System Identification and Models for Flight Control

Steve Brunton and Clancy Rowley Princeton University
FAA/JUP Meeting October 7, 2010

Major Applications

1. Autopilot

2. Flight Simulators

a. small, agile UAV
b. severe weather
c. wake vorticity
d. cheaper than full CFD to compute aerodynamic response of airframe
e. necessary when using for onboard control

Goals

1. System Identification

a. Stability derivatives
b. Additional fast dynamics
c. Markov parameters and ERA algorithm

2. Flight Control

a. Stability augmentation
b. Control augmentation
c. 6DOF inertial model
d. Coupled aerodynamic model

coupled model

e. Interesting control problem when inertial/aerodynamic timescales are close

NextGen ConOps V2.0: UAVs

2.7.2.2 Unmanned Aircraft Systems

UAS operations are some of the most demanding operations in NextGen. UAS operations include scheduled and on-demand flights for a variety of civil, military, and state missions.

Because of the range of operational uses, UAS operators may require access to all NextGen airspace. ...

2.7.2.3 Vertical Flight

... Rotorcraft are also used for UAS applications for commercial, police, and security operations. These operations add to the density and complexity of operations, particularly in and around urban areas.

3.3.1.2.3 Integrated Environmental Operations

UAS performing security functions and the airport perimeter security intrusion detection system may have the capability to assist with wildlife management programs.

5.3.3 Weather Information Enterprise Services

- Enterprise Service 3: UASs Are Used for Weather Reconnaissance. [R-169] En route weather reconnaissance UASs are equipped to collect and report in-flight weather data. Specialized weather reconnaissance UASs are used to scout potential flight routes and trajectories to identify available "weather-favorable" airspace...

UAVs and NextGen:

May require access to all NextGen airspace
Civil, military and state missions
Mobile communications relays
Security/Policing
Weather reconnaissance
and much more ...

Safety Hazards:

Extremely light, very difficult to control in high crosswinds

No human failsafes

Especially dangerous in takeoff and landing
"... 65 of the 195 Predators the Air Force has acquired since 1994 had been lost because of Class A mishaps."
"... 36\% were attributed to human error. And I5\% of the accidents occurred during landing"

Government Computer News (Oct. 9, 2009)

Wind Disturbances

Free air turbulence

Wake vorticity

Wind rotors

Microburst wind shear

Safety Hazards: Landing and takeoff (congestion during storms, takeoff waiting lines)
Especially problematic for lightweight UAVs

Flight Simulators

Goal: Pilot flies real aircraft for 5-10 minutes, and reduced order aerodynamic model is automatically generated.

Not specific to unsteady aerodynamics
Physics based, generalizable to nonlinear affects, such as wake vorticity, turbulence, etc.

FLYIT Simulators,Inc.
The New Standard
in Aviation Training

Flight Dynamic Model

Theodorsen's Model

Given $y^{\delta}(t)$ for an impulse response $u=\delta(t)$, The response to an arbitrary input $u(t)$

is given by linear superposition
$y(t)=y^{\delta}(t) u(0)+\int_{0}^{t} y^{\delta}(t-\tau) u(\tau) d \tau$

In particular, input is pitch rate, and output is lift coefficient:

$$
\begin{aligned}
u & =\dot{\alpha} \\
y & =C_{L}
\end{aligned}
$$

Wagner, 1925.
Leishman, 2006.

(Indicial) Step Response

Eigensystem Realization Algorithm

I. Gather outputs $\mathbf{y}(k)=C A^{k} B$ from an impulse-response experiment, and arrange into Hankel matrices:

$$
H=\left[\begin{array}{cccc}
C B & C A B & \cdots & C A^{m_{c}} B \\
C A B & C A^{2} B & \cdots & C A^{m_{c}+1} B \\
\vdots & \vdots & \ddots & \vdots \\
C A^{m_{o}} B & C A^{m_{o}+1} B & \cdots & C A^{m_{c}+m_{o}} B
\end{array}\right] \quad H^{\prime}=\left[\begin{array}{cccc}
C A B & C A^{2} B & \cdots & C A^{m_{c}+1} B \\
C A^{2} B & C A^{3} B & \cdots & C A^{m_{c}+2} B \\
\vdots & \vdots & \ddots & \vdots \\
C A^{m_{o}+1} B & C A^{m_{o}+2} B & \cdots & C A^{m_{c}+m_{o}+1} B
\end{array}\right]
$$

2. Compute the singular value decomposition of H :

$$
H=U \Sigma V^{*}=\left[\begin{array}{ll}
U_{1} & U_{2}
\end{array}\right]\left[\begin{array}{cc}
\Sigma_{1} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
V_{1}^{*} \\
V_{2}^{*}
\end{array}\right]=U_{1} \Sigma_{1} V_{1}^{*}
$$

3. Let Σ_{r} be the first $r \times r$ block of Σ_{1} and U_{r}, V_{r} the first r columns of U_{1}, V_{1}
so that the reduced order model A_{r}, B_{r}, C_{r} is given by:

Juang and Pappa, J. Guid. Contr. Dyn., 8:5, 1985.
Ma, Z., Ahuja, S., and C. Rowley, Theor. Comput. Fluid. Dyn., to appear.

$$
\begin{aligned}
& A_{r}=\Sigma_{r}^{-1 / 2} U_{r}^{*} H^{\prime} V_{r} \Sigma_{r}^{-1 / 2} \\
& B_{r}=\text { first } p \text { columns of } \Sigma_{r}^{1 / 2} V_{1}^{*} \\
& C_{r}=\text { first } q \text { rows of } U_{r} \Sigma_{r}^{1 / 2}
\end{aligned}
$$

Recently shown to yield reduced order models equivalent to those obtained through Balanced Proper Orthogonal Decomposition

ERA Model

$$
\begin{aligned}
& {\left[\begin{array}{c}
\mathbf{x} \\
\alpha \\
\dot{\alpha}
\end{array}\right]_{k+1}=} {\left[\begin{array}{ccc}
A_{\text {ERA }} & 0 & 0 \\
0 & 1 & \Delta t \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
\mathbf{x} \\
\alpha \\
\dot{\alpha}
\end{array}\right]_{k}+\left[\begin{array}{c}
B_{\text {ERA }} \\
0 \\
\Delta t
\end{array}\right]_{\text {input }} } \\
& \ddot{\alpha}_{k} \\
& C_{L}(k \Delta t)= {\left[\begin{array}{lll}
C_{\text {ERA }} & C_{L_{\alpha}} & C_{L_{\dot{\alpha}}}
\end{array}\right][\begin{array}{c}
\mathbf{x} \\
\alpha \\
\dot{\alpha}
\end{array} \underbrace{}_{k} \underbrace{D_{\text {ERA }}}_{\text {ERA Model }} \ddot{\alpha}_{k}} \\
& \bigcap_{\text {additional fast dynamics }}
\end{aligned}
$$

Canonical Pitch-ramp Maneuver

Canonical Maneuver

M. OI, J. Eldredge et al, 48th AIAA ASM, 2010.

Developed to compare models, simulations and experiments

Qualitatively similar for range of Reynolds numbers from 300-40k

I. Pitch-up to $\mathbf{4 5}^{\circ}$
2. Hold at 45°
3. Pitch-down to $\mathbf{0}^{\circ}$

Leading-edge pitch-ramp maneuver
Large added-mass forces appear as spikes
Reduced order ERA model captures unsteady lift

Canonical Pitch-ramp Maneuver

Canonical Maneuver

M. OI, J. Eldredge et al, 48th AIAA ASM, 2010.

Developed to compare models, simulations and experiments

Qualitatively similar for range of Reynolds numbers from 300-40k
I. Pitch-up to 45°
2. Hold at 45°
3. Pitch-down to 0°

Leading-edge pitch-ramp maneuver
Large added-mass forces appear as spikes
Reduced order ERA model captures unsteady lift

Canonical Pitch-ramp Maneuver

Combined Pitch/Plunge Maneuver

Pitching at Quarter Chord

Vertical Plunging

Summary

1. Reduced Order Model for Wagner

a. Stability derivatives
b. Additional fast dynamics
c. Markov parameters and ERA algorithm

2. Advantages

a. More accurate than Quasi-steady
b. More accurate than Theodorsen
c. Efficient
d. ODE framework ideal for control

coupled model

e. Fits naturally into fight dynamic framework

Flight Dynamic Model

coupled model

Our Research

Goals

Flight Dynamic Model

coupled model

Flight Dynamics

Interesting control scenario when time-scales of flight dynamics are close to time-scales of aerodynamics

Flight Dynamic Model

Moving Base Flow

Moving Airfoil

Moving Base Flow

Base flow velocity:

$$
\begin{aligned}
& u(x, y, t)=U_{\infty} \cos \left(\alpha+\alpha_{\infty}\right)-\dot{x}-\dot{\alpha}\left(y-y_{C}\right) \\
& v(x, y, t)=U_{\infty} \sin \left(\alpha+\alpha_{\infty}\right)-\dot{y}+\dot{\alpha}\left(x-x_{C}\right)
\end{aligned}
$$

Vorticity:

$$
\nabla \times(u, v)=v_{x}-u_{y}=\dot{\alpha}+\dot{\alpha}=2 \dot{\alpha}
$$

where $\left(x_{C}, y_{C}\right)$ is the center of mass.

Moving Base Flow

Faster simulations (Cholesky decomposition) allows more aggressive maneuvers and gusts subject of current research

Immersed Boundary Method

T. Colonius and K. Taira, 2008

A fast immersed boundary method using a nullspace approach and multi-domain far-field boundary conditions.

Flight Control

Kornfeld, Hansman, and Deyst, ICAT-99-5, 1999.

SAS: Stability Augmentation System
CAS: Control Augmentation System

Figure 2.1: Classical Flight Control Loops

Flight Control

Kornfeld, Hansman, and Deyst, ICAT-99-5, 1999.

Figure 2.7: Single-Antenna GPS-Based Instrumentation Architecture

