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FLYIT Simulators, Inc.

Motivation

Predator (General Atomics)

Flexible Wing
 (University of Florida)

Applications of Unsteady Models

Conventional UAVs (performance/robustness)

Micro air vehicles (MAVs)

Flow control, flight dynamic control

Autopilots / Flight simulators

Gust disturbance mitigation

Need for State-Space Models

Need models suitable for control

Combining with flight models

Understand bird/insect flight

Bio-locomotion
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Flow Control (expert)
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Flow Control (expert)
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Flight Dynamic Control

flight dynamics

aerodynamics

coupled model

estimatorcontroller

reference trajectory,
wind disturbances 

deviation from 
desired path, or state 

position,
aerodynamic state

thrust, elevator, aileron,
             blowing/suction
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Stationary,  AoA = 25

Stationary,  AoA = 35

Pitch

Plunge

2D Incompressible Flow, (Re=100)

∂u

∂t
+ (u ·∇)u = −∇p+

1

Re
∇2u+

�

s
f (ξ(s, t)) δ(ξ − x)ds

∇ · u = 0

u (ξ(s, t)) =

�

x
u(x)δ(x− ξ)dx = uB (ξ(s, t))

2D Incompressible Navier-Stokes:

Colonius & Taira, 2008.

Immersed boundary method

Multi-domain approach

Boundary forces computed as Lagrange-
multipliers to enforce no slip
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ẋ = x

ẏ = −y + x2

Finite Time Lyapunov Exponents

LCS are hyperbolic ridges in the FTLE field

Generalize invariant manifolds for time varying flows

σ(ΦT
0 ;x0) =

1
|T | log

�
λmax(∆(x0))

∆ =
�
DΦT

0

�∗
DΦT

0where

Finite Time Lyapunov Exponents (FTLE)

Lagrangian Coherent Structures (LCS)

Measure of stretching between neighboring particles 

      is time-dependent for unsteady flowsσ

Attracting nLCS

pLCS - positive-time LCS (repelling)

nLCS - negative-time LCS (attracting)

ΦT
0          - particle flow map

Haller, 2002; 
Shadden et al., 2005
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Finite Time Lyapunov Exponents

LCS are hyperbolic ridges in the FTLE field

Generalize invariant manifolds for time varying flows
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0where

Finite Time Lyapunov Exponents (FTLE)

Lagrangian Coherent Structures (LCS)

Measure of stretching between neighboring particles 

      is time-dependent for unsteady flowsσ

ẋ = x

ẏ = −y + x2

Repelling pLCS

pLCS - positive-time LCS (repelling)

nLCS - negative-time LCS (attracting)

ΦT
0          - particle flow map

Haller, 2002; 
Shadden et al., 2005
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Finite Time Lyapunov Exponents

LCS are hyperbolic ridges in the FTLE field

Generalize invariant manifolds for time varying flows

σ(ΦT
0 ;x0) =

1
|T | log
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λmax(∆(x0))

∆ =
�
DΦT

0

�∗
DΦT

0where

Finite Time Lyapunov Exponents (FTLE)

Lagrangian Coherent Structures (LCS)

Measure of stretching between neighboring particles 

      is time-dependent for unsteady flowsσ

ẋ = x

ẏ = −y + x2

Both nLCS & pLCS

pLCS - positive-time LCS (repelling)

nLCS - negative-time LCS (attracting)

ΦT
0          - particle flow map

Haller, 2002; 
Shadden et al., 2005
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Lift

Drag

Re = 300

2D Model Problem

α = 32◦
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Lift

Drag

Re = 300

2D Model Problem

α = 32◦

Added-Mass

Periodic Vortex Shedding
Transient
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Lift

Drag

Re = 300

2D Model Problem

α = 32◦

Added-Mass

Periodic Vortex Shedding
Transient
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Unsteady Aerodynamic Forces

Added Mass

ẋ = x

ẏ = −y + x2

Circulatory/Viscous

Unsteady potential flow forces (F=ma)

force needed to move air as plate accelerates

Increasingly important for small/light aircraft

Need improved models here

source of all lift in steady flight... and more

Captures separation effects
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Unsteady Aerodynamic Forces

Added Mass Circulatory/Viscous

Unsteady potential flow forces (F=ma)

force needed to move air as plate accelerates

Increasingly important for small/light aircraft

Need improved models here

source of all lift in steady flight... and more

Captures separation effects

ẋ = x

ẏ = −y + x2

The mass of the body and surrounding fluid are 
being accelerated, to different extents.

Kinetic energy     will be in some manner proportional 
to      (for potential and Stokes flows)

T
U

T = ρ
I

2
U2 I =

�

V

ui

U
· ui

U
dVwhere

If body accelerates,     probably increases,
and energy must be supplied:

T

dT

dt
= −FU =⇒ Fi = − ρIij����

AM

U̇j

2 1.5 1 0.5 0 0.5 1 1.5 2
2

1.5

1

0.5

0

0.5

1

1.5

2

cylinder moving in Lab frame

Newman, 1977.

Milne-Thompson, 1962

Lamb,1945.
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Unsteady Aerodynamic Forces

Added Mass Circulatory/Viscous

Unsteady potential flow forces (F=ma)

force needed to move air as plate accelerates

Increasingly important for small/light aircraft

Need improved models here

source of all lift in steady flight... and more

Captures separation effects

Stengel, 2004.

Milne-Thompson, 1973.

Boundary layer

Laminar separation bubble

Leading edge vortex

Periodic Vortex Shedding
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Theodorsen’s Model - 1935

Added Mass Circulatory/Viscous

Unsteady potential flow forces (F=ma)

force needed to move air as plate accelerates

Increasingly important for small/light aircraft

Need improved models here

source of all lift in steady flight... and more

Captures separation effects

k =
πfc

U∞

2D Incompressible, inviscid model

Unsteady potential flow (w/ Kutta condition)

Linearized about zero angle of attack

Leishman, 2006.

Theodorsen, 1935.

CL =
π

2

�
ḧ+ α̇− a

2
α̈
�

� �� �
Added-Mass

+2π

�
α+ ḣ+

1

2
α̇

�
1

2
− a

��

� �� �
Circulatory

C(k)

C(k) =
H

(2)
1 (k)

H
(2)
1 (k) + iH

(2)
0 (k)
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Three Types of Unsteadiness

1. High angle-of-attack

α > αstall

Large amplitude, slow Moderate amplitude, fast

2. Strouhal number

St =
Af

U∞

3.  Reduced frequency

k =
πfc

U∞

Small amplitude, very fast

� �� �
Closely related

αeff = tan−1 (πSt)

Brunton and Rowley, AIAA ASM 2009
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Three Types of Unsteadiness

3.  Reduced frequency

k =
πfc

U∞

Small amplitude, very fast

1. High angle-of-attack

α > αstall

Large amplitude, slow Moderate amplitude, fast

2. Strouhal number

St =
Af

U∞

� �� �
Closely related

αeff = tan−1 (πSt)

Brunton and Rowley, AIAA ASM 2009
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Candidate Lift Models

CL = CL(α)

CL = CLαα

CL = 2πα

Motivation for State-Space Models

Computationally tractable

fits into control framework

Captures input output dynamics accurately

CL(t) = Cδ
L(t)α(0) +

� t

0
Cδ

L(t− τ)α̇(τ)dτ Indicial Response (Wagner)

Theodorsen’s Model

CL =
π

2

�
ḧ+ α̇− a

2
α̈
�

� �� �
Added-Mass

+2π

�
α+ ḣ+

1

2
α̇

�
1

2
− a

��

� �� �
Circulatory

C(k)

Leishman, 2006.

Theodorsen, 1935.

Wagner, 1925.
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Low Reynolds number, (Re=100)

Hopf bifurcation at αcrit ≈ 28◦ (pair of imaginary eigenvalues pass into right half plane)
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Average Lift pre Shedding
Average Lift post Shedding
Min/Max of Limit Cycle

Models based on Hopf normal form capture vortex shedding

Lift vs Angle of Attack

Low Reynolds number, (Re=100)

Hopf bifurcation at αcrit ≈ 28◦ (pair of imaginary eigenvalues pass into right half plane)
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High angle of attack models

ẋ = (α− αc)µx− ωy − ax(x2 + y2)

ẏ = (α− αc)µy + ωx− ay(x2 + y2)

ż = −λz





=⇒

ṙ = r
�
(α− αc)µ− ar2

�

θ̇ = ω

ż = −λz

Heuristic Model Galerkin Projection onto POD

Full DNS

Reconstruction
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ż = −λz

Heuristic Model Galerkin Projection onto POD

Full DNS

Reconstruction

Monday, March 21, 2011



Lift vs.  Angle of Attack
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Need model that captures lift due to moving airfoil!
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Lift vs.  Angle of Attack
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Lift vs.  Angle of Attack
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Need model that captures lift due to moving airfoil!
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Lift vs.  Angle of Attack
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Theodorsen’s Model

Apparent Mass

Not trivial to compute, but essentially solved

force needed to move air as plate accelerates

Increasingly important for lighter aircraft

Circulatory Lift

Need improved models here

source of all lift in steady flight

Captures separation effects

k =
πfc

U∞

2D Incompressible, inviscid model

Unsteady potential flow (w/ Kutta condition)

Linearized about zero angle of attack

Leishman, 2006.

Theodorsen, 1935.

CL =
π

2

�
ḧ+ α̇− a

2
α̈
�

� �� �
Added-Mass

+2π

�
α+ ḣ+

1

2
α̇

�
1

2
− a

��

� �� �
Circulatory

C(k)

C(k) =
H

(2)
1 (k)

H
(2)
1 (k) + iH

(2)
0 (k)
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Bode Plot of Theodorsen

Frequency response

Low frequencies dominated by 
quasi-steady forces

High frequencies dominated by 
added-mass forces

output is lift coefficient CL

input is       (       is angle of attack)

Crossover region determined by 
Theodorsen’s function 

α̈ α

C(k)
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x/c=0.80
x/c=0.90
x/c=1.00

CL =
π

2

�
ḧ+ α̇− a

2
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�
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Added-Mass

+2π

�
α+ ḣ+

1

2
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�
1

2
− a

��
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Circulatory

C(k)

k =
πfc

U∞

Brunton and Rowley, AIAA ASM 2011
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x/c=0.0

x/c=.25

x/c=.50

x/c=.75

x/c=1.0

Zeros of Theodorsen’s Model

As pitch point moves aft of center, 
zero enters RHP at +infinity.

Given a step in angle of attack, lift initially moves in opposite direction 
(because of negative added-mass forces), before the circulatory lift forces 
have a change to catch up and system relaxes to a positive lift steady state.

non-minimum phase response:

Brunton and Rowley, AIAA ASM 2011
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Indicial Response Models

Model Summary

convolution integral inconvenient for 
    feedback control design

Reconstructs Lift for arbitrary input

Based on experiment, simulation or theory

Leishman, 2006.

Wagner, 1925.

u(t)

τ1 τ2 τ3 t

!"#$%

&$%#$%

τ1

τ2

τ3

!'#$()*+,*)#&")*

t0

yδ(t − τ1)

yδ(t − τ2)

yδ(t − τ3)

y(t) = yδ ∗ u

yδ(t − t0)

CL(t) = CS
L(t)α(0) +

� t

0
CS

L(t− τ)α̇(τ)dτ

CL(t) =

� t

0
Cδ

L(t− τ)α(τ)dτ =
�
Cδ

L ∗ α
�
(t)

Given an impulse in angle of attack,               , the time history of Lift is

   The response to an arbitrary input         is given by linear superposition:α(t)

Cδ
L(t)α = δ(t)

Given a step in angle of attack,               , the time history of Lift is

   The response to an arbitrary input         is given by:

CS
L(t)α̇ = δ(t)

α(t)

Reisenthel, 1996.

Wagner developed indicial response analytically 
using same approximations as Theodorsen

Linear time-invariant (LTI) models
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Reduced Order Indicial Response

CL(α, α̇, α̈,x) = CLαα+ CLα̇ α̇+ CLα̈ α̈+ Cx

Y (s) =

�
CLα

s2
+

CLα̇

s
+ CLα̈ +G(s)

�
s2U(s)

d

dt




x
α
α̇



 =




Ar 0 0
0 0 1
0 0 0








x
α
α̇



+




Br

0
1



 α̈

CL =
�
Cr CLα CLα̇

�



x
α
α̇



+ CLα̈ α̈

Stability derivatives 
    plus fast dynamics

Transfer Function

State-Space Form

Quasi-steady and added-mass Fast
dynamics

Brunton and Rowley, in preparation.
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Reduced Order Indicial Response

+ CL

G(s)

!"#$%&$'(#)*+,+#))()+-#$$

.#$'+)*/#-%0$

CLα̈

CLα̇

s

CLα

s2

α̈

Brunton and Rowley, in preparation.

Model Summary

ODE model ideal for control design 

Based on experiment, simulation or theory

Linearized about α = 0

Recovers stability derivatives 
   associated with quasi-steady and added-mass

CLα , CLα̇ , CLα̈

quasi-steady and added-mass

Reduced-order model

input

fast dynamics

d

dt




x
α
α̇



 =




Ar 0 0
0 0 1
0 0 0








x
α
α̇



+




Br

0
1



 α̈

CL =
�
Cr CLα CLα̇

�



x
α
α̇



+ CLα̈ α̈

CL(t) = CS
L(t)α(0) +

� t

0
CS

L(t− τ)α̇(τ)dτ
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Bode Plot - Pitch (LE)

Frequency response

Model without additional fast 
dynamics [QS+AM (r=0)] is 
inaccurate in crossover region

Models with fast dynamics of ERA 
model order >3 are converged

output is lift coefficient CL

Punchline: additional fast dynamics 
(ERA model) are essential

input is       (       is angle of attack)α̈ α

Brunton and Rowley, in preparation.
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Pitching at leading edge
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Indicial Response
ROM, r=3
Wagner/Theodorsen
DNS
ROM, r=3 (MIMO)

Bode Plot - Pitch (QC)

Frequency response

Reduced order model with ERA r=3
    accurately reproduces Indicial Response

Indicial Response and ROM agree better with   
    DNS than Theodorsen’s model.

output is lift coefficient CL

input is       (       is angle of attack)α̈ α

Brunton and Rowley, in preparation.

Pitching at quarter chord

Asymptotes are correct for Indicial Response 
    because it is based on experiment

Model for pitch/plunge dynamics 
    [ERA, r=3 (MIMO)] works as well, 
    for the same order model

Quarter-Chord Pitching
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DNS
Indicial Response
ROM, r=3 (MIMO)
ROM, r=3 (2xSISO)
QS+AM (r=0)
Wagner/Theodorsen

Pitch/Plunge Maneuver

Brunton and Rowley, in preparation.

Canonical pitch-up, hold, pitch-down maneuver, followed by step-down in vertical position

Reduced order model for indicial response
accurately captures lift coefficient history from DNS

OL, Altman, Eldredge, Garmann, and Lian, 2010
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Lift vs.  Angle of Attack
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Lift vs.  Angle of Attack
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Bode Plot of ERA Models
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Results

At larger angle of attack, phase converges 
to -180 at much lower frequencies.  I.e., 
solutions take longer to reach equilibrium 
in time domain.

Lift slope decreases for increasing angle of 
attack, so magnitude of low frequency 
motions decreases for increasing angle of 
attack.

Consistent with fact that for large angle of 
attack, system is closer to Hopf instability, 
and a pair of eigenvalues are moving closer 
to imaginary axis.  
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Poles and Zeros of ERA Models
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As angle of attack increases, pair of poles (and pair of zeros) march towards imaginary axis.  

This is a good thing, because a Hopf bifurcation occurs at αcrit ≈ 28◦

Brunton and Rowley, AIAA ASM 2011
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Direct numerical simulation confirms that local linearized models 
are accurate for small amplitude sinusoidal maneuvers

Brunton and Rowley, AIAA ASM 2011
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Large Amplitude Maneuver

G(t) = log
�
cosh(a(t− t1)) cosh(a(t− t4))
cosh(a(t− t2)) cosh(a(t− t3))

�
α(t) = α0 + αmax

G(t)
max(G(t))

Compare models linearized at 

andα = 0◦ α = 15◦

For pitching maneuver with 

α ∈ [15◦,25◦]

Model linearized at 

    captures lift response more accurately

α = 15◦

OL, Altman, Eldredge, Garmann, and Lian, 2010Brunton and Rowley, AIAA ASM 2011
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PLANTuk u(t) yky(t)

u

u̇

�
u

Time

A

T

0

0

(Indicial) Step Response

Previously, models are based on aerodynamic step response

Idea:  Have pilot fly aircraft around for 5-10 minutes, back 
out the Markov parameters, and construct ERA model.
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CL(t)

α̈

α̇

α

Random Input Maneuver

Idea:  Have pilot fly aircraft around for 5-10 minutes, back 
out the Markov parameters, and construct ERA model.
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Moving Base Flow

Base flow velocity:

Vorticity:

(xC , yC) is the center of mass.where

Moving Base Flow

allows more aggressive maneuvers and gusts

subject of current research

Faster simulations (Cholesky decomposition)

Immersed Boundary Method
T. Colonius and K. Taira, 2008

A fast immersed boundary method using a 
nullspace approach and multi-domain far-field 
boundary conditions.
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u(x, y, t) = �V� cos(α)− θ̇(y − yC)

v(x, y, t) = �V� sin(α) + θ̇(x− xC)

∇× (u, v) = vx − uy = θ̇ + θ̇ = 2θ̇
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Conclusions

Reduced order model based on indicial response at non-zero angle of attack

-  Based on eigensystem realization algorithm (ERA)
-  Models appear to capture dynamics near Hopf bifurcation
-  Locally linearized models outperform models linearized at α = 0◦

Observer/Kalman Filter Identification for more realistic input/output data

-  Efficient computation of reduced-order models
-  Ideal for simulation or experimental data

Brunton and Rowley, AIAA ASM 2009-2011

OL, Altman, Eldredge, Garmann, and Lian, 2010

Leishman, 2006.

Wagner, 1925.

Theodorsen, 1935.

Future Work:

-  Combine models linearized at different angles of attack 
-  Add large amplitude effects such as LEV and vortex shedding
-  Test modeling procedure in Prof. Williams’ wind tunnel experiment

Juang, Phan, Horta, Longman, 1991.

Juang and Pappa, 1985.

Ma, Ahuja, Rowley, 2010.
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