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FLYIT Simulators, Inc.

Motivation

Predator (General Atomics)

Flexible Wing
 (University of Florida)

Applications of Unsteady Models

Conventional UAVs (performance/robustness)

Micro air vehicles (MAVs)

Flow control, flight dynamic control

Autopilots / Flight simulators

Gust disturbance mitigation

Need for State-Space Models

Need models suitable for control

Combining with flight models

Understand bird/insect flight

Bio-locomotion
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Flow Control (expert)
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Flow Control (expert)
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Flight Dynamic Control

flight dynamics

aerodynamics

coupled model

estimatorcontroller

reference trajectory,
wind disturbances 

deviation from 
desired path, or state 

position,
aerodynamic state

thrust, elevator, aileron,
             blowing/suction
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Pitch

Plunge

Three Aerodynamic Models

Wind tunnel experiment, Re=65,000Direct numerical simulations, Re=100

Idealized airfoil, analytical expression
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Stationary,  AoA = 25

Stationary,  AoA = 35

Pitch

Plunge

2D Incompressible Flow, (Re=100)

∂u

∂t
+ (u ·∇)u = −∇p+

1

Re
∇2u+

�

s
f (ξ(s, t)) δ(ξ − x)ds

∇ · u = 0

u (ξ(s, t)) =

�

x
u(x)δ(x− ξ)dx = uB (ξ(s, t))

2D Incompressible Navier-Stokes:

Colonius & Taira, 2008.

Immersed boundary method

Multi-domain approach

Boundary forces computed as Lagrange-
multipliers to enforce no slip
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Unsteady Base Flow

Base flow velocity:

Vorticity:

(xC , yC) is the center of mass.where

Unsteady Base Flow

allows more aggressive maneuvers and gusts

24X faster, more accurate

Faster simulations (Cholesky decomposition)

Immersed Boundary Method
T. Colonius and K. Taira, 2008

A fast immersed boundary method using a 
nullspace approach and multi-domain far-field 
boundary conditions.
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u(x, y, t) = �V� cos(α)− θ̇(y − yC)

v(x, y, t) = �V� sin(α) + θ̇(x− xC)

∇× (u, v) = vx − uy = θ̇ + θ̇ = 2θ̇

Idea: Instead of moving body, move base flow!
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ẋ = x

ẏ = −y + x2

Finite Time Lyapunov Exponents

LCS are hyperbolic ridges in the FTLE field

Generalize invariant manifolds for time varying flows

σ(ΦT
0 ;x0) =

1
|T | log

�
λmax(∆(x0))

∆ =
�
DΦT

0

�∗
DΦT

0where

Finite Time Lyapunov Exponents (FTLE)

Lagrangian Coherent Structures (LCS)

Measure of stretching between neighboring particles 

      is time-dependent for unsteady flowsσ

Attracting nLCS

pLCS - positive-time LCS (repelling)

nLCS - negative-time LCS (attracting)

ΦT
0          - particle flow map

Haller, 2002; 
Shadden et al., 2005
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Finite Time Lyapunov Exponents

LCS are hyperbolic ridges in the FTLE field

Generalize invariant manifolds for time varying flows

σ(ΦT
0 ;x0) =

1
|T | log

�
λmax(∆(x0))

∆ =
�
DΦT

0

�∗
DΦT

0where

Finite Time Lyapunov Exponents (FTLE)

Lagrangian Coherent Structures (LCS)

Measure of stretching between neighboring particles 

      is time-dependent for unsteady flowsσ

ẋ = x

ẏ = −y + x2

Repelling pLCS

pLCS - positive-time LCS (repelling)

nLCS - negative-time LCS (attracting)

ΦT
0          - particle flow map

Haller, 2002; 
Shadden et al., 2005
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Finite Time Lyapunov Exponents

LCS are hyperbolic ridges in the FTLE field

Generalize invariant manifolds for time varying flows

σ(ΦT
0 ;x0) =

1
|T | log

�
λmax(∆(x0))

∆ =
�
DΦT

0

�∗
DΦT

0where

Finite Time Lyapunov Exponents (FTLE)

Lagrangian Coherent Structures (LCS)

Measure of stretching between neighboring particles 

      is time-dependent for unsteady flowsσ

ẋ = x

ẏ = −y + x2

Both nLCS & pLCS

pLCS - positive-time LCS (repelling)

nLCS - negative-time LCS (attracting)

ΦT
0          - particle flow map

Haller, 2002; 
Shadden et al., 2005
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Lift

Drag

Re = 300

2D Model Problem

α = 32◦
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Lift

Drag

Re = 300

2D Model Problem

α = 32◦

Added-Mass

Periodic Vortex Shedding
Transient
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Lift

Drag

Re = 300

2D Model Problem

α = 32◦

Added-Mass

Periodic Vortex Shedding
Transient
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Lift vs.  Angle of Attack
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Hopf bifurcation at αcrit ≈ 28◦ (pair of imaginary eigenvalues pass into right half plane)
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Lift vs.  Angle of Attack
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Lift vs.  Angle of Attack
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Lift vs.  Angle of Attack
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Models based on Hopf normal form capture vortex shedding

Lift vs Angle of Attack

Low Reynolds number, (Re=100)

Hopf bifurcation at αcrit ≈ 28◦ (pair of imaginary eigenvalues pass into right half plane)
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ẋ = (α− αc)µx− ωy − ax(x2 + y2)
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Full DNS

Reconstruction
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Mean Flow

Full Flow Mode 1 Mode 2

Mode 3 Mode 4

Mode 5 Mode 6

α = 30◦
Re = 100

POD Modes for Stationary Plate
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Lift vs.  Angle of Attack
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Need model that captures lift due to moving airfoil!
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Lift vs.  Angle of Attack
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Lift vs.  Angle of Attack

0 10 20 30 40 50 60 70 80 90
0.4

0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Angle of Attack,  (deg)

Li
ft 

C
oe

ffi
ci

en
t, 

C L

 

 
Average Lift pre Shedding
Average Lift post Shedding
Min/Max of Limit Cycle
Sinusoidal (f=.1,A=3)
Canonical (a=11,A=10)

Need model that captures lift due to moving airfoil!
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Need model that captures lift due to moving airfoil!
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Lift vs.  Angle of Attack
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Lift

Drag

Re = 300

2D Model Problem

α = 32◦

Added-Mass

Periodic Vortex Shedding
Transient
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Lift

Drag

Re = 300

2D Model Problem

α = 32◦

Added-Mass

Periodic Vortex Shedding
Transient
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Unsteady Aerodynamic Forces

Added Mass

ẋ = x

ẏ = −y + x2

Circulatory/Viscous

Unsteady potential flow forces (F=ma)

force needed to move air as plate accelerates

Increasingly important for small/light aircraft

Need improved models here

source of all lift in steady flight... and more

Captures separation effects
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Unsteady Aerodynamic Forces

Added Mass Circulatory/Viscous

Unsteady potential flow forces (F=ma)

force needed to move air as plate accelerates

Increasingly important for small/light aircraft

Need improved models here

source of all lift in steady flight... and more

Captures separation effects

ẋ = x

ẏ = −y + x2

The mass of the body and surrounding fluid are 
being accelerated, to different extents.

Kinetic energy     will be in some manner proportional 
to      (for potential and Stokes flows)

T
U

T = ρ
I

2
U2 I =

�

V

ui

U
· ui

U
dVwhere

If body accelerates,     probably increases,
and energy must be supplied:

T

dT

dt
= −FU =⇒ Fi = − ρIij����

AM

U̇j

2 1.5 1 0.5 0 0.5 1 1.5 2
2

1.5

1

0.5

0

0.5

1

1.5

2

cylinder moving in Lab frame

Newman, 1977.

Milne-Thompson, 1962

Lamb,1945.
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Unsteady Aerodynamic Forces

Added Mass Circulatory/Viscous

Unsteady potential flow forces (F=ma)

force needed to move air as plate accelerates

Increasingly important for small/light aircraft

Need improved models here

source of all lift in steady flight... and more

Captures separation effects

ẋ = x

ẏ = −y + x2

The mass of the body and surrounding fluid are 
being accelerated, to different extents.

Kinetic energy     will be in some manner proportional 
to      (for potential and Stokes flows)

T
U

T = ρ
I

2
U2 I =

�

V

ui

U
· ui

U
dVwhere

If body accelerates,     probably increases,
and energy must be supplied:

T

dT

dt
= −FU =⇒ Fi = − ρIij����

AM

U̇j

Beer bubble acceleration

Newman, 1977.

Milne-Thompson, 1962

Lamb,1945.
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Unsteady Aerodynamic Forces

Added Mass Circulatory/Viscous

Unsteady potential flow forces (F=ma)

force needed to move air as plate accelerates

Increasingly important for small/light aircraft

Need improved models here

source of all lift in steady flight... and more

Captures separation effects

Stengel, 2004.

Milne-Thompson, 1973.

Boundary layer

Laminar separation bubble

Leading edge vortex

Periodic Vortex Shedding
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Theodorsen’s Model - 1935

Added Mass Circulatory/Viscous

Unsteady potential flow forces (F=ma)

force needed to move air as plate accelerates

Increasingly important for small/light aircraft

Need improved models here

source of all lift in steady flight... and more

Captures separation effects

k =
πfc

U∞

2D Incompressible, inviscid model

Unsteady potential flow (w/ Kutta condition)

Linearized about zero angle of attack

Leishman, 2006.

Theodorsen, 1935.

CL =
π

2

�
ḧ+ α̇− a

2
α̈
�

� �� �
Added-Mass

+2π

�
α+ ḣ+

1

2
α̇

�
1

2
− a

��

� �� �
Circulatory

C(k)

C(k) =
H

(2)
1 (k)

H
(2)
1 (k) + iH

(2)
0 (k)
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Bode Plot of Theodorsen

Frequency response

Low frequencies dominated by 
quasi-steady forces

High frequencies dominated by 
added-mass forces

output is lift coefficient CL

input is       (       is angle of attack)

Crossover region determined by 
Theodorsen’s function 
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π
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Brunton and Rowley, AIAA ASM 2011
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Zeros of Theodorsen Model, Varying Pitch Point

 

 

x/c=0.0

x/c=.25

x/c=.50

x/c=.75

x/c=1.0

Zeros of Theodorsen’s Model

As pitch point moves aft of center, 
zero enters RHP at +infinity.

Given a step in angle of attack, lift initially moves in opposite direction 
(because of negative added-mass forces), before the circulatory lift forces 
have a change to catch up and system relaxes to a positive lift steady state.

non-minimum phase response:

Brunton and Rowley, AIAA ASM 2011

All Theodorsen pitch models have 
same poles, different zeros
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Indicial Response Models

Model Summary

convolution integral inconvenient for 
    feedback control design

Reconstructs Lift for arbitrary input

Based on experiment, simulation or theory

Leishman, 2006.

Wagner, 1925.

u(t)

τ1 τ2 τ3 t

!"#$%

&$%#$%

τ1

τ2

τ3

!'#$()*+,*)#&")*

t0

yδ(t − τ1)

yδ(t − τ2)

yδ(t − τ3)

y(t) = yδ ∗ u

yδ(t − t0)

CL(t) = CS
L(t)α(0) +

� t

0
CS

L(t− τ)α̇(τ)dτ

CL(t) =

� t

0
Cδ

L(t− τ)α(τ)dτ =
�
Cδ

L ∗ α
�
(t)

Given an impulse in angle of attack,               , the time history of Lift is

   The response to an arbitrary input         is given by linear superposition:α(t)

Cδ
L(t)α = δ(t)

Given a step in angle of attack,               , the time history of Lift is

   The response to an arbitrary input         is given by:

CS
L(t)α̇ = δ(t)

α(t)

Reisenthel, 1996.

Wagner developed indicial response analytically 
using same approximations as Theodorsen

Linear time-invariant (LTI) models
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Indicial Response Models

Model Summary

convolution integral inconvenient for 
    feedback control design

Reconstructs Lift for arbitrary input

Based on experiment, simulation or theory

Leishman, 2006.

Wagner, 1925.

CL(t) = CS
L(t)α(0) +

� t

0
CS

L(t− τ)α̇(τ)dτ

CL(t) =

� t

0
Cδ

L(t− τ)α(τ)dτ =
�
Cδ

L ∗ α
�
(t)

Given an impulse in angle of attack,               , the time history of Lift is

   The response to an arbitrary input         is given by linear superposition:α(t)

Cδ
L(t)α = δ(t)

Given a step in angle of attack,               , the time history of Lift is

   The response to an arbitrary input         is given by:

CS
L(t)α̇ = δ(t)

α(t)

Reisenthel, 1996.

Wagner developed indicial response analytically 
using same approximations as Theodorsen

Linear time-invariant (LTI) models

Tacoma Narrows Bridge
Collapse Nov. 7, 1940
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State-Space Indicial Response

State-Space Model

Indicial Response

Theodorsen’s Model

CL(t) = Cδ
L(t)α(0) +

� t

0
Cδ

L(t− τ)α̇(τ)dτ

CL =
π

2

�
ḧ+ α̇− a

2
α̈
�

� �� �
Added-Mass

+2π

�
α+ ḣ+

1

2
α̇

�
1

2
− a

��

� �� �
Circulatory

C(k)

d

dt




x
α
α̇



 =




Ar 0 0
0 0 1
0 0 0








x
α
α̇



+




Br

0
1



 α̈

CL =
�
Cr CLα CLα̇

�



x
α
α̇



+ CLα̈ α̈

quasi-steady and added-mass

transient dynamics

Computationally tractable

fits into control framework

Captures input output dynamics accurately

Tuned to specific geometry, Re #

Physically motivated components

Parametrized by pitch point

Frequency domain, idealized assumptions
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State-Space Indicial Response

State-Space Model

Computationally tractable

fits into control framework

Captures input output dynamics accurately

CL(α, α̇, α̈,x) = CLαα+ CLα̇ α̇+ CLα̈ α̈+ Cx

Y (s) =

�
CLα

s2
+

CLα̇

s
+ CLα̈ +G(s)

�
s2U(s)

Stability derivatives 
    plus fast dynamics

Transfer Function

Quasi-steady and added-mass Transient
dynamics

d

dt




x
α
α̇



 =




Ar 0 0
0 0 1
0 0 0








x
α
α̇



+




Br

0
1



 α̈

CL =
�
Cr CLα CLα̇

�



x
α
α̇



+ CLα̈ α̈

quasi-steady and added-mass

transient dynamics
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+ CL

G(s)

!"#$%&$'(#)*+,+#))()+-#$$

.#$'+)*/#-%0$

CLα̈

CLα̇

s

CLα

s2

α̈

State-Space Indicial Response

Model Summary

ODE model ideal for control design 

Based on experiment, simulation or theory

Linearized about α = 0

Recovers stability derivatives 
   associated with quasi-steady and added-mass

CLα , CLα̇ , CLα̈

Brunton and Rowley, in preparation.

d

dt




x
α
α̇



 =




Ar 0 0
0 0 1
0 0 0








x
α
α̇



+




Br

0
1



 α̈

CL =
�
Cr CLα CLα̇

�



x
α
α̇



+ CLα̈ α̈

quasi-steady and added-mass

transient dynamics
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Identifying Model from Simulations

1 - added-mass from α̈ (C)

!

"

#

$
% & '

2 - added-mass from α̇ (B)
and quasi-steady α (A)

3 - fast dynamics (G)
and quasi-steady from α (A)

4 - quasi-steady from α (A)

Cartoon illustration of 
aerodynamic step response

4-6 orders of magnitude 
frequency and scale 
separation in response
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Method 1

subtract off α · CLα

(low frequency asymptote)

subtract off α̈ · Cα̈

(high frequency asymptote)

step maneuver in α

α̇ = δ (resolved in time)

d

dt




x
α
α̇



 =




A 0 B
0 0 1
0 0 0








x
α
α̇



+




0
0
1



 α̈

y =
�
C Cα Cα̇

�



x
α
α̇



+Dα̈

Transient dynamics modeled 
using ERA model

α̇ → (A,B,C,Cα̇) → CL
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α̇ → (A,B,C,D) → CL

Method II

subtract off α · CLα

(low frequency asymptote)

subtract off α̇ · Cα̇

step maneuver in α

α̇ = δ (resolved in time)

integrate to obtain α̈ = δ

(less CLα and Cα̇ terms)

d

dt




x
α
α̇



 =




A 0 0
0 0 1
0 0 0








x
α
α̇



+




B
0
1



 α̈

y =
�
C Cα Cα̇

�



x
α
α̇



+Dα̈

Transient dynamics modeled 
using ERA model
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Summary of Methods

d

dt




x
α
α̇



 =




A 0 0
0 0 1
0 0 0








x
α
α̇



+




B
0
1



 α̈

y =
�
C Cα Cα̇

�



x
α
α̇



+Dα̈

Method I Method II

1.  Obtain time-resolved step response in pitch angle

2.  Identify some or all of the quasi-steady and added mass parameters CLα , Cα̇, Cα̈

General procedure

3.  Model remaining transient dynamic with Eigensystem realization algorithm (ERA)

d

dt


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 =
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A 0 B
0 0 1
0 0 0


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
x
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α̇


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
0
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1



 α̈

y =
�
C Cα Cα̇

�



x
α
α̇



+Dα̈

Highly flexible

1.  Extensions for pitch, plunge, and surge motions

2.  Multiple input, multiple output models possible with ERA

recently shown to be equivalent to 
balanced proper orthogonal decomposition (BPOD)
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Bode Plot - Pitch (LE)

Frequency response

Model without additional dynamics 
[QS+AM (r=0)] is inaccurate in 
crossover region

Models with fast dynamics of ERA 
model order >3 are converged

output is lift coefficient CL

Punchline: additional fast dynamics 
(ERA model) are essential

input is       (       is angle of attack)α̈ α

Brunton and Rowley, in preparation.

Pitching at leading edge
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ERA Model, r=7 (SISO)
Indicial Response Model
Wagner/Theodorsen
Direct Numerical Simulations
ERA Model, r=7 (MIMO)

Bode Plot - Pitch (QC)

Frequency response

Reduced order model with ERA r=7
    accurately reproduces Indicial Response

Indicial Response and model agree better with   
    DNS than Theodorsen’s model.

output is lift coefficient CL

input is       (       is angle of attack)α̈ α

Brunton and Rowley, in preparation.

Pitching at quarter chord

Asymptotes are correct for Indicial Response 
    because it is based on simulations

Model for pitch/plunge dynamics 
    [ERA, r=7 (MIMO)] works as well, 
    for the same order model

Quarter-Chord Pitching
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Parametrized by Pitch Point
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plunge, (pPL)
pitch, x/c=0.0 (p00)
pitch, x/c=0.0 (p50+pPL/2)
pitch, x/c=.25 (p25)
pitch, x/c=.25 (p50+pPL/4)
pitch, x/c=0.5 (p50)

d

dt





x
α
α̇
ḣ



 =





A 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0









x
α
α̇
ḣ



+





B1 − a
2B2 B2

0 0
1 0
−a

2 1





�
α̈
ḧ

�

CL =
�
C Cα Cα̇ Cḣ

�





x
α
α̇
ḣ



+
�
Cα̈ − a

2Cḧ Cḧ

� �
α̈
ḧ

�

(A,B1, C)

(A,B2, C)

model for pitch at mid-chord

model for plunge

Pitch about any point is linear combination 
of pitch at mid-chord and plunge motion

Models all have same poles, different zeros 
(similar to Theodorsen’s model)
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DNS
Indicial Response
ROM, r=3 (MIMO)
ROM, r=3 (2xSISO)
QS+AM (r=0)
Wagner/Theodorsen

Pitch/Plunge Maneuver

Brunton and Rowley, in preparation.

Canonical pitch-up, hold, pitch-down maneuver, followed by step-down in vertical position

Reduced order model for indicial response
accurately captures lift coefficient history from DNS

OL, Altman, Eldredge, Garmann, and Lian, 2010
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Lift vs.  Angle of Attack
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Lift vs.  Angle of Attack
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Models at various angle of attack

Impulse response simulations after rapid step-up α ∈ [0◦, 27◦]
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simulation
model

α = 0◦

α = 27◦

Initial lift                   subtracted offCL(α0)

Model with order r=7 required to capture this flow feature,
    eventually develops into vortex shedding mode
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Bode Plot of ERA Models
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Results

At larger angle of attack, phase converges 
to -180 at much lower frequencies.  I.e., 
solutions take longer to reach equilibrium 
in time domain.

Lift slope decreases for increasing angle of 
attack, so magnitude of low frequency 
motions decreases for increasing angle of 
attack.

Consistent with fact that for large angle of 
attack, system is closer to Hopf instability, 
and a pair of eigenvalues are moving closer 
to imaginary axis.  
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Poles and Zeros of ERA Models

As angle of attack increases, pair of poles (and pair of zeros) march towards imaginary axis.  

This is a good thing, because a Hopf bifurcation occurs at αcrit ≈ 28◦

Brunton and Rowley, AIAA ASM 2011

α

C C
Poles Zeros

Wednesday, March 28, 2012



Bode Plot of Model (-) vs Data (x)

Direct numerical simulation confirms that local linearized models 
are accurate for small amplitude sinusoidal maneuvers

Brunton and Rowley, AIAA ASM 2011
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Large Amplitude Maneuver

G(t) = log
�
cosh(a(t− t1)) cosh(a(t− t4))
cosh(a(t− t2)) cosh(a(t− t3))

�
α(t) = α0 + αmax

G(t)
max(G(t))

Compare models linearized at 

andα = 0◦ α = 15◦

For pitching maneuver with 

α ∈ [15◦,25◦]

Model linearized at 

    captures lift response more accurately

α = 15◦

OL, Altman, Eldredge, Garmann, and Lian, 2010Brunton and Rowley, AIAA ASM 2011
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PLANTuk u(t) yky(t)

u

u̇

�
u

Time

A

T

0

0

(Indicial) Step Response

Previously, models are based on aerodynamic step response

Idea:  Have pilot fly aircraft around for 5-10 minutes, back 
out the Markov parameters, and construct ERA model.
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CL(t)

α̈

α̇

α

Random Input Maneuver

Idea:  Have pilot fly aircraft around for 5-10 minutes, back 
out the Markov parameters, and construct ERA model.

Observer/Kalman filter identification (OKID) works best, so far.
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ERA Model (1), (AoA=15)
ERA Model (2), (AoA=15)
OKID Model (3) (AoA=15)
DNS (AoA=15)
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Comparison of Methods

α0 = 0◦ α0 = 15◦
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Wind Tunnel Experiments

Andrew Fejer Unsteady Flow Wind Tunnel
Principle Investigator - Dave Williams

Free Stream Velocity: 4.00 m/s

Chord Length: 0.246 m

Reynolds Number: 65,000

NACA 0006 Airfoil
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NACA 0006 Model

β

α

l3

l2

l1

(x1, y1)

(x2, y2)

Figure 1. Image of NACA 0006 model in wind tunnel.

B. Hinge constraint

Figure 2. Schematic of hinge apparatus connecting pushrods to the platform.

�
L

D

�
=

�
cos(α) − sin(α)
sin(α) cos(α)

�
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Rα

�
N

P

�
(1)

2 of 16

American Institute of Aeronautics and Astronautics

1.  Account for hinge constraint nonlinearity

Summary

2.  Rotate force vectors to obtain lift force

3.  Subtract out point mass effects (mechanical)
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Phase averaged over 200 cycles

Phase Averaged Data

5 degree step-up, step-down maneuver
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CLα

CLα̇

CLα̈{
{

Hi from OKID
Hi − αCLα

Hi − αCLα − CLα̇

Impulse response in α̈
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Commanded Angle
Measured Angle

Pseudo-random sequence of ramp-hold maneuvers
(aggressive maneuver)

Single ramp-hold maneuver
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Measured Force
ROM, r=3
Theodorsen

System ID maneuver

AOA = 0 degrees

Reduced order model outperforms 
Theodorsen at low and high frequencies

+/- 5 degree manuever, excites
large range of frequencies
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Maneuver A Maneuver B Maneuver C

Three system ID maneuvers

AOA = 0 degrees We tried three system ID maneuvers: A, B and C.
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Experiment B
Model C
Model B
Model A
Theodorsen

System ID maneuver

AOA = 0 degrees

Bootstrap:  It is important that models obtained from 
each ID maneuver accurately reproduce every other 
maneuver
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Bode plot and Markov parameters
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Maneuver A
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CLα

CLα̇

CLα̈{
{

Hi from OKID
Hi − αCLα

Hi − αCLα − CLα̇

AOA = 0 degrees

Combined maneuver effectively blends
each of the three individual maneuvers

Bode plot Markov Parameters

Added-mass is not exclusively in first 
Markov parameter, but is instead distributed 
in the first few, contributing to the 
added-mass “bump”
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Measured Force
ROM, r=3
Theodorsen

System ID maneuver

AOA = 10 degrees

Theodorsen is significantly worse, due to 
large base angle of attack and flow 
separation effects.+/- 10 degree manuever
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Maneuver A
Maneuver B
Maneuver C
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Maneuver A
Maneuver B
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All Maneuvers
Theodorsen

Bode plot and Markov parameters

CLα

CLα̇

CLα̈{
{

Hi from OKID
Hi − αCLα

Hi − αCLα − CLα̇

AOA = 10 degrees

Flatter Markov parameters indicate 
smaller lift coefficient slope 

Convergence to asymptote at lower 
frequency indicate longer transient decay to 
steady state (more separated flow)
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AoA=00 vs.  AoA=10

Trend is similar to DNS, where low frequency asymptote 
converges at lower frequency, for larger angle of attack.
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Pure Plunge
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α

Nonlinear Unsteady Models
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Average Lift pre Shedding
Average Lift post Shedding
Min/Max of Limit Cycle

1.  Hopf bifurcation at 

What we know

2.  Linear models capture conjugate pair

α = 28◦

3.  Linear models based on overarching 
nonlinear model (Navier-Stokes)

Is it possible to obtain nonlinear 
reduced order model?
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1.  Lifted/Periodic ERA

Modeling Approaches

2.  Nonlinear indicial response (convolution)

3.  Other???
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Conclusions

Brunton and Rowley, AIAA ASM 2009-2011

OL, Altman, Eldredge, Garmann, and Lian, 2010

Leishman, 2006.

Wagner, 1925.

Theodorsen, 1935.

Juang, Phan, Horta, Longman, 1991.

Juang and Pappa, 1985.

Ma, Ahuja, Rowley, 2010.

Modeling techniques applied to two test problems 

-  Simulated flat plate airfoil,  Re=100
-  Wind tunnel experiment, Re=65,000
-  Pitch and plunge dynamics investigated
-  Reduced order model outperforms Theodorsen’s model for all cases,

           especially at large angle of attack

Accurate, efficient reduced order models

-  Models are linearization of full nonlinear model
-  Constructed for specific geometry, Reynolds number
-  Based on various input maneuvers

Future Work:

-  Use pitch/plunge models for optimal control (maneuver, lift 
stabilization)
-  Combine into nonlinear model with limit cycle dynamics
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QUESTIONS?
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