CDS 280: Tube Dynamics Theory, methods, and applications

Steve Brunton & Philip du Toit

Organizational Overview

- I. Theory (Steve)
 - Historical Introduction.
 - Hill Regions & Rank-1 Saddles.
- II. Theory (Philip)
 - Topological Structure of Tubes.
 - NHIM (Normal Hyperbolically Inv. Mfld.).
- III. Methods & Applications (Steve)
 - Reaction Rates
 - Normal Forms
 - Rydberg Atom & H_2O-H_2 Scattering
 - Rank-2 Saddles
- IV. Applications (Philip)**DNA Flipping**

Transport Tubes

Figure from /~koon/presentations/cimms.pdf

□ Invariant manifold tubes mediate transport through rank-1 saddles.

A Historical Perspective: I

- □ The history of tube dynamics is inseparably linked to the foundations of chaos and the three body problem.
 - Poincaré discovered chaos while working on the Three Body Problem.
 - This watershed event sparked new methods and perspectives for solving problems in mechanics.
 - The search for explicit solutions, transformed into the study of orbit structure, invariant sets, and statistical transport phenomena.

A Historical Perspective: II

- Moser [1958]: Nonlinear dynamics about $L_{1,2,3}$ are qualitatively the same as linearized dynamics for small enough energy.
- Conley [1968]: Low energy transit orbits in Restricted Three-Body Problem (R3BP).
 - Tied to NASA and Dept. of Naval Research.
- McGehee [1969]: Homoclinic orbits in R3BP.
 - Still concerned with the "form" of trajectories.
 - Builds on the work of Poincaré.
 - Formed geometric view of transport in Hill Region.

A Historical Perspective: III

• Appleyard [1970]: Invariant sets near unstable Lagrange points of R3BP.

• First picture of transport tube.

Chaos and Transport

- Sensitive dep. on initial conditions
- Instability/Chaos provide efficient control
- Left: Schematic of chaotic flow Figure by Bingni Wen

 \Box For transport we need:

- Two realms (Interior and Exterior)
- Rank-1 Saddle bottleneck connecting realms

Reduced Coordinates

\Box If system is rotating, reduce via rotations

- \bullet Work on $\gamma-{\rm level}$ set of total angular momentum
- Fixed points of reduced system are Relative Equilibria
 - R.E.'s correspond to periodic orbits in unreduced coordinates
- □ If bodies are extended (i.e., not point masses) reduce to body-fixed frame
 - Body-frame follows the center of mass and orientation of one of the bodies.

Hill Region

PCR3BP: Lagrange points viewed in rotating frame and on the Hill Region [Figures from /~koon/presentations/cimms.pdf]

Project Hamiltonian energy surface onto configuration space

Rank-1 Saddle

Figure from /~koon/papers/specialist_final.pdf

□ Saddle direction mediates transport □ Energy is shared between saddle and two centers $S^{3} \cong \left\{ \frac{\omega_{1}}{2} \left(q_{2}^{2} + p_{2}^{2} \right) + \frac{\omega_{2}}{2} \left(q_{3}^{2} + p_{3}^{2} \right) = H - \lambda q_{1} p_{2} \right\}$

Linear Dynamics Persist

References

- Appleyard, D. F., Invariant sets near the collinear Lagrangian points of the nonplanar restricted three-body problem, Ph.D. thesis, University of Wisconsin, (1970).
- Conley, C., Low energy transit orbits in the restricted three-body problem. SIAM J. Appl. Math. 16, (1968), 732-746.
- Gomez, G., W. S. Koon, M. W. Lo, J. E. Marsden, J. Masdemont and S. D. Ross, Invariant manifolds, the spatial three-body problem and petit grand tour of Jovian moons, *Libration Point Orbits and Applications*, World Scientific, (2003).
- Koon, W. S., M. W. Lo, J. E. Marsden and S. D. Ross, Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics, *Chaos*, 10, (2000), 427-469.
- McGehee, R. P., Some homoclinic orbits for the restricted three-body problem, Ph.D. thesis, University of Wisconsin, (1969).

Space Mission Design

- When tubes meet in config. spc., it is possible to "hop" tubes with a single burn
- [Koon et al, 2000] Arbitrarily complex itineraries may be constructed using lobe dynamics

Figures from /~koon/presentations/cimms.pdf

Reaction/Collision Rates

Schematic of potential saddle separating two wells (left) and the saddle of a scattering reaction (right) [Figures from /~koon/presentations/chemical.pdf]

- Transition State (TS) coincides with NHIM.
- TST assumes structureless phase space.
- Assumes ergodic drift on energy surface.
- [De Leon et al, 1991-92] First application of cylindrical manifolds for modified rate calculation.

Normal Form at Rank-1 Saddle

- □ First appears in Poincaré's Ph.D. thesis
- \Box Hamilton's Equations: $\dot{z} = \mathbb{J}\nabla H(z)$
- \Box Linearize Vector Field at fixed pt.
 - $\dot{z} = D \mathbb{J} \nabla H(z) = Az$; z = (q, p)
 - Matrix A has eigenvalues $\pm \lambda, \pm i\omega_1, \pm i\omega_2, \ldots, \pm i\omega_n$
 - Each eigenvalue has an eigenvector direction
 - $\pm i\omega_k$ corresponds to elliptic motion
 - $\pm \lambda$ corresponds to hyperbolic motion
 - Transport is governed by $\pm \lambda$ direction
- \Box NF decouples elliptic and hyperbolic directions to high order

Normal Form at Rank-1 Saddle

• Quadratic Normal Form: $H = \lambda q_1 p_1 + i \frac{\omega_1}{2} (q_2^2 + p_2^2) + i \frac{\omega_2}{2} (q_3^2 + p_3^2)$

 \Box Successive changes of variables simplify n^{th} order terms as much as possible

- Each change depends only on A
- NF gives integrable approx. to dynamics
- Kill all terms $q_1^i p_1^j$ for $i \neq j$
- Action-angle variables $(I = q_1 p_1, \theta_k)$
- Computations use Lie Transform method: $\hat{H} = H + \{H, G\} + \frac{1}{2!} \{\{H, G\}, G\} + \{\{\{H, G\}, G\}, G\} + \dots$

Poincaré Maps

Powerful tool for 2DOF systems

- \Box Hamiltonian Energy restriction generates 3D surface
- □ Construct a plane transverse to dynamics and track collisions for a grid of initial conditions
 - 1-way collisions foliate phase space around fixed point into equivalence classes of loops starting and stopping at the same point

Left: Schematic for construction of Poincaré Map Figure by Bingni Wer

Poincaré Maps

Poincaré Maps for R3BP (left) and Asteroid Pair (right)

Alternatives to NF Methods

\Box Almost Invariant Set Methods (GAIO)

- Transfer operators on box subdivisions
- Tree structured box elimination
- Graph partitioning
- □ Bounding box and Monte Carlo methods
 - Randomly sample initial conditions from phase space bounding box
 - Integrate forwards and backwards to determine which tubes the i.c. are in
 - After a relatively small number of samples one obtains a good estimate of volume ratios
 - \bullet Applies well to higher dimensional systems (${\sim}5$ or ${\sim}10$ DOF)

Example: Rydberg Atom

Figures from Gabern et al, 2005

□ Lifetime distribution is not exponential, counter to TST and RRKM-theory

 \Box Computed with 16 order Normal Form

Confirmed using GAIO w/o NF's

How To Find Hill Regions

Hill Region for PCR3BP at various energies [Figure from /~koon/papers/DeJuKoLeLoMaPaPrRoTh2005.pdf]

□ Reduce out rotations and work at fixed ang. mom. □ Hill Region is in cartesian body-frame coordinates □ Amended Potential: For $\mu \in \mathfrak{g}^*$, $V_{\mu}(q) = V(q) + \frac{1}{2} \langle \mu, \mathbb{I}^{-1}(q)\mu \rangle = V(q) + \frac{1}{2} g_{00}^{-1} \mu^2$

	Parallel RE (K=0,K=0)			Parallel RE (K=1,K=0)	
		6-0	•-•		
E0 = .00315		COMPLEX	E0 = .00298		RANK-1
	Perpendicular RE (K=0,K=1)			Perpendicular RE (K=1,K=1)	
E0 = .00300		RANK-1	E0 = .00308	1447 - Maria Coloriano de Calendario (Maria) - Coloria Coloriado	COMPLEX

Linearization near rank-1 saddle

Tubes enter and exit through opening of Hill RegionAt high enough energies more channels open up

Low Order NF Methods

Linearization gives rough guess for D⁴ "footprint".
This guess is "shrink-wrapped" onto the energy surface by radial projection.

□ Points are integrated forward to see if they enter or exit.

Low Order NF Methods

OUTCUT

٠

•

•

Out from Out

In from Out Out from In

Example: Ida-Dactyl

Example: Pock marks on Eros

Degraded Craters on Eros

Differences in Craters:

- Top Crater- sharp rim
- Bottom Crater- degraded rim from smaller craters
- Conclusion: Bottom Crater is older than Top Crater

Rank-2 Saddles

 \Box Reaction coordinate is ambiguous for 2 saddles

- □ Trajectories may be transit orbits for only one saddle or both
- □ Topology isn't simply nested spheres
- □ Multi-Channel Reactions

Open Questions

- \Box Is the Hill Region tied to a rotating frame?
- \Box Do all odd spheres have holes?
- □ Is there an estimate for how small energy must be for linear dynamics to persist?
- \Box Can tubes get "trapped" in interior region?
- Perron-Frobenius operator (coarse grained reaction coordinate)
- □ Apply tube dynamics to study rank-1 saddle transport in game theory

References

- De Leon, N., Cylindrical manifolds and reactive island kinetic theory in the time domain, textitJ. Chem. Phys., 96, (1992), 285-297.
- Dellnitz, M., K. Grubits, J. E. Marsden, K. Padberg, and B. Thiere, Set-oriented computation of transport rates in 3-degree of freedom systems: the Rydberg atom in crossed fields, *Regular and Chaotic Dynamics*, 10, (2005), 173-192.
- Dellnitz, M., O. Junge, W. S. Koon, F. Lekien, M. W. Lo, J. E. Marsden, K. Padberg, R. Preis, S. D. Ross, and B. Thiere, Transport in dynamical astronomy and multibody problems, *International Journal of Bifurcation and Chaos*, 15, (2005), 699-727.
- Gabern, F., W. S. Koon, J. E. Marsden and S. D. Ross, Theory and computation of non-RRKM lifetime distributions and rates of chemical systems with three and more degrees of freedom, *preprint*, (2005).
- Gabern, F., W. S. Koon, J. E. Marsden and D. J. Scheeres, Binary asteroids ovservation orbits from a global dynamical picture, submitted to SIAM J. Appl. Dyn. Sys., (2005).
- Jorba, A., A methodology for the numerical computation of normal forms, centre manifolds, and first integrals of Hamiltonian systems,

Experimental Mathematics, 8, (1999), 155-195.

 Wiesenfeld, L., A. Faure, and T. Johann, Rotational transition states: relative equilibrium points in inelastic molecular collisions, *J. Phys. B: At. Mol. Opt. Phys.*, 36, (2003), 1319-1335.

uestions...

EX, *Textures*, IATEX, hyperref, texpo trator 8,1 ages: Wendy McKay, Ross Moore