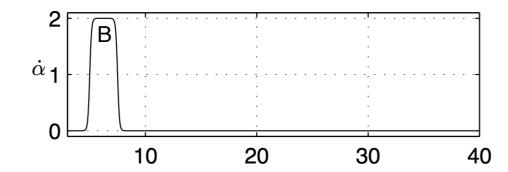




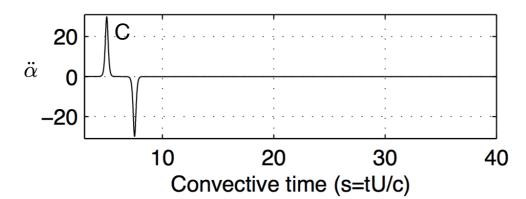












4-6 orders of magnitude frequency and scale separation in response



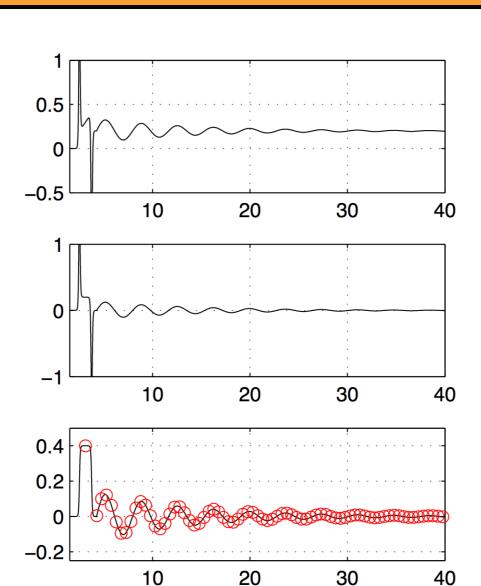
### Method I



step maneuver in  $\alpha$  $\dot{\alpha} = \delta$  (resolved in time)

subtract off  $\alpha \cdot C_{L_{\alpha}}$  (low frequency asymptote)

subtract off  $\ddot{\alpha} \cdot C_{\ddot{\alpha}}$  (high frequency asymptote)



$$\frac{d}{dt} \begin{bmatrix} x \\ \alpha \\ \dot{\alpha} \end{bmatrix} = \begin{bmatrix} A & 0 & B \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ \alpha \\ \dot{\alpha} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \ddot{\alpha}$$

$$y = \begin{bmatrix} C & C_{\alpha} & C_{\dot{\alpha}} \end{bmatrix} \begin{bmatrix} x \\ \alpha \\ \dot{\alpha} \end{bmatrix} + D\ddot{\alpha}$$

# Transient dynamics modeled using ERA model

$$\dot{\alpha} \to (A, B, C, C_{\dot{\alpha}}) \to C_L$$

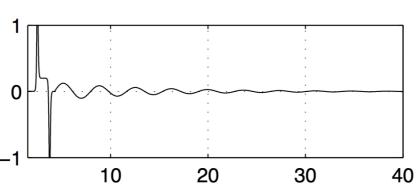


### Method II

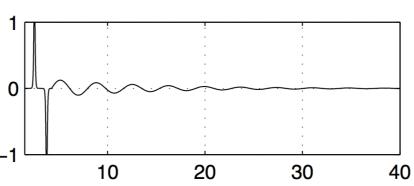


step maneuver in  $\alpha$  $\dot{\alpha} = \delta$  (resolved in time) 0.5
0
10
20
30
40

subtract off  $\alpha \cdot C_{L_{\alpha}}$  (low frequency asymptote)



subtract off  $\dot{\alpha} \cdot C_{\dot{\alpha}}$ 



integrate to obtain  $\ddot{\alpha} = \delta$  (less  $C_{L_{\alpha}}$  and  $C_{\dot{\alpha}}$  terms)

$$\frac{d}{dt} \begin{bmatrix} x \\ \alpha \\ \dot{\alpha} \end{bmatrix} = \begin{bmatrix} A & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ \alpha \\ \dot{\alpha} \end{bmatrix} + \begin{bmatrix} B \\ 0 \\ 1 \end{bmatrix} \ddot{\alpha}$$

$$y = \begin{bmatrix} C & C_{\alpha} & C_{\dot{\alpha}} \end{bmatrix} \begin{bmatrix} x \\ \alpha \\ \dot{\alpha} \end{bmatrix} + D\ddot{\alpha}$$

# Transient dynamics modeled using ERA model

$$\dot{\alpha} \to (A, B, C, D) \to C_L$$



# Summary of Methods



#### **Method I**

$$\frac{d}{dt} \begin{bmatrix} x \\ \alpha \\ \dot{\alpha} \end{bmatrix} = \begin{bmatrix} A & 0 & B \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ \alpha \\ \dot{\alpha} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \ddot{\alpha}$$

$$y = \begin{bmatrix} C & C_{\alpha} & C_{\dot{\alpha}} \end{bmatrix} \begin{bmatrix} x \\ \alpha \\ \dot{\alpha} \end{bmatrix} + D\ddot{\alpha}$$

#### **Method II**

$$\frac{d}{dt} \begin{bmatrix} x \\ \alpha \\ \dot{\alpha} \end{bmatrix} = \begin{bmatrix} A & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ \alpha \\ \dot{\alpha} \end{bmatrix} + \begin{bmatrix} B \\ 0 \\ 1 \end{bmatrix} \ddot{\alpha}$$

$$y = \begin{bmatrix} C & C_{\alpha} & C_{\dot{\alpha}} \end{bmatrix} \begin{bmatrix} x \\ \alpha \\ \dot{\alpha} \end{bmatrix} + D\ddot{\alpha}$$

#### **General procedure**

- I. Obtain time-resolved step response in pitch angle
- 2. Identify some or all of the quasi-steady and added mass parameters  $\,C_{L_lpha}, C_{\dotlpha}, C_{\ddotlpha}$
- 3. Model remaining transient dynamic with Eigensystem realization algorithm (ERA)

recently shown to be equivalent to balanced proper orthogonal decomposition (BPOD)

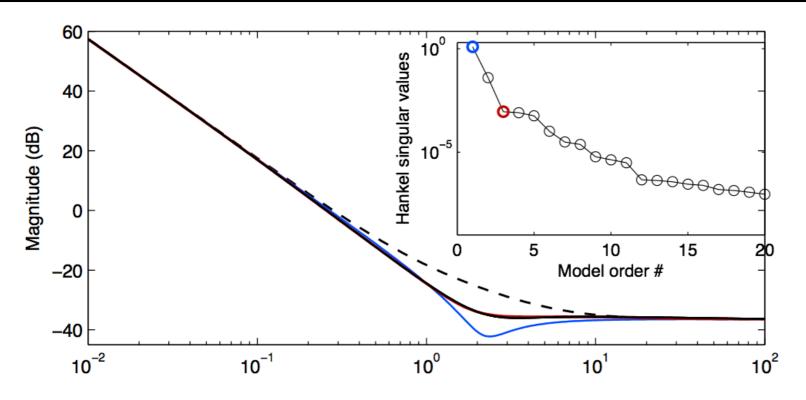
#### **Highly flexible**

- I. Extensions for pitch, plunge, and surge motions
- 2. Multiple input, multiple output models possible with ERA



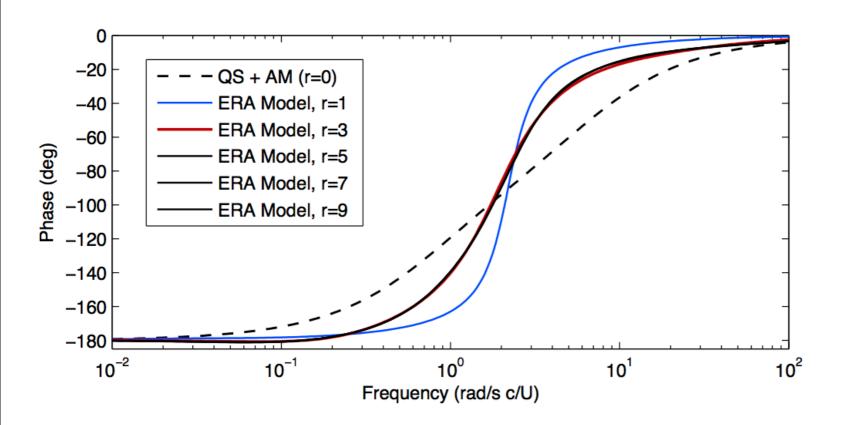
### Bode Plot - Pitch (LE)





#### **Frequency response**

input is  $\ddot{\alpha}$  (  $\alpha$  is angle of attack) output is lift coefficient  $C_L$  Pitching at leading edge



Model without additional dynamics [QS+AM (r=0)] is inaccurate in crossover region

Models with fast dynamics of ERA model order >3 are converged

Punchline: additional fast dynamics (ERA model) are essential

Brunton and Rowley, in preparation.



### Bode Plot - Pitch (QC)



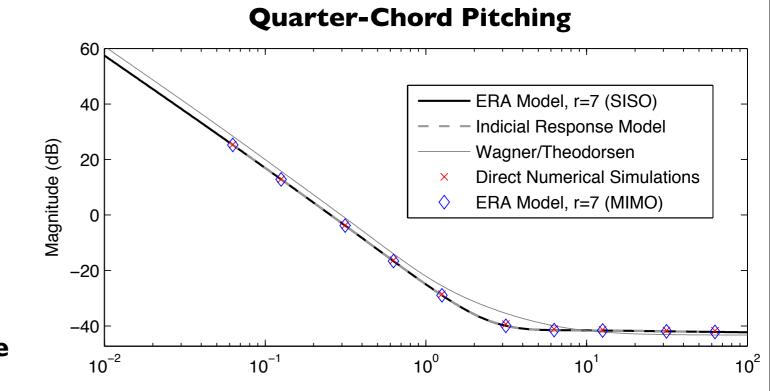
#### **Frequency response**

input is  $\ddot{\alpha}$  (  $\alpha$  is angle of attack)

output is lift coefficient  $\,C_L\,$ 

Pitching at quarter chord

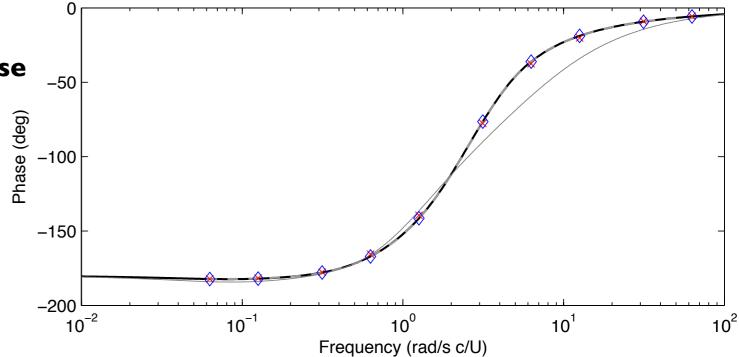
Reduced order model with ERA r=7 accurately reproduces Indicial Response



Indicial Response and model agree better with DNS than Theodorsen's model.

Asymptotes are correct for Indicial Response because it is based on simulations

Model for pitch/plunge dynamics [ERA, r=7 (MIMO)] works as well, for the same order model



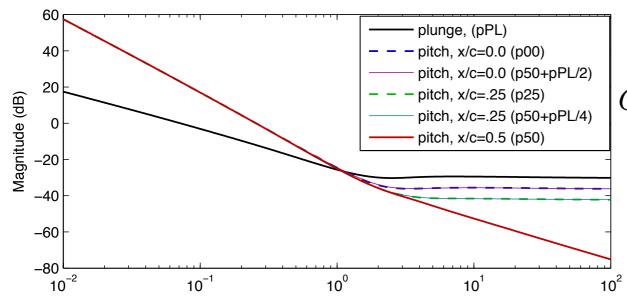
Brunton and Rowley, in preparation.

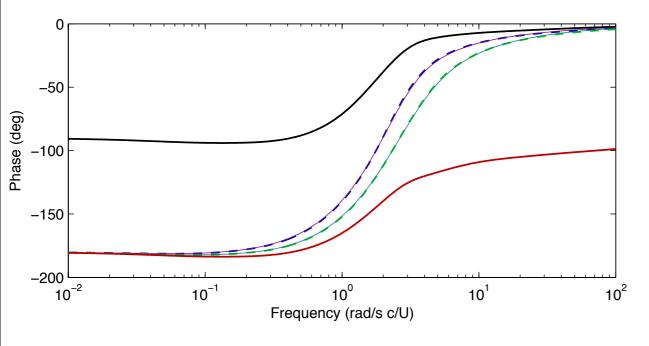


### Parametrized by Pitch Point



$$\frac{d}{dt} \begin{bmatrix} \mathbf{x} \\ \alpha \\ \dot{\alpha} \\ \dot{h} \end{bmatrix} = \begin{bmatrix} A & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \alpha \\ \dot{\alpha} \\ \dot{h} \end{bmatrix} + \begin{bmatrix} B_1 - \frac{a}{2}B_2 & B_2 \\ 0 & 0 & 0 \\ 1 & 0 \\ -\frac{a}{2} & 1 \end{bmatrix} \begin{bmatrix} \ddot{\alpha} \\ \ddot{h} \end{bmatrix}$$





$$\begin{vmatrix} C_L = \begin{bmatrix} C & C_{\alpha} & C_{\dot{\alpha}} & C_{\dot{h}} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \alpha \\ \dot{\dot{\alpha}} \\ \dot{h} \end{bmatrix} + \begin{bmatrix} C_{\ddot{\alpha}} - \frac{a}{2}C_{\ddot{h}} & C_{\ddot{h}} \end{bmatrix} \begin{bmatrix} \ddot{\alpha} \\ \ddot{h} \end{bmatrix}$$

 $(A,B_1,C)$  model for pitch at mid-chord

 $(A,B_2,C)$  model for plunge

Pitch about any point is linear combination of pitch at mid-chord and plunge motion

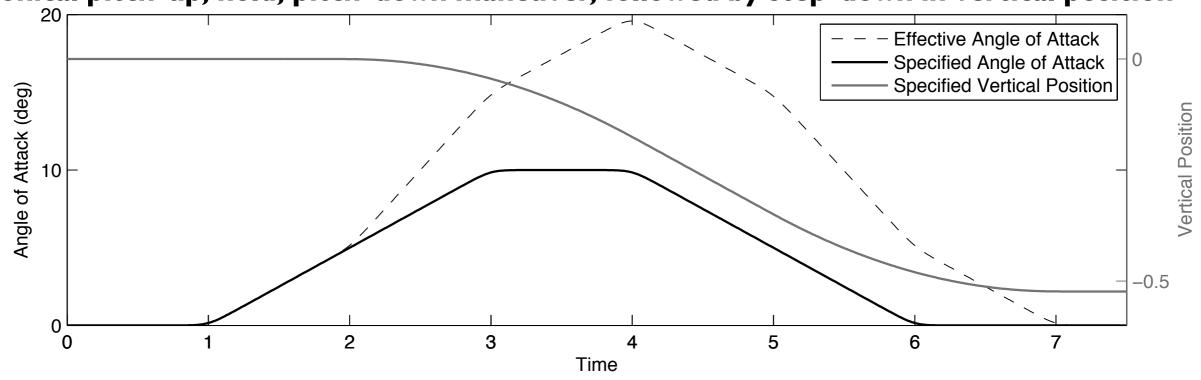
Models all have same poles, different zeros (similar to Theodorsen's model)

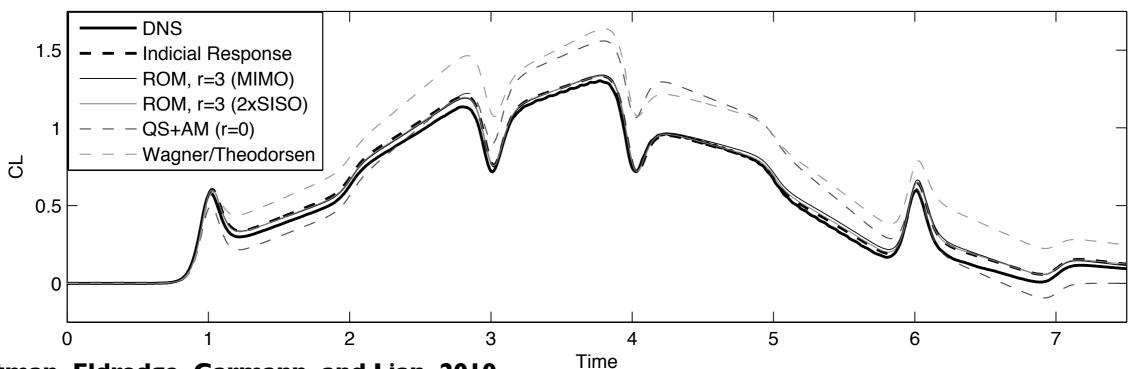


# Pitch/Plunge Maneuver



Canonical pitch-up, hold, pitch-down maneuver, followed by step-down in vertical position





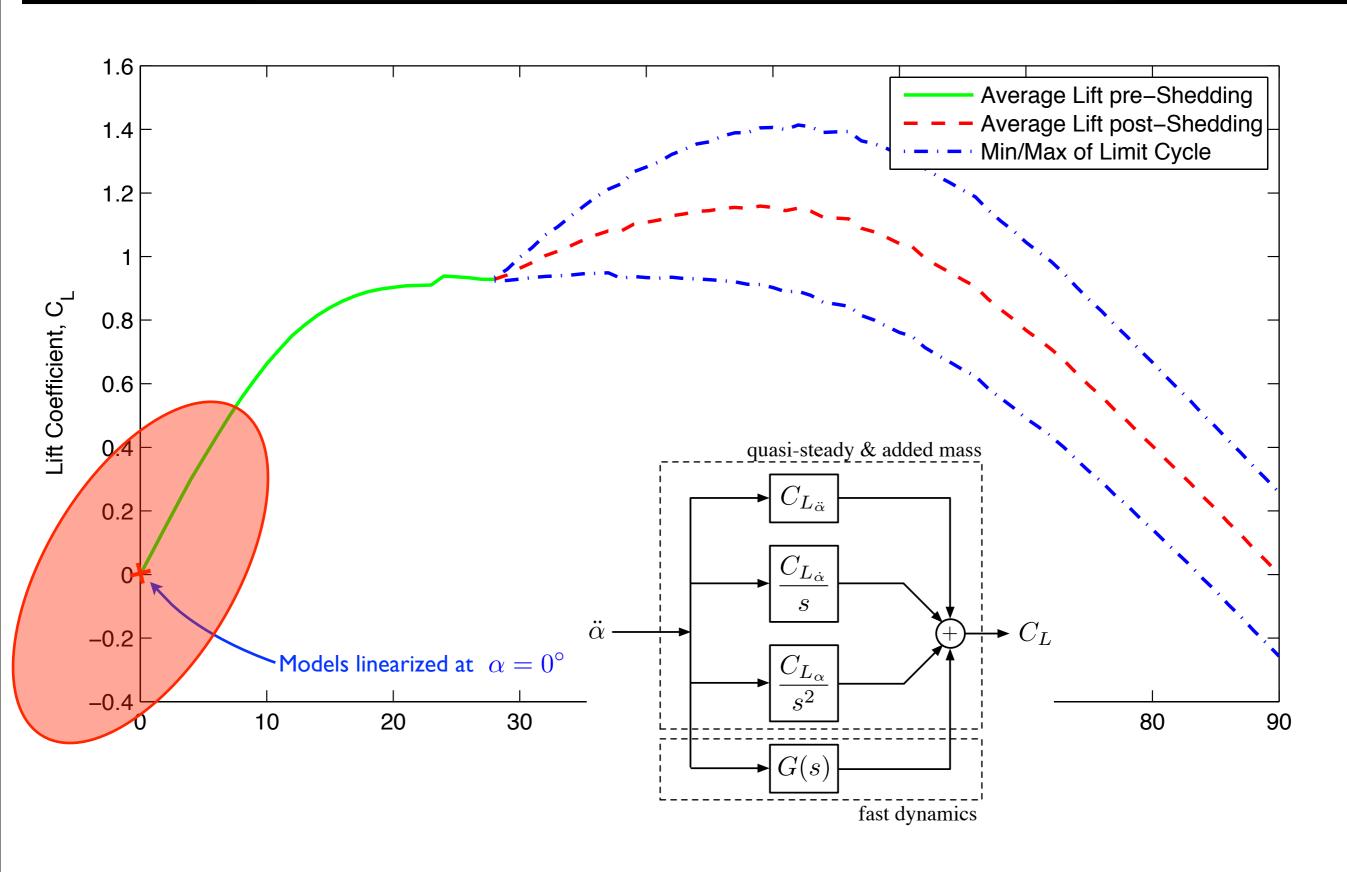
OL, Altman, Eldredge, Garmann, and Lian, 2010 Brunton and Rowley, in preparation.

Reduced order model for indicial response accurately captures lift coefficient history from DNS



# Lift vs. Angle of Attack

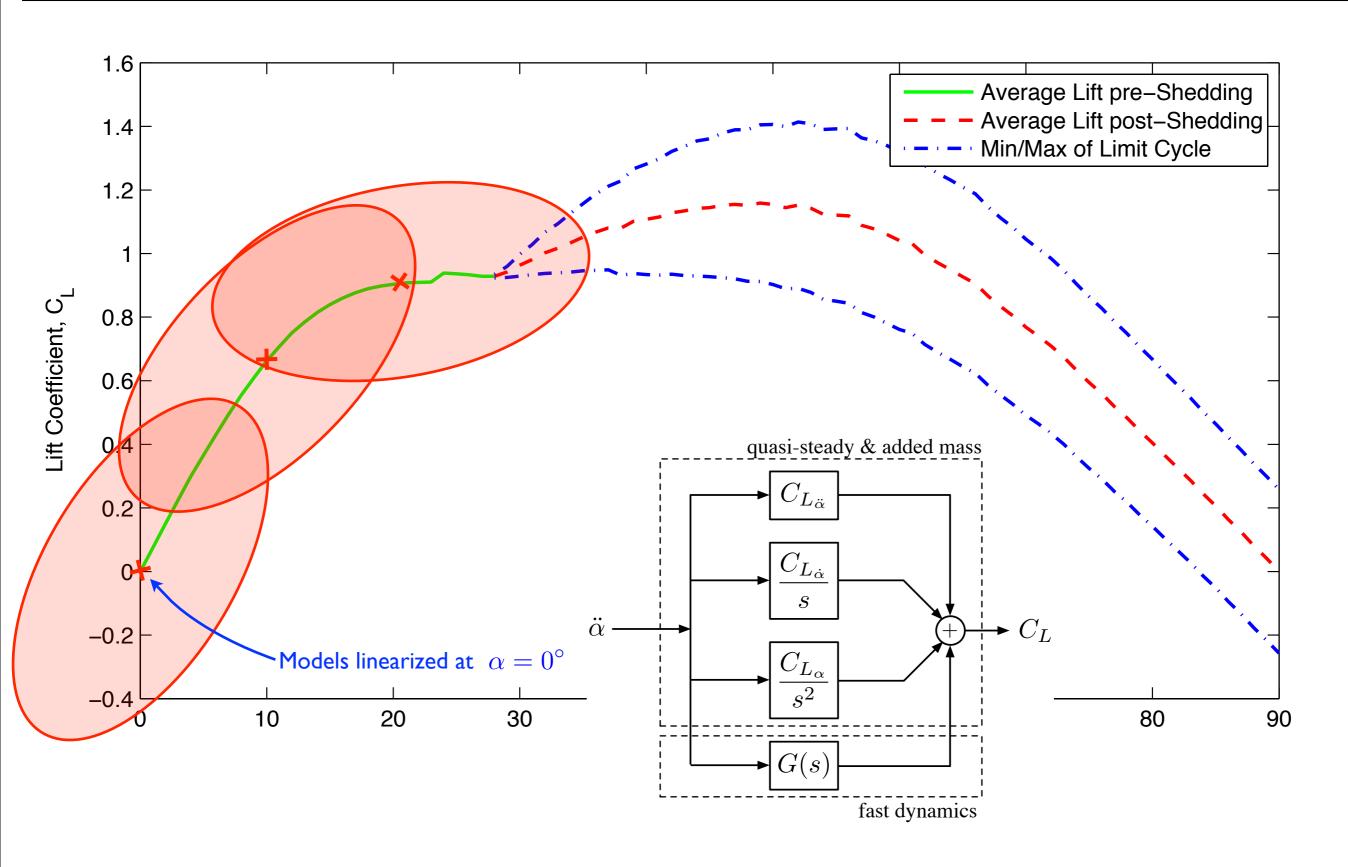






# Lift vs. Angle of Attack







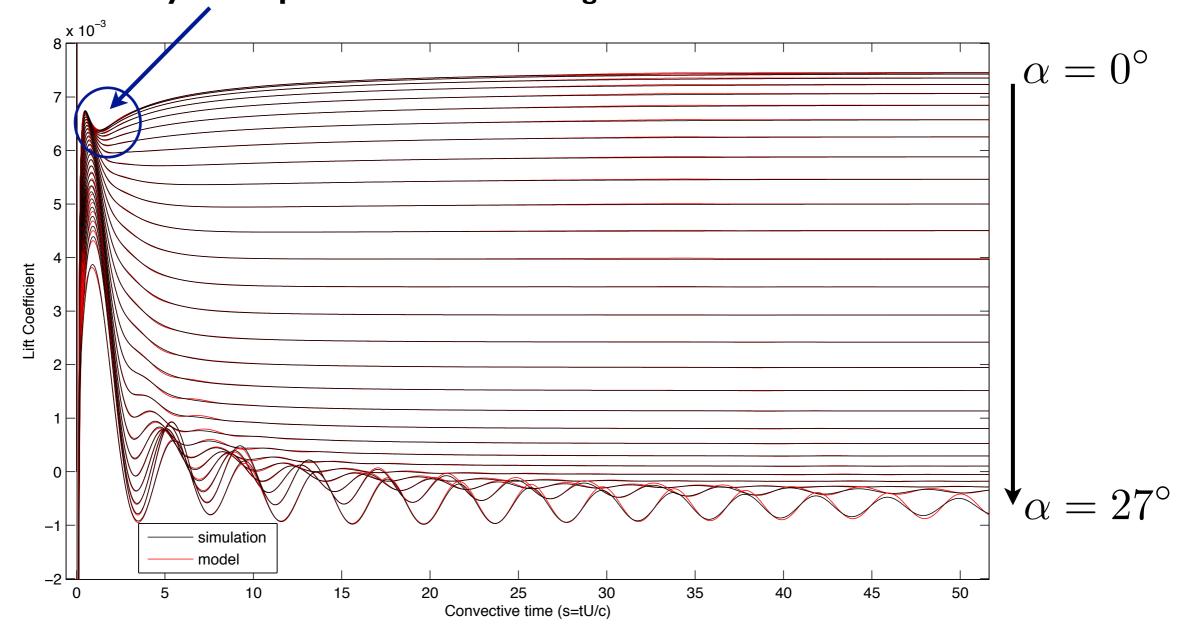
# Models at various angle of attack



Impulse response simulations after rapid step-up  $~lpha \in [0^\circ, 27^\circ]$ 

Initial lift  $\,C_L(lpha_0)$  subtracted off

Model with order r=7 required to capture this flow feature, eventually develops into vortex shedding mode





### **Bode Plot of ERA Models**

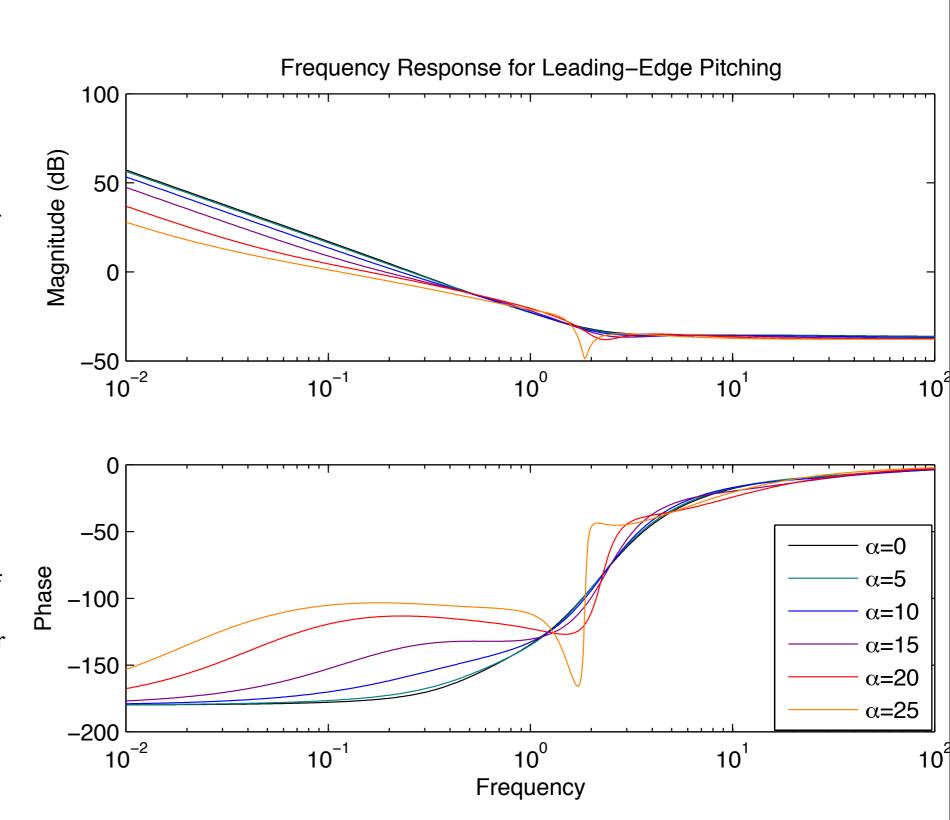


#### **Results**

Lift slope decreases for increasing angle of attack, so magnitude of low frequency motions decreases for increasing angle of attack.

At larger angle of attack, phase converges to -180 at much lower frequencies. I.e., solutions take longer to reach equilibrium in time domain.

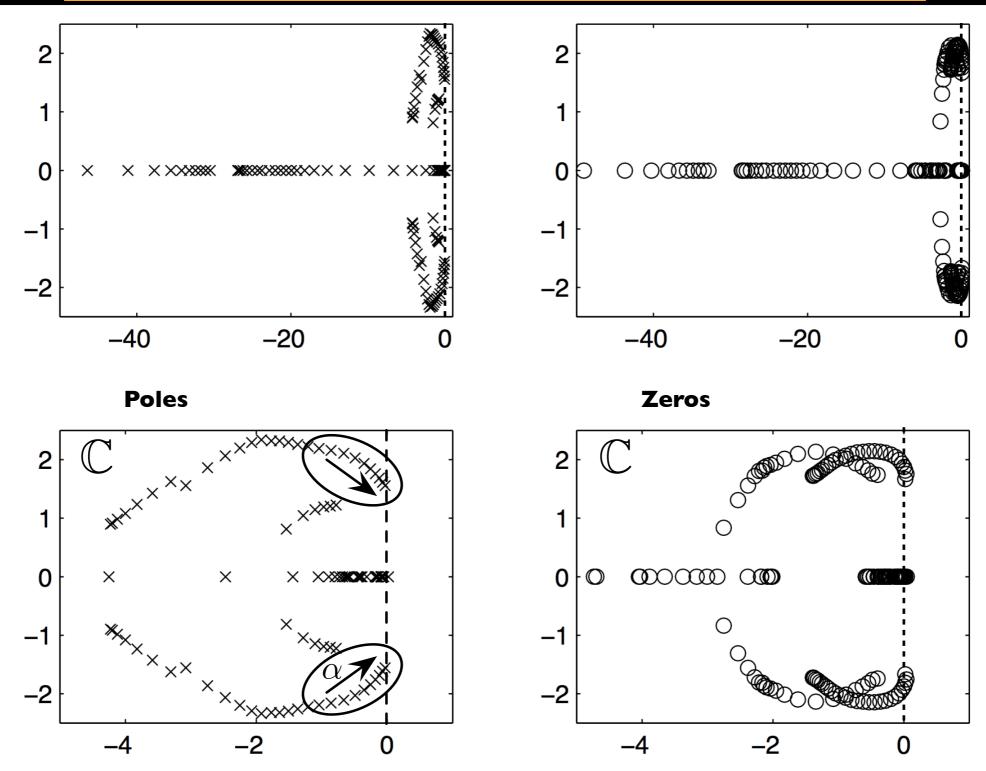
Consistent with fact that for large angle of attack, system is closer to Hopf instability, and a pair of eigenvalues are moving closer to imaginary axis.





### Poles and Zeros of ERA Models



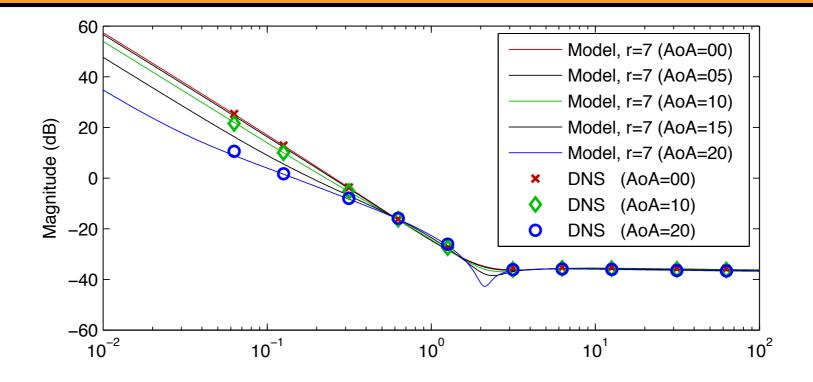


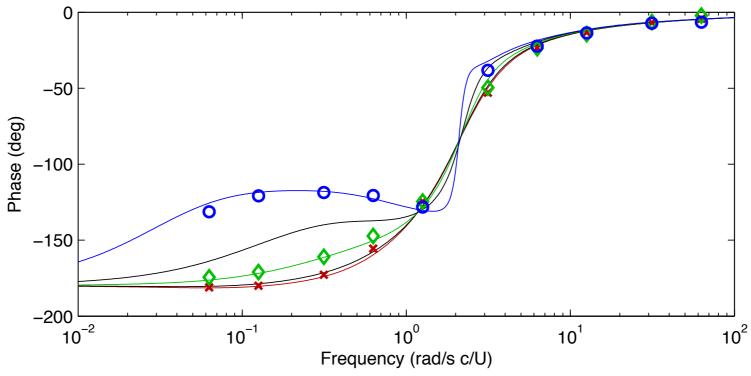
As angle of attack increases, pair of poles (and pair of zeros) march towards imaginary axis. This is a good thing, because a Hopf bifurcation occurs at  $m ~lpha_{crit} pprox 28^\circ$ 



### Bode Plot of Model (-) vs Data (x)







Direct numerical simulation confirms that local linearized models are accurate for small amplitude sinusoidal maneuvers

#### **Brunton and Rowley, AIAA ASM 2011**



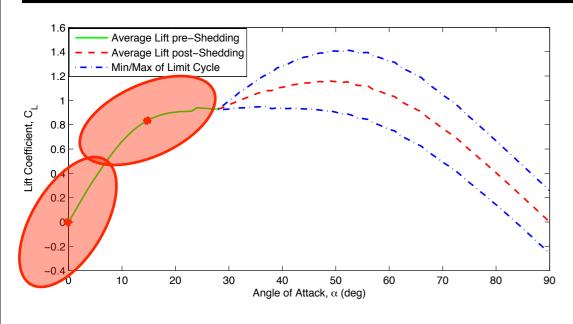
### Large Amplitude Maneuver

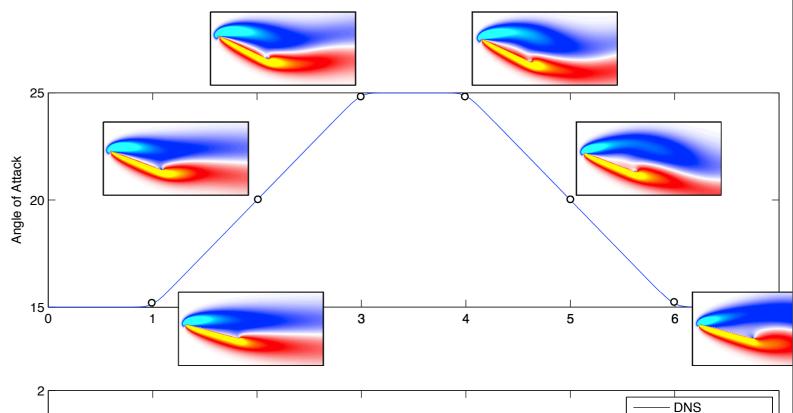
1.5

 $\frac{1}{2}$ 



ERA r=3,  $\alpha$ =0 ERA r=3,  $\alpha$ =15





#### Compare models linearized at

$$lpha = \mathbf{0}^{\circ}$$
 and  $lpha = \mathbf{15}^{\circ}$ 

#### For pitching maneuver with

$$\alpha \in [\mathbf{15}^{\circ}, \mathbf{25}^{\circ}]$$

Model linearized at  $~lpha={f 15}^\circ$ 

#### captures lift response more accurately

$$G(t) = \log \left[ \frac{\cosh(a(t-t_1))\cosh(a(t-t_4))}{\cosh(a(t-t_2))\cosh(a(t-t_3))} \right] \qquad \alpha(t) = \alpha_0 + \alpha_{\max} \frac{G(t)}{\max(G(t))}$$

$$\alpha(t) = \alpha_0 + \alpha_{\max} \frac{G(t)}{\max(G(t))}$$

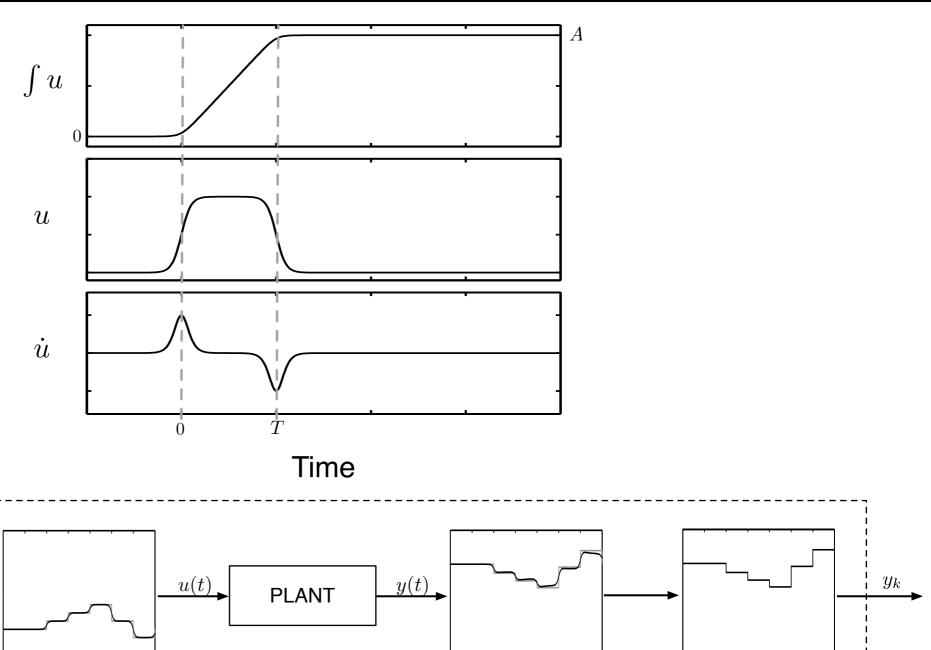
Time

#### Brunton and Rowley, AIAA ASM 2011



# (Indicial) Step Response





Previously, models are based on aerodynamic step response

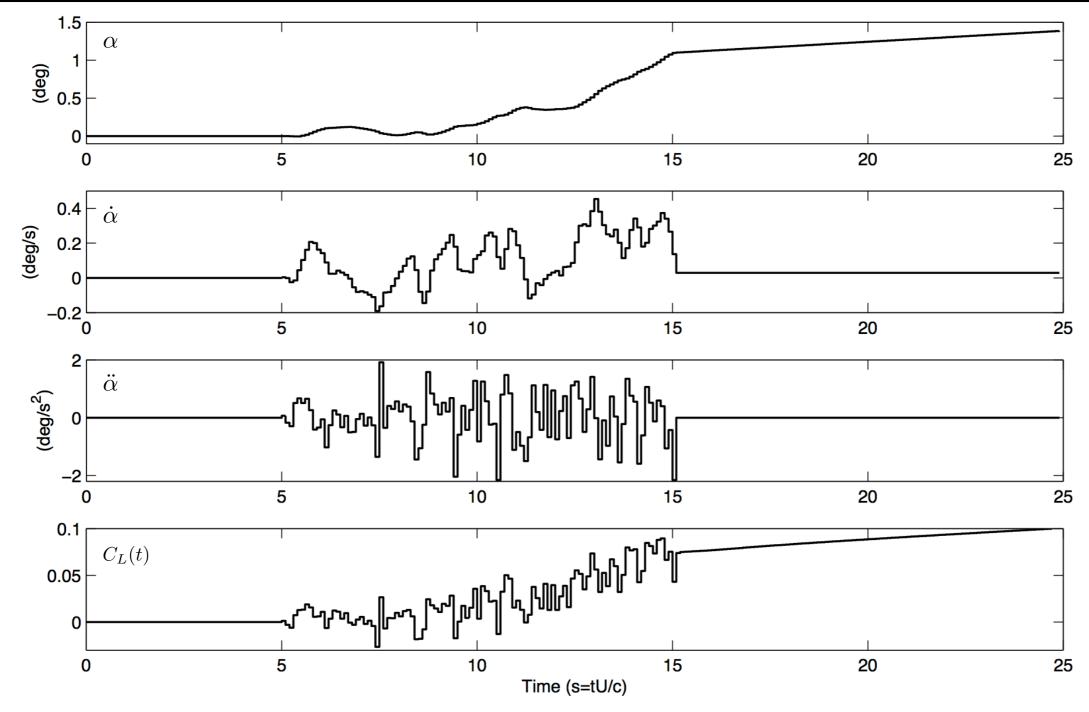
Idea: Have pilot fly aircraft around for 5-10 minutes, back out the Markov parameters, and construct ERA model.

 $u_k$ 



### Random Input Maneuver





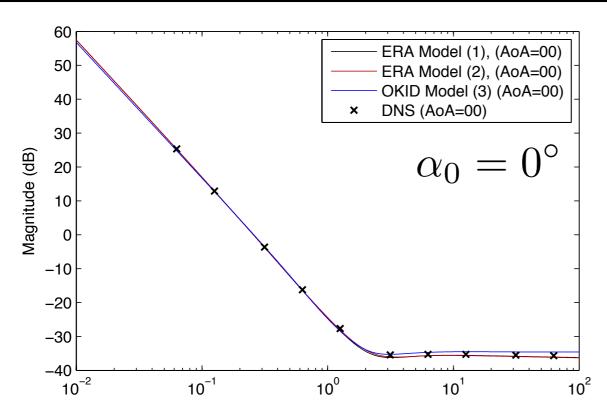
Observer/Kalman filter identification (OKID) works best, so far.

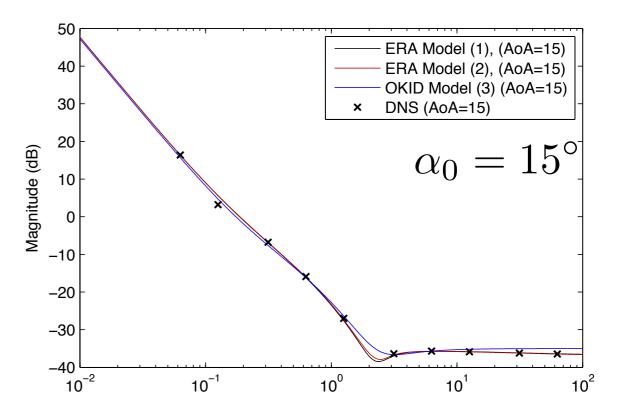
Idea: Have pilot fly aircraft around for 5-10 minutes, back out the Markov parameters, and construct ERA model.

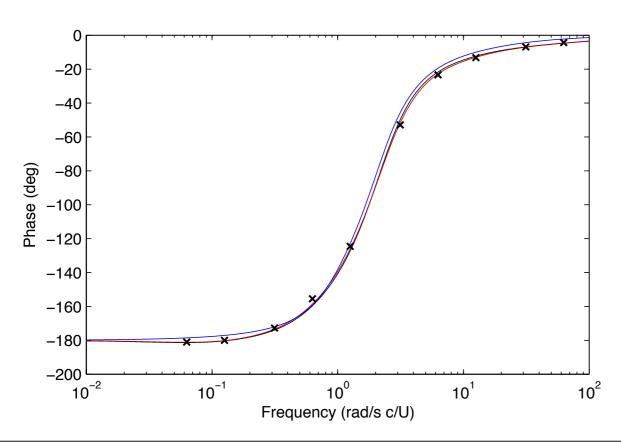


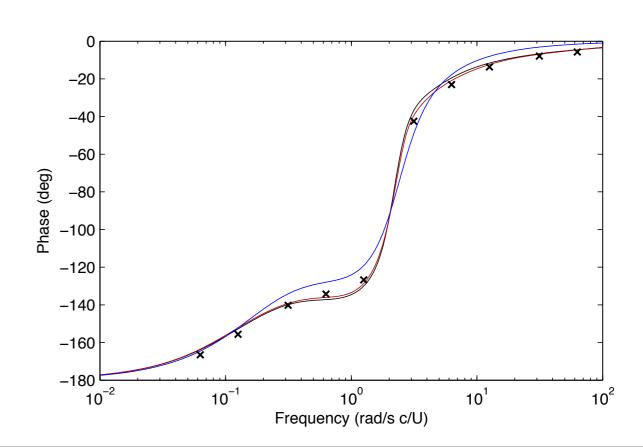
### Comparison of Methods







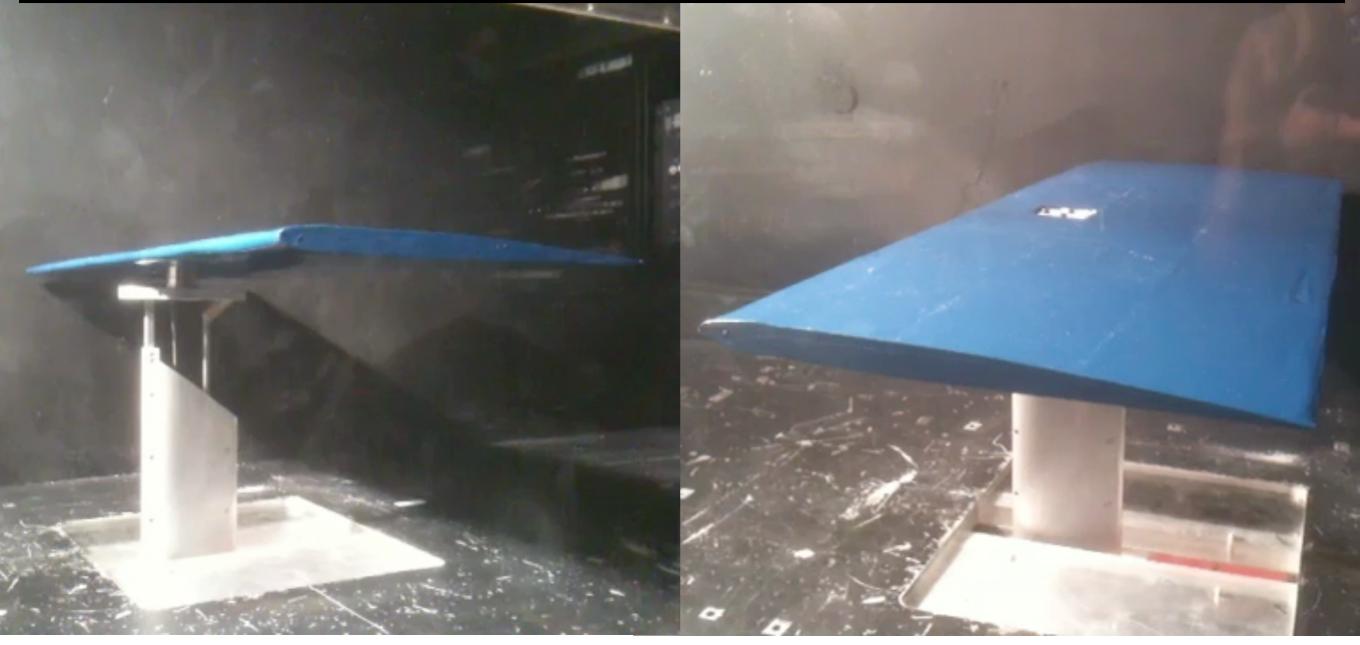






# Wind Tunnel Experiments





Andrew Fejer Unsteady Flow Wind Tunnel Principle Investigator - Dave Williams

NACA 0006 Airfoil

Chord Length: 0.246 m

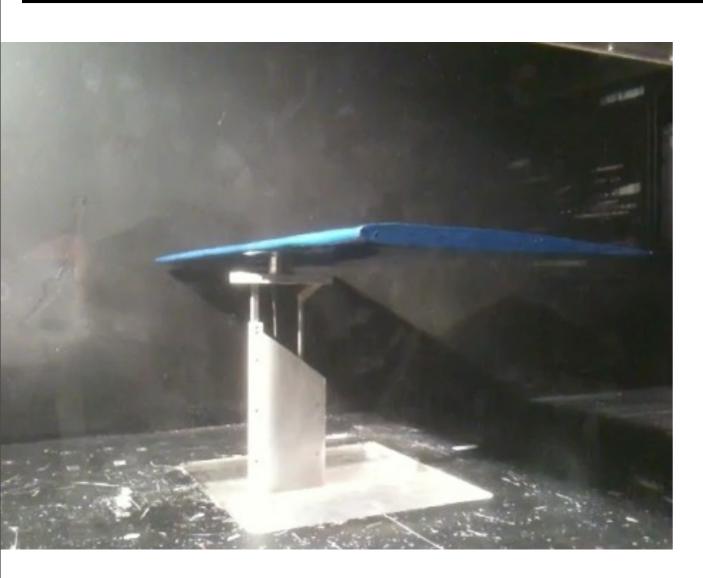
Free Stream Velocity: 4.00 m/s

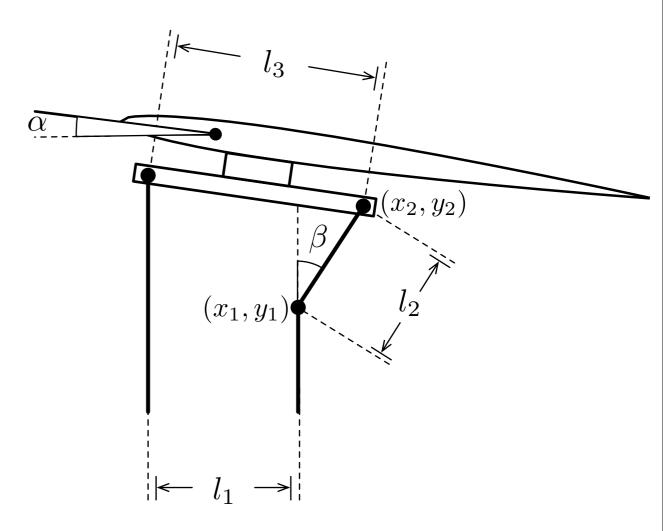
Reynolds Number: 65,000



### NACA 0006 Model







#### **Summary**

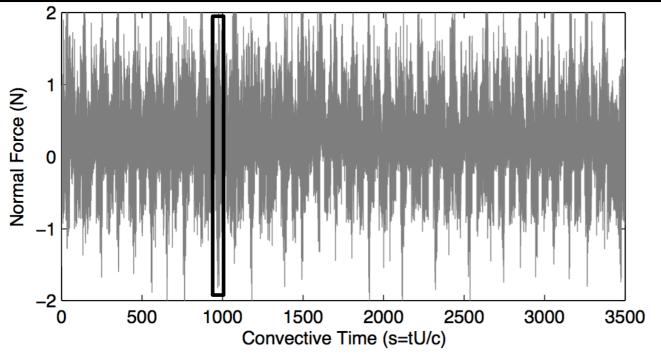
- I. Account for hinge constraint nonlinearity
- 2. Rotate force vectors to obtain lift force
- 3. Subtract out point mass effects (mechanical)

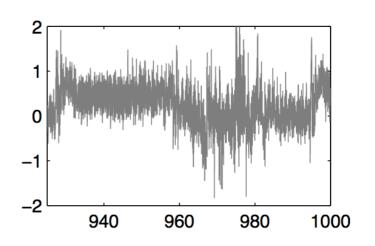
$$\begin{bmatrix} L \\ D \end{bmatrix} = \underbrace{\begin{bmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{bmatrix}}_{R_{\alpha}} \begin{bmatrix} N \\ P \end{bmatrix}$$



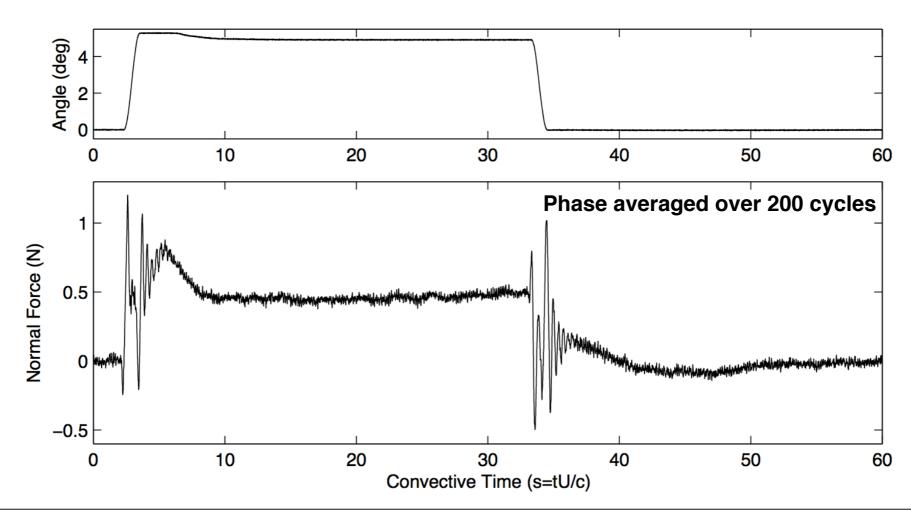
## Phase Averaged Data







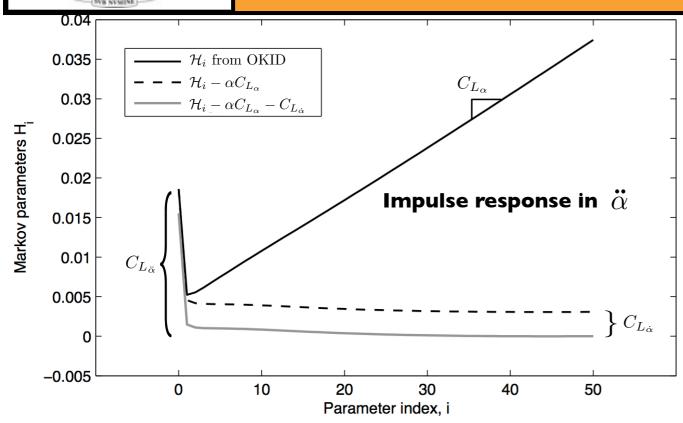
#### 5 degree step-up, step-down maneuver





### Wing Maneuver

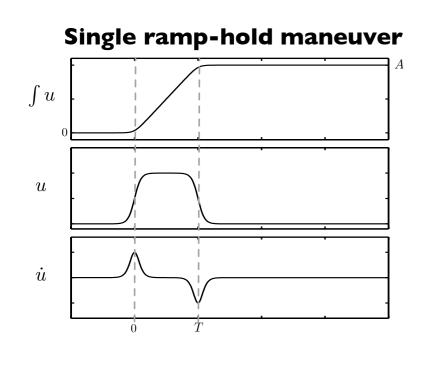


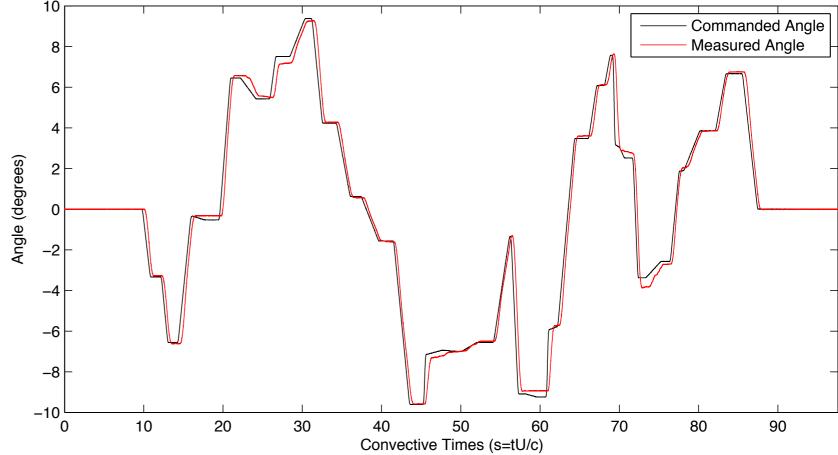


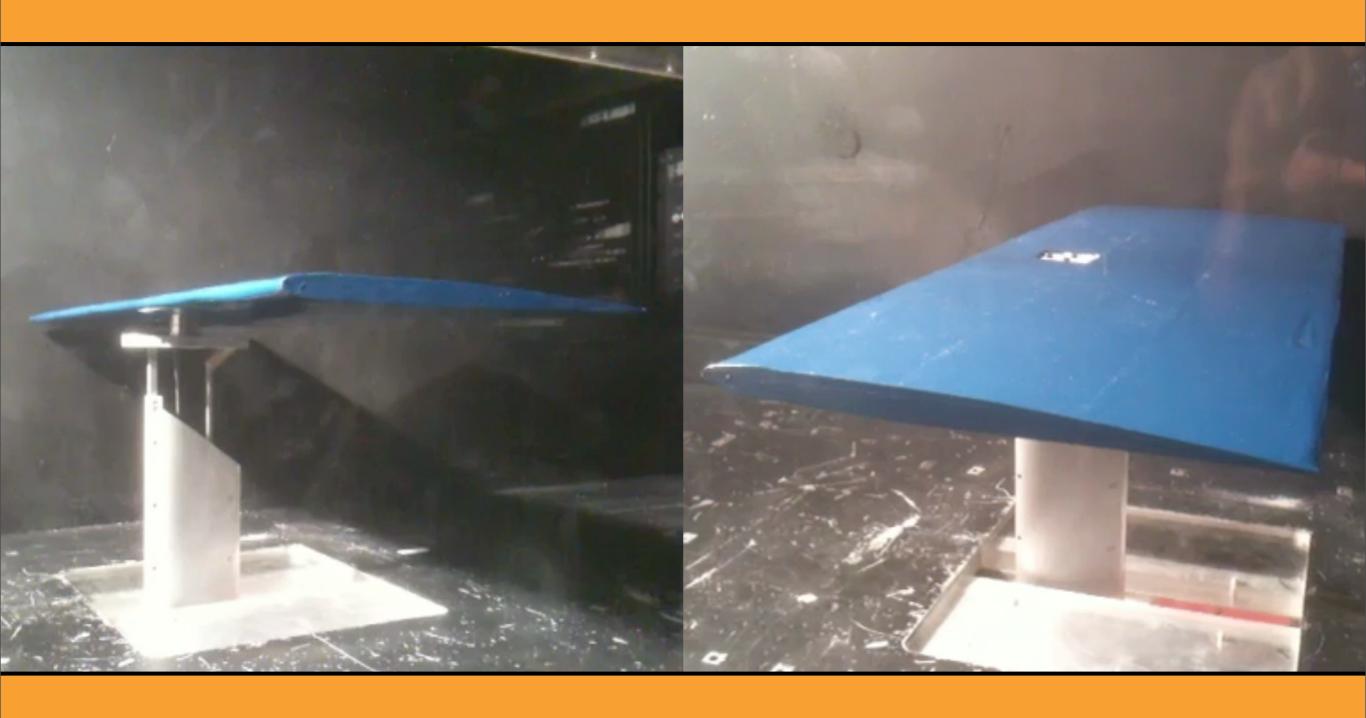
$$\frac{d}{dt} \begin{bmatrix} \mathbf{x} \\ \alpha \\ \dot{\alpha} \end{bmatrix} = \begin{bmatrix} A_r & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \alpha \\ \dot{\alpha} \end{bmatrix} + \begin{bmatrix} B_r \\ 0 \\ 1 \end{bmatrix} \ddot{\alpha}$$

$$C_L = \begin{bmatrix} C_r & C_{L_{\alpha}} & C_{L_{\dot{\alpha}}} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \alpha \\ \dot{\alpha} \end{bmatrix} + C_{L_{\ddot{\alpha}}} \ddot{\alpha}$$

# Pseudo-random sequence of ramp-hold maneuvers (aggressive maneuver)



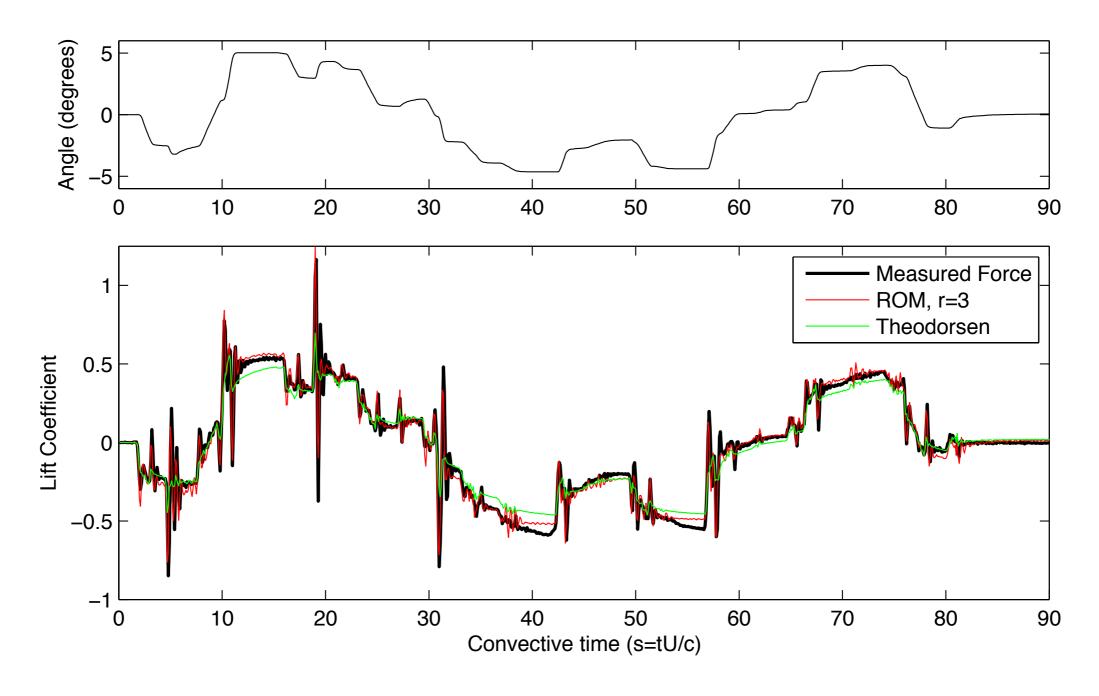






# System ID maneuver





+/- 5 degree manuever, excites large range of frequencies

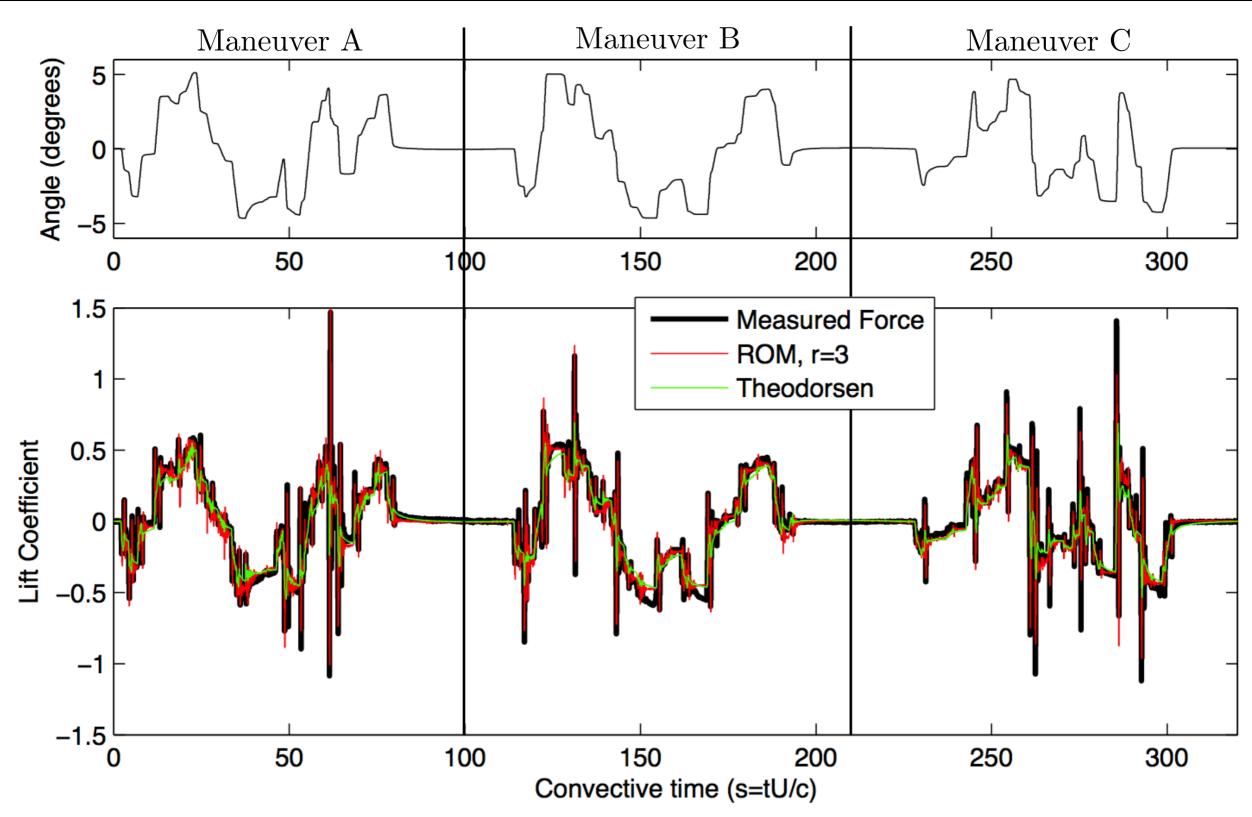
Reduced order model outperforms
Theodorsen at low and high frequencies

**AOA** = 0 degrees



## Three system ID maneuvers





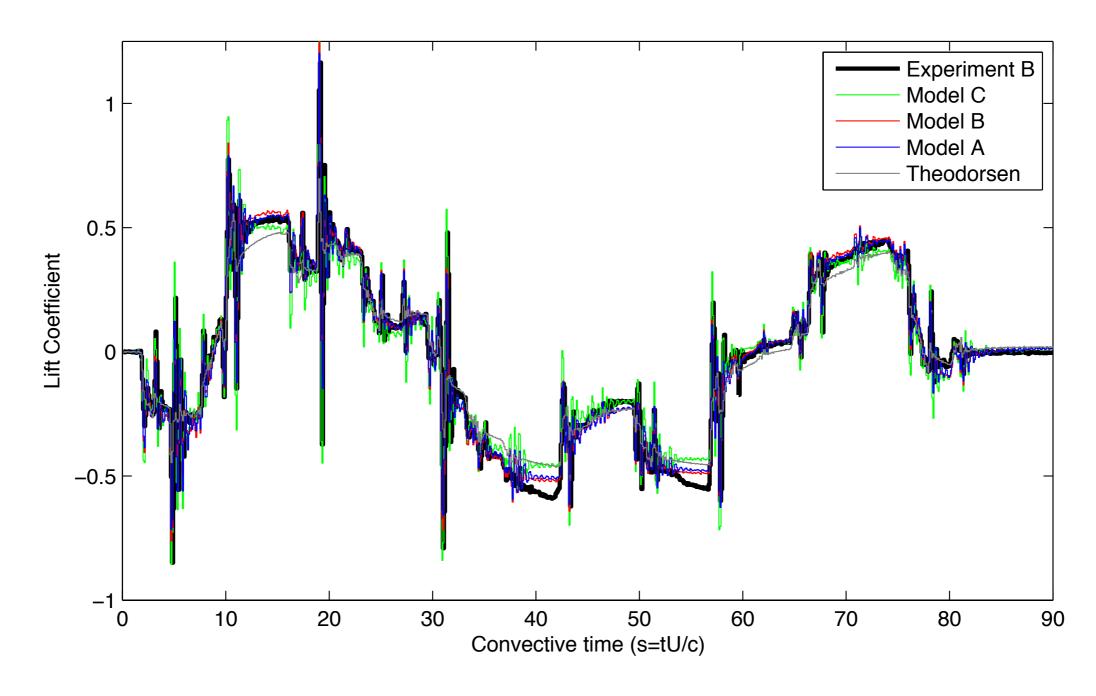
**AOA** = 0 degrees

We tried three system ID maneuvers: A, B and C.



# System ID maneuver





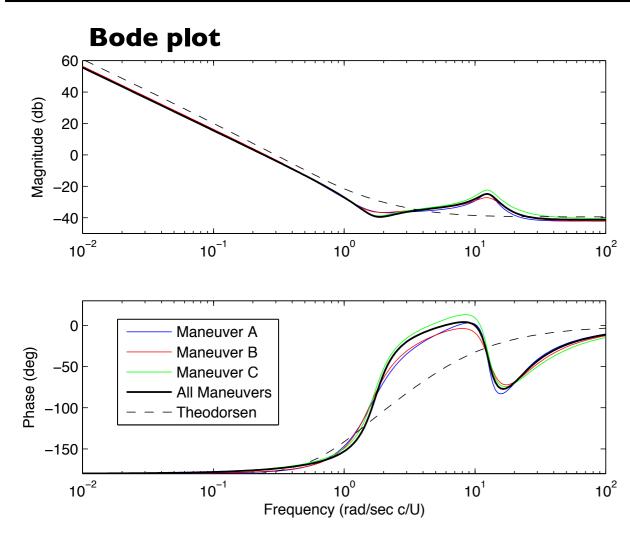
**AOA** = 0 degrees

Bootstrap: It is important that models obtained from each ID maneuver accurately reproduce every other maneuver



### Bode plot and Markov parameters

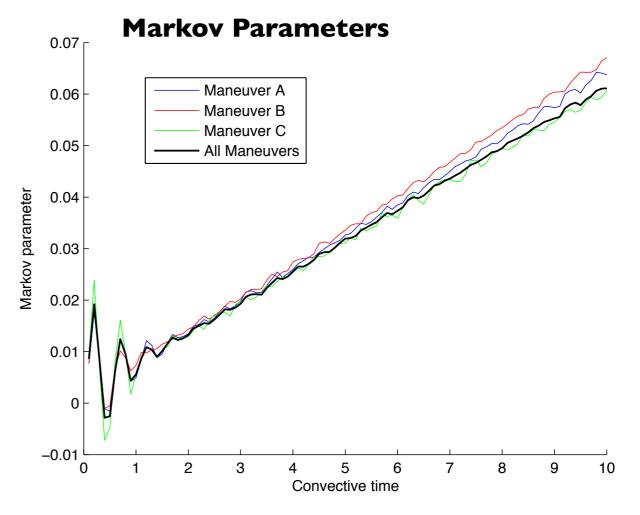


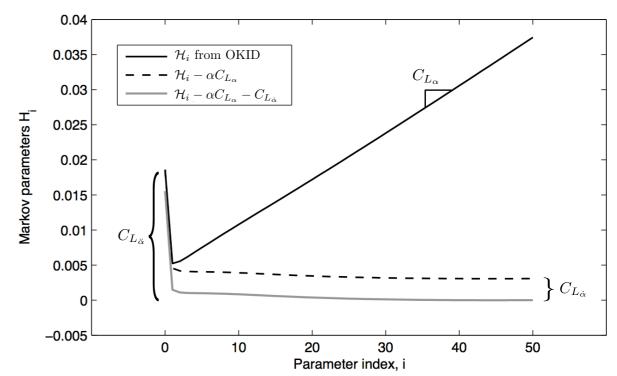




Added-mass is not exclusively in first Markov parameter, but is instead distributed in the first few, contributing to the added-mass "bump"

**AOA** = 0 degrees

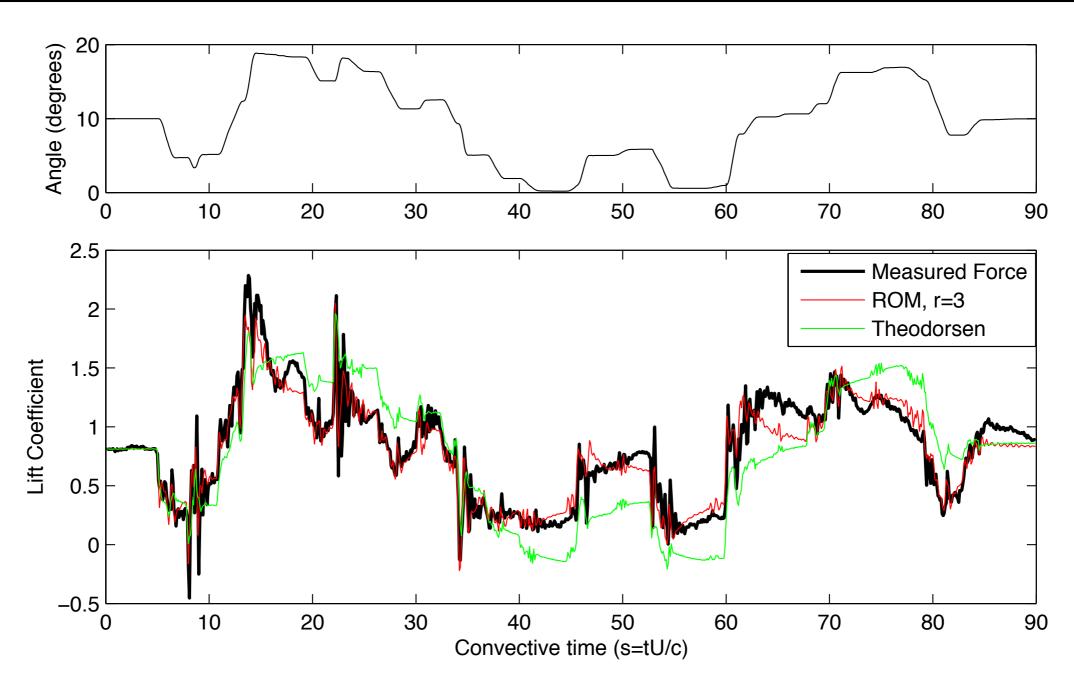






## System ID maneuver





+/- 10 degree manuever

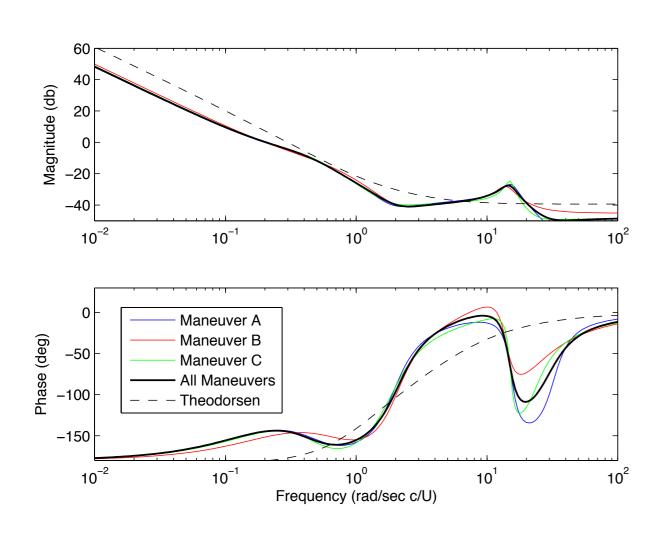
**AOA** = 10 degrees

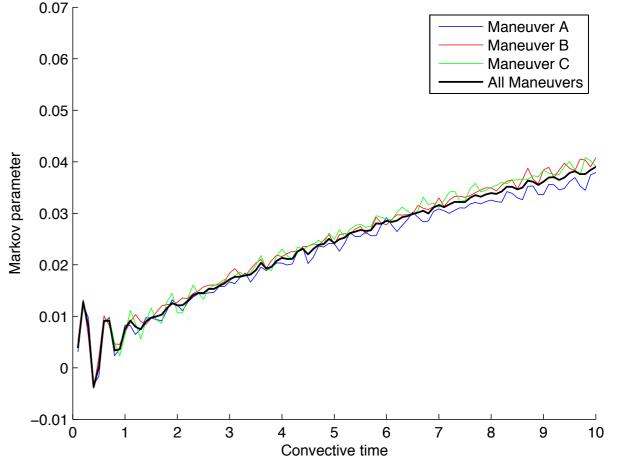
Theodorsen is significantly worse, due to large base angle of attack and flow separation effects.



### Bode plot and Markov parameters



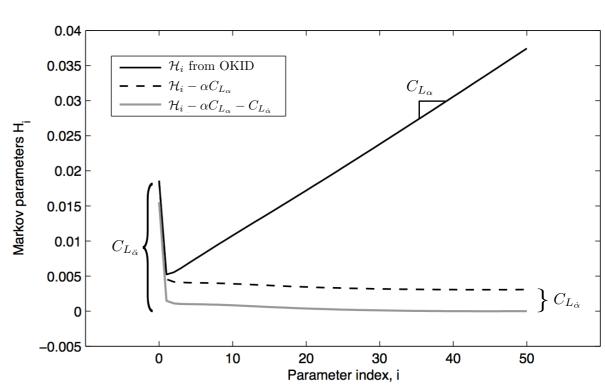




# Flatter Markov parameters indicate smaller lift coefficient slope

Convergence to asymptote at lower frequency indicate longer transient decay to steady state (more separated flow)

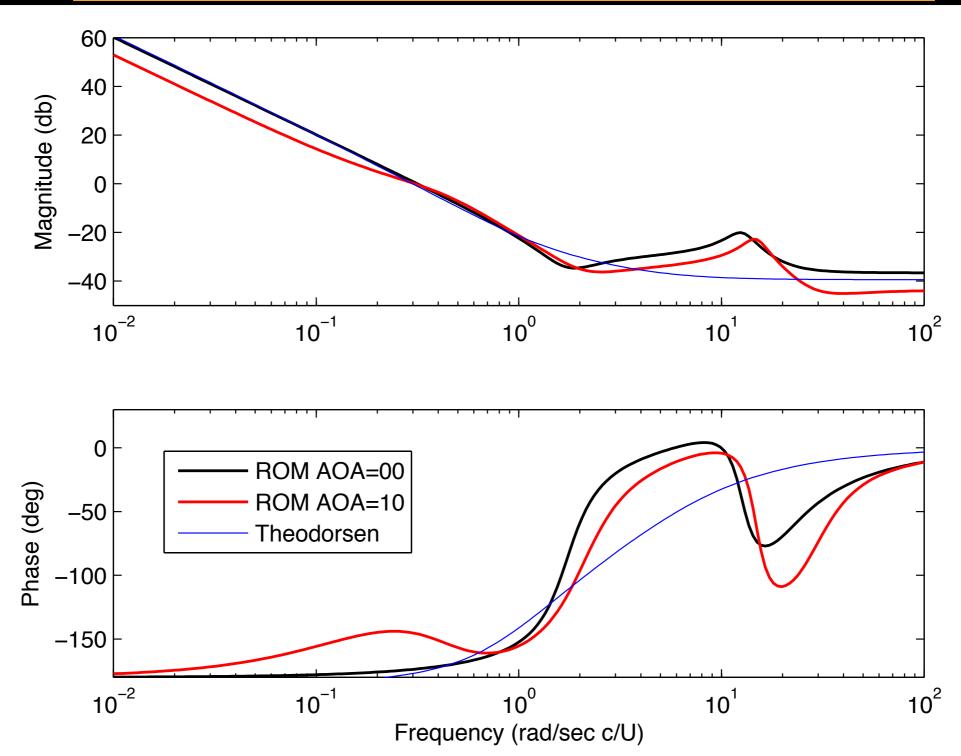






### AoA=00 vs. AoA=10



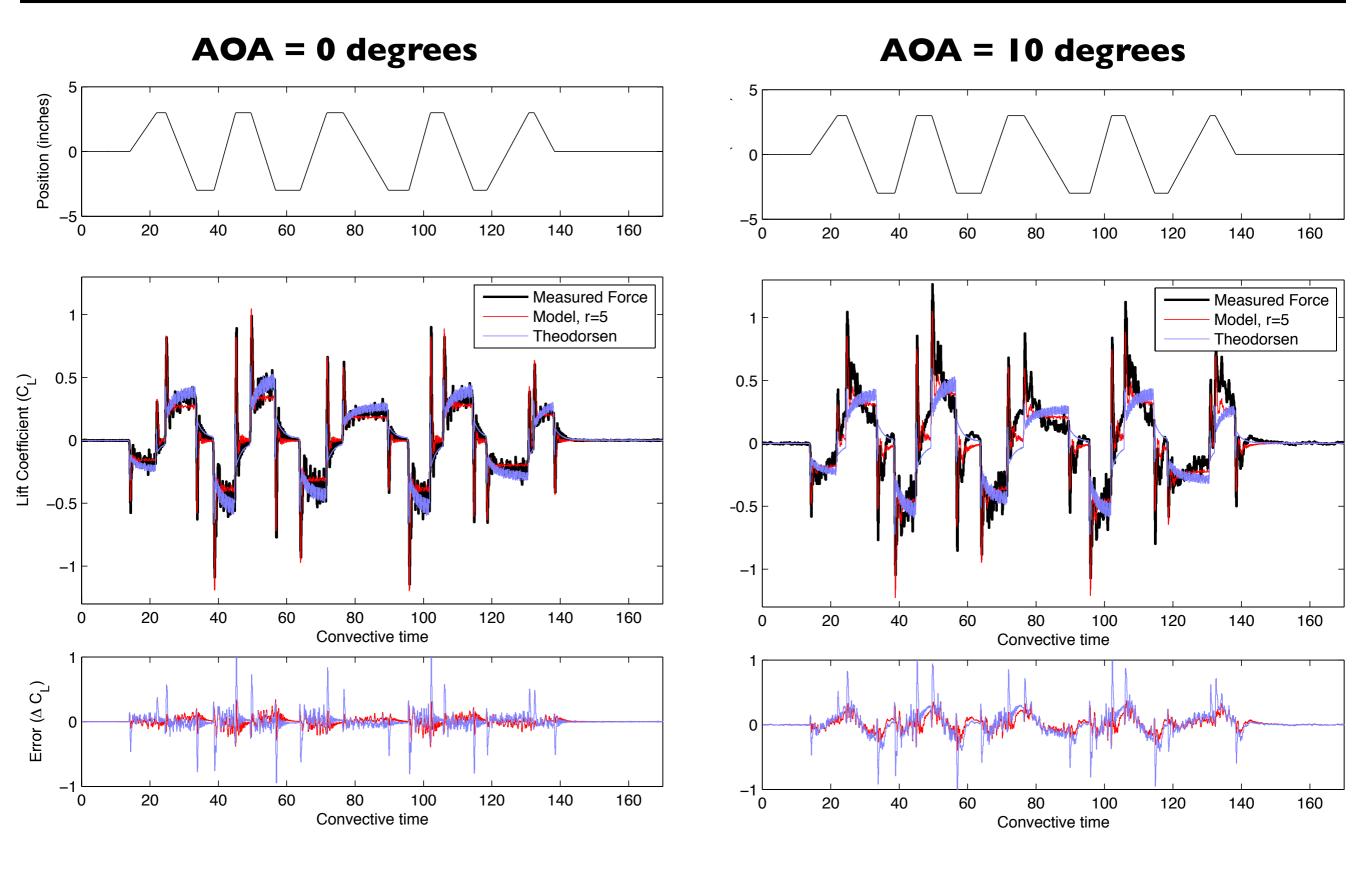


Trend is similar to DNS, where low frequency asymptote converges at lower frequency, for larger angle of attack.



## Pure Plunge







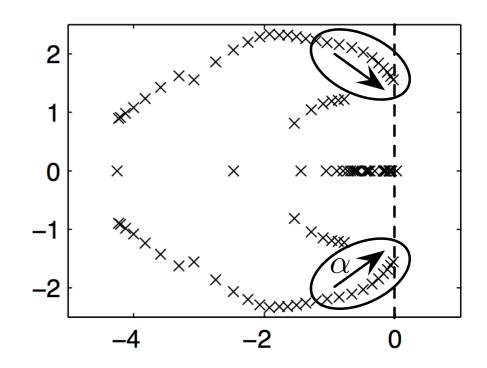
# Nonlinear Unsteady Models

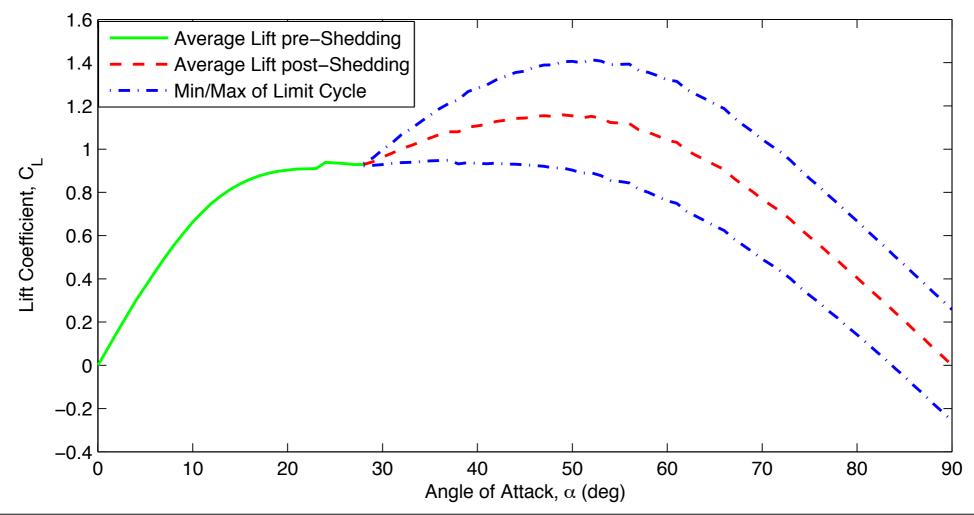


#### What we know

- I. Hopf bifurcation at  $\,lpha=28^\circ$
- 2. Linear models capture conjugate pair
- 3. Linear models based on overarching nonlinear model (Navier-Stokes)

# Is it possible to obtain nonlinear reduced order model?



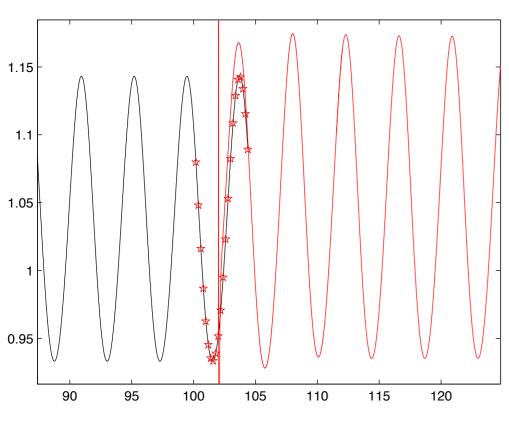


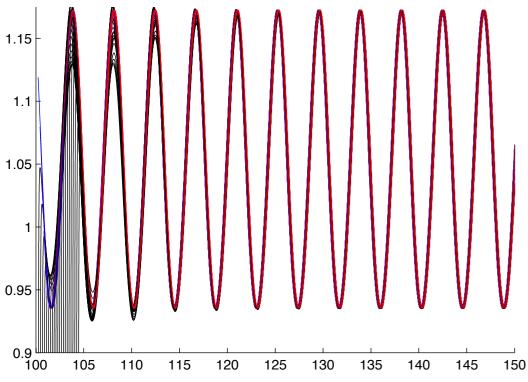


### Linearize about Periodic Orbit



#### Impulse at each phase

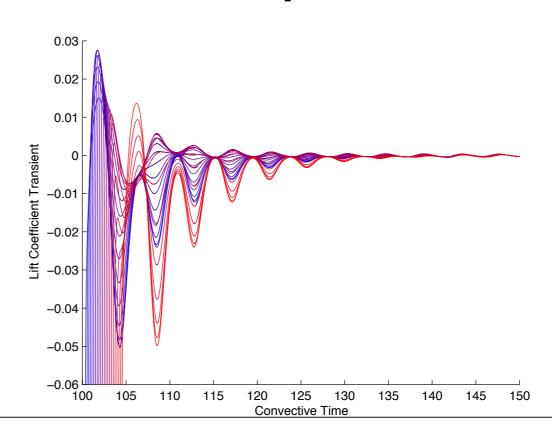




### **Modeling Approaches**

- I. Lifted/Periodic ERA
- 2. Nonlinear indicial response (convolution)
- 3. Other???

#### **Transient dynamics**





### Conclusions



#### Accurate, efficient reduced order models

- Models are linearization of full nonlinear model
- Constructed for specific geometry, Reynolds number
- Based on various input maneuvers

#### Modeling techniques applied to two test problems

- Simulated flat plate airfoil, Re=100
- Wind tunnel experiment, Re=65,000
- Pitch and plunge dynamics investigated
- Reduced order model outperforms Theodorsen's model for all cases, especially at large angle of attack

#### **Future Work:**

- Use pitch/plunge models for optimal control (maneuver, lift stabilization)
- Combine into nonlinear model with limit cycle dynamics

**Wagner**, 1925.

Brunton and Rowley, AIAA ASM 2009-2011

Theodorsen, 1935.

Juang and Pappa, 1985.

Leishman, 2006.

Ma, Ahuja, Rowley, 2010.

OL, Altman, Eldredge, Garmann, and Lian, 2010

Juang, Phan, Horta, Longman, 1991.

