CDS 280 Tube Dynamlcs

Theory», methods and appllcatlons |

Steve. Brunton & Philip du




Organizational Overview

[. Theory (Steve)

Historical Introduction.
Hill Regions & Rank-1 Saddles.

[T. Theory (Philip)

Topological Structure of Tubes.
NHIM (Normal Hyperbolically Inv. Mfld.).

[T1. Methods & Applications (Steve)

Reaction Rates
Normal Forms

Rydberg Atom & H,O-H, Scattering
Rank-2 Saddles

[V. Applications (Philip)
DNA Flipping



Transport Tubes

Figure from /~koon/presentations/cimms.pdf

Invariant manifold tubes mediate transport through
rank-1 saddles.



A Historical Perspective: |

The history of tube dynamics is inseparably linked to
the foundations of chaos and the three body problem.
Poincaré discovered chaos while working on the

Three Body Problem.

This watershed event sparked new methods and
perspectives for solving problems in mechanics.
The search for explicit solutions, transformed
into the study of orbit structure, invariant sets,
and statistical transport phenomena.



A Historical Perspective: I

Moser [1958]|: Nonlinear dynamics about L3
are qualitatively the same as linearized dynam-
ics for small enough energy.

Conley [1968]|: Low energy transit orbits in Re-

stricted Three-Body Problem (R3BP).
Tied to NASA and Dept. of Naval Research.

McGehee [1969]: Homoclinic orbits in R3BP.

Still concerned with the “form” of trajectories.

Builds on the work of Poincaré.
Formed geometric view of transport in Hill Region.



A Historical Perspective: Il

Appleyard [1970]: Invariant sets near unstable
Lagrange points of R3BP.

First picture of transport tube.
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Chaos and Transport

Sensitive dep. on
initial conditions

Realm A

Instability /Chaos
provide efficient
control

Left: Schematic of

chaotic flow
Figure by Bingni Wen

Realm B

e-ball

For transport we need:

Two realms (Interior and Exterior)
Rank-1 Saddle bottleneck connecting realms



Reduced Coordinates

If system is rotating, reduce via rotations

Work on y—level set of total angular momentum
Fixed points of reduced system are Relative
Equilibria

R.E.’s correspond to periodic orbits in unreduced coordinates

[f bodies are extended (i.e., not point masses) reduce
to body-fixed frame

Body-frame follows the center of mass and ori-
entation of one of the bodies.



Hill Region
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PCR3BP: Lagrange points viewed in rotating frame and on the Hill Region |[Figures

from /~koon/presentations/cimms.pdf]

Project Hamiltonian energy surface onto configura-
tion space



Rank-1 Saddle

Figure from /~koon/papers/specialist final.pdf

Saddle direction mediates transport

Energy is shared between saddle and two centers
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Linear Dynamics Persist
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Reaction/Collision Rates
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Schematic of potential saddle separating two wells (left) and the saddle of a scattering

reaction (right) [Figures from /~koon/presentations/chemical.pdf]
e Transition State (TS) coincides with NHIM.
e TST assumes structureless phase space.

e Assumes ergodic drift on energy surface.

e [De Leon et al, 1991-92] First application of
cylindrical manifolds for modified rate calcula-

tion.



Normal Form at Rank-1 Saddle

First appears in Poincaré’s Ph.D. thesis
Hamilton’s Equations: 2z = JVH(2)

Linearize Vector Field at fixed pt.
4= DJVH(z) = Az; 2= (q,p)

Matrix A has eigenvalues + )\, *iw;, fiwo, ..., Fiw,

Each eigenvalue has an eigenvector direction
+iwy. corresponds to elliptic motion
+ A corresponds to hyperbolic motion

Transport is governed by +\ direction

NF decouples elliptic and hyperbolic directions to
high order



Normal Form at Rank-1 Saddle

Quadratic Normal Form:
W1 W2
H = Aqipy +i—(q; + py) + i (g3 + )

Successive changes of variables simplify n!” order
terms as much as possible

Each change depends only on A

NF gives integrable approx. to dynamics
Kill all terms qip{ for ¢ # 7

Action-angle variables (I = ¢p1, 0;)
Computations use Lie Transform method:

F = H{H,G}+ o {{H.G},GH{{{H.C}.G}.C}+...



Poincaré Maps

Powerful tool for 2DOF systems

Hamiltonian Energy restriction generates 3D surtace

Construct a plane transverse to dynamics and track

collisions for a grid of initial conditions
1-way collisions foliate phase space around fixed
point into equivalence classes of loops starting
and stopping at the same point
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Alternatives to NF Methods

Almost Invariant Set Methods (GAIO)

Transfer operators on box subdivisions
Tree structured box elimination
Graph partitioning

Bounding box and Monte Carlo methods
Randomly sample initial conditions from phase
space bounding box
Integrate forwards and backwards to determine
which tubes the i.c. are in

After a relatively small number of samples one
obtains a good estimate of volume ratios

Applies well to higher dimensional systems (~5
or ~10 DOF)



Example: Rydberg Atom
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Figures from Gabern et al, 2005

Lifetime distribution is not exponential, counter to

TST and RRKM-theory
Computed with 16 order Normal Form
Confirmed using GAIO w/o NF’s



How To Find Hill Regions

D

Hill Region for PCR3BP at various energies [Figure from
/~koon/papers/DeJuKoLeLoMaPaPrRoTh2005.pdf]

Reduce out rotations and work at fixed ang. mom.
Hill Region is in cartesian body-frame coordinates

Amended Potential: For u € g*,

|

Vila) = Via) + 5{u, I (q)u) = V(g) + %go_olpﬂ



Example: H,O-H;

H:p%{ | (pé_poz)z | (poz_pﬁ>2 | p% Vs
om  2mR2 21, oI,

V' = dipole/quadrupole + dispersion 4 induc-
tion + Leonard Jones. (Wiesenfeld)
Reduce out § and work on py = J > 0 level set.

IE?.(:;d\,ar Frame

Lab Frame

...........................................................................................................




Example: H,O-H;

Parallel RE (K=0,K=00)

Parallel RE (K=1,K=0)

Saddle Proiection

Linearization near rank-1 saddle

Center Projections

5 e | = )
| >
E0 =.00315 COMPLEX EO =.00298 RANK-1
Perpendicular RE (k=0,k=1} Perpendicular RE (k=1,k=1)
E0 =.00300 RANK-1 | EO0=.00308 COMPLEX
P2 P
2 x L. Un




xample: H,O-H;




Example: H,O-H>

Tubes enter and exit through opening of Hill Region
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At high enough energies more channels open up




Low Order NF Methods

Linearization gives rough guess for D* “footprint”.

This guess 1s “shrink-wrapped” onto the energy sur-
face by radial projection.

Points are integrated forward to see if they enter or
exit.



Low Order NF Methods
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Example: Ida-Dactyl




Example: Pock marks on Eros

Degraded Craters on Eros

Top Crater- sharp rim

Bottom Crater- degraded rim
from smaller craters

Conclusion: Bottom Crater is
older than Top Crater



Rank-2 Saddles

Reaction coordinate is ambiguous for 2 saddles

Trajectories may be transit orbits for only one saddle
or both

Topology 1sn’t simply nested spheres
Multi-Channel Reactions



Open Questions

Is the Hill Region tied to a rotating frame?
Do all odd spheres have holes?”

Is there an estimate for how small energy must be
for linear dynamics to persist?

Can tubes get “trapped” in interior region?

Perron-Frobenius operator (coarse grained reaction
coordinate)

Apply tube dynamics to study rank-1 saddle trans-
port in game theory
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