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FLYIT Simulators, Inc.

Motivation

Predator (General Atomics)

Applications of Unsteady Models

Conventional UAVs (performance/robustness)

Micro air vehicles (MAVs)

Flow control, flight dynamic control

Autopilots / Flight simulators

Gust disturbance mitigation

Need for State-Space Models

Need models suitable for control

Combining with flight models

Daedalus Dakota 
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Flight Dynamic Control

flight dynamics

aerodynamics

coupled model

estimatorcontroller

reference trajectory,
wind disturbances 

deviation from 
desired path, or state 

position,
aerodynamic state

thrust, elevator, aileron,
             blowing/suction
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Stall velocity and size

RQ-1 Predator 
(27 m/s stall)

Daedalus Dakota 
(18m/s stall)

Puma AE
(10 m/s stall)

Smaller, lower stall velocity

Vstall =
�

2
ρ

(CLmaxS)−1 W

S

W

L

CL

V

Wing surface area

Aircraft weight

Lift force

Lift coefficient

Velocity of aircraft
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Lift vs.  Angle of Attack
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Need model that captures lift due to moving airfoil!
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Lift vs.  Angle of Attack
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Lift vs.  Angle of Attack
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Need model that captures lift due to moving airfoil!
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Lift

Drag

Re = 300

2D Model Problem

α = 32◦

Added-Mass

Periodic Vortex Shedding
Transient
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Lift

Drag

Re = 300

2D Model Problem

α = 32◦

Added-Mass

Periodic Vortex Shedding
Transient

Wednesday, March 28, 2012



Reduced Order Indicial Response
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Brunton and Rowley, in preparation.

Model Summary

ODE model ideal for control design 

Based on experiment, simulation or theory

Linearized about α = 0

Recovers stability derivatives 
   associated with quasi-steady and added-mass

CLα , CLα̇ , CLα̈

quasi-steady and added-mass

Reduced-order model

input

fast dynamics
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Lift vs.  Angle of Attack
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Models linearized at                α = 0◦
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Indicial Response
ROM, r=3
Wagner/Theodorsen
DNS
ROM, r=3 (MIMO)

Bode Plot - Pitch (QC)

Frequency response

Reduced order model with ERA r=3
    accurately reproduces Indicial Response

Indicial Response and ROM agree better with   
    DNS than Theodorsen’s model.

output is lift coefficient CL

input is       (       is angle of attack)α̈ α

Brunton and Rowley, in preparation.

Pitching at quarter chord

Asymptotes are correct for Indicial Response 
    because it is based on experiment

Model for pitch/plunge dynamics 
    [ERA, r=3 (MIMO)] works as well, 
    for the same order model

Quarter-Chord Pitching
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Lift vs.  Angle of Attack
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ERA, !=0
DNS, !=0
ERA, !=10
DNS, !=10
ERA, !=20
DNS, !=20
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Direct numerical simulation confirms that local linearized models 
are accurate for small amplitude sinusoidal maneuvers

Brunton and Rowley, AIAA ASM 2011
Wednesday, March 28, 2012



PLANTuk u(t) yky(t)
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(Indicial) Step Response

Previously, models are based on aerodynamic step response

Idea:  Have pilot fly aircraft around for 5-10 minutes, back 
out the Markov parameters, and construct ERA model.
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CL(t)

α̈

α̇

α

Random Input Maneuver

Idea:  Have pilot fly aircraft around for 5-10 minutes, back 
out the Markov parameters, and construct ERA model.
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Wind Tunnel Setup

NACA 0006 Airfoil
  (24.6 cm chord)

Push rods and sting

Test section

Servo tubes
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Experimental Information

Free Stream Velocity: 4.00 m/s

Chord Length: 0.246 m

Reynolds Number: 65,000

1.0 Convection time = .06 seconds

Force measurement:  ATI Nano25 force transducer

Velocity measurement: Pitot tube, 
    Validyne DP-103 pressure transducer

NACA 0006 Airfoil

Pitch point x/c = .11 (11% chord)

Pushrod position measurement:  linear potentiometer

Pushrod actuation: Copley servo tubes

Andrew Fejer Unsteady Flow Wind Tunnel
(.6m x .6m x 3.5m test section)

Acknowledgments:   Professor David Williams

Seth Buntain and Vien Quatch
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Step−Up, Step−Down, 5 degrees

Phase averaged over 200 cycles
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Commanded Angle

Measured Angle

Wing Maneuver
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What are we modeling?
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Measured Force

ROM, r=3

Model using command acceleration
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Measured Force

ROM, r=3

Model using measured acceleration
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What are we modeling?
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Measured Force

ROM, r=3

Model using command acceleration
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Measured Force

ROM, r=3

Model using measured acceleration

αcmnd αpot CLAerodynamicsActuator

our model

Simulink
αpos
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Measured Force
ROM, r=3

Four Test Maneuvers
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Measured Force
ROM, r=3
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Measured Force

ROM, r=3
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Measured Force
ROM, r=3

Maneuver 1 Maneuver 2

Maneuver 3 Maneuver 4
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maneuver 1

maneuver 2

maneuver 3

maneuver 4

Bode Plots for AoA=0

Model using measured acceleration

Idea: lets combine all maneuvers into one large system ID maneuver!
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Measured Force
ROM, r=3

Bode Plot for AoA=0

Resonant peak

Added-mass “bump”
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Measured Force
ROM, r=3

Theory Experimental
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Step−Up, Step−Down, 5 degrees

30Hz Mechanical Oscillation
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Experiment 4

Model 1

Model 2

Model 3

Model 4

0 10 20 30 40 50 60 70 80 90 100
−10

0

10

A
n
g
le

 (
d
e
g
re

e
s)

0 10 20 30 40 50 60 70 80 90 100

−2

−1

0

1

2

3

Convective time

N
o
rm

a
l F

o
rc

e
 (

N
)

 

 Experiment 3

Model 1

Model 2

Model 3

Model 4
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 Experiment 2

Model 1

Model 2

Model 3

Model 4
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 Experiment 1

Model 1

Model 2

Model 3

Model 4

Models agree with data
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Measured Force
ROM, r=3

Model for Plunging
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Conclusions

Reduced order model based on indicial response at non-zero angle of attack

-  Based on eigensystem realization algorithm (ERA)
-  Models appear to capture dynamics up to Hopf bifurcation

Observer/Kalman Filter Identification with more realistic input/output data

-  Efficient computation of reduced-order models
-  Ideal for simulation or experimental data

Brunton and Rowley, AIAA ASM 2009-2011

OL, Altman, Eldredge, Garmann, and Lian, 2010

Leishman, 2006.

Wagner, 1925.

Theodorsen, 1935.

Confirmation with experimental data
-  Tested modeling procedure in Dave Williams’ wind tunnel experiment
-  Flexible procedure works with various geometry, Reynolds number

Juang, Phan, Horta, Longman, 1991.

Juang and Pappa, 1985.

Ma, Ahuja, Rowley, 2010.
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