Unsteady Aerodynamic Forces: Experiments, Simulations, and Models

Steve Brunton & Clancy Rowley FAA/JUP Quarterly Meeting April 6, 2011

Motivation

Applications of Unsteady Models

Conventional UAVs (performance/robustness)

Micro air vehicles (MAVs)

Flow control, flight dynamic control

Autopilots / Flight simulators

Gust disturbance mitigation

Need for State-Space Models

Need models suitable for control

Combining with flight models

Predator (General Atomics)

FLYIT Simulators, Inc.

Stall velocity and size

Smaller, lower stall velocity

RQ-I Predator (27 m/s stall)

Daedalus Dakota (18m/s stall)

Puma AE (10 m/s stall)

$$V_{\text{stall}} = \sqrt{\frac{2}{\rho} \left(C_{L_{\text{max}}} S \right)^{-1} W}$$

SWing surface area
$$W$$
Aircraft weight L Lift force C_L Lift coefficient V Velocity of aircraft

Need model that captures lift due to moving airfoil!

Need model that captures lift due to moving airfoil!

Need model that captures lift due to moving airfoil!

2D Model Problem

$$\operatorname{Re} = 300$$

 $\alpha = 32^{\circ}$

2D Model Problem

ODE model ideal for control design

Brunton and Rowley, in preparation.

Brunton and Rowley, in preparation.

Brunton and Rowley, AIAA ASM 2011

(Indicial) Step Response

Previously, models are based on aerodynamic step response

Idea: Have pilot fly aircraft around for 5-10 minutes, back out the Markov parameters, and construct ERA model.

Random Input Maneuver

Idea: Have pilot fly aircraft around for 5-10 minutes, back out the Markov parameters, and construct ERA model.

Wind Tunnel Setup

Experimental Information

Andrew Fejer Unsteady Flow Wind Tunnel

(.6m x .6m x 3.5m test section)
NACA 0006 Airfoil
Chord Length: 0.246 m
Free Stream Velocity: 4.00 m/s
I.0 Convection time = .06 seconds
Reynolds Number: 65,000
Pitch point x/c = .11 (11% chord)

Velocity measurement: Pitot tube, Validyne DP-103 pressure transducer
Force measurement: ATI Nano25 force transducer
Pushrod position measurement: linear potentiometer
Pushrod actuation: Copley servo tubes

Acknowledgments: Professor David Williams Seth Buntain and Vien Quatch

Wing Maneuver

What are we modeling?

Four Test Maneuvers

-10

-2

Convective time

Angle (degrees)

Maneuver 2

Measured Force

ROM, r=3

Bode Plots for AoA=0

Idea: lets combine all maneuvers into one large system ID maneuver!

Bode Plot for AoA=0

Model using ALL data

Wednesday, March 28, 2012

30Hz Mechanical Oscillation

Models agree with data

Model for Plunging

Reduced order model based on indicial response at non-zero angle of attack

- Based on eigensystem realization algorithm (ERA)
- Models appear to capture dynamics up to Hopf bifurcation

Observer/Kalman Filter Identification with more realistic input/output data

- Efficient computation of reduced-order models
- Ideal for simulation or experimental data

Confirmation with experimental data

- Tested modeling procedure in Dave Williams' wind tunnel experiment
- Flexible procedure works with various geometry, Reynolds number

Wagner, 1925.	Brunton and Rowley, AIAA ASM 2009-2011
Theodorsen, 1935.	Juang and Pappa, 1985.
Leishman, 2006.	Ma, Ahuja, Rowley, 2010.
OL, Altman, Eldredge, Garmann, and Lian, 2010	Juang, Phan, Horta, Longman, 1991.