Rank-1 Saddle Transport Scattering Reactions with 3 or more Degrees of Freedom

Steve Brunton

Organization of Talk

I. Saddle Transport \& Chemical Reaction Rates
II. Transition State of a Scattering Reaction
III. Methods for Accurate Rate Calculation
IV. Applications:

- Electron Scattering in the Rydberg Atom
- Planar Scattering of $\mathrm{H}_{2} \mathrm{O}$ with H_{2}
- Higher DOF systems, Rank-2 Saddle Transport, Experimental Verification
V. Conclusions \& Open Questions
VI. References

Transition State Theory

Schematic of potential saddle separating two wells (left) and the saddle of a scattering reaction (right) [Figures from / Nkoon/presentations/chemical.pdf]
\square Transition State: Joins Reactants \& Products

- Bottleneck near rank-1 saddle
- Opens for energies larger than saddle
\square TST Assumes Unstructured Phase Space
- Even Chaotic Phase Space is Structured

Rank-1 Saddle Transport

Center Projections

Figure from / koon/papers/specialist final.pdf
\square Saddle direction mediates transport
\square Energy is shared between saddle and centers
$S^{2 D O F-3} \cong\left\{\sum_{i=1}^{D O F-1} \frac{\omega_{i}}{2}\left(q_{i+1}^{2}+p_{i+1}^{2}\right)=H-\lambda q_{1} p_{1}\right\}$

What is a Scattering Reaction?

Bound State

Unbound State

\square Bound vs. Unbound States (Hill Region)
\square Nonzero Angular Momentum not always valid

Overview of Method

\square Identify Saddle/TS \& Hill Region
\square Find Box Bounding Reactive Trajectories (outcut)

- in \& out cuts make "airlock"
- Monte Carlo sample energy surface in box
\square Integrate traj's into bound state until escape

Identifying the Hill Region

Hill Region for $\mathrm{H}_{2} \mathrm{O}-\mathrm{H}_{2}$ at various energies (fixed H_{2} orientation)
\square Reduce out rotations and work at fixed ang. mom.
\square Hill Region is in cartesian body-frame coordinates
\square Amended Potential: For $\mu \in \mathfrak{g}^{*}$,

$$
V_{\mu}(q)=V(q)+\frac{1}{2}\left\langle\mu, \mathbb{I}^{-1}(q) \mu\right\rangle=V(q)+\frac{1}{2} g_{00}^{-1} \mu^{2}
$$

Bounding Box Method

Integrate Trajectories Backwards Until Out Cut

Refine Bounding Box
Until It Contains All
Reactive Trajectories

Sampling the Energy Surface

- Randomly select points in bounding box
- Project (using momentum variables) until intersects energy surface

Bounding Box

Example - Rydberg Atom

$$
\begin{gathered}
H=\frac{1}{2}\left(p_{x}^{2}+p_{y}^{2}+p_{z}^{2}\right)+\frac{1}{2}\left(x p_{y}-y p_{x}\right)+\frac{1}{8}\left(x^{2}+y^{2}\right) \\
-\epsilon x-\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}}
\end{gathered}
$$

- ~ 3 minutes :: $4,000 \mathrm{pts}::<.5 \%$ error
- ~ 1 hour :: 140,000 pts :: < . 1% error
- ~ 2 days :: 1,000,000 pts ::

Controlling Standard Deviation

\square Compute data in N chunks (size ~ 1000 pts):

- $X_{j}(i)$ - bin i for chunk j
- $\bar{X}(i)$ - bin i for combined data

$$
S D(i)=\frac{1}{N} \sqrt{\left(X_{1}(i)-\bar{X}(i)\right)^{2}+\ldots+\left(X_{N}(i)-\bar{X}(i)\right)^{2}}
$$

\square Keep computing chunks until $S D(i)<$ tolerance $\forall i$
\square Only necessary data is computed

Dual Method Test

Forward Integration of Inbound Trajectories($\epsilon=.58$)

Forward Integration of Inbound Trajectories $(\epsilon=58)$

Backward Integration of Outbound Trajectories ($\epsilon=58$)

Backward Integration of Outbound Trajectories $(\epsilon=.58)$

Comparison of LD using forward and backward integrationIntegrate trajectories backwards into bound state

- Detects error in bounding box, sampling error

Planar Scattering of $\mathrm{H}_{2} \mathrm{O}-\mathrm{H}_{2}$

$$
H=\frac{p_{R}^{2}}{2 m}+\frac{\left(p_{\theta}-p_{\alpha}\right)^{2}}{2 m R^{2}}+\frac{\left(p_{\alpha}-p_{\beta}\right)^{2}}{2 I_{a}}+\frac{p_{\beta}^{2}}{2 I_{b}}+V
$$

- $V=$ dipole/quadrupole + dispersion + induction + Leonard-Jones. (Wiesenfeld, 2003)
- Reduce out θ and work on $p_{\theta} \equiv J>0$ level set.

Body Frame
Lab Frame

Fixed Axis Frame

$\mathrm{H}_{2} \mathrm{O}-\mathrm{H}_{2}$ Saddles

Center Projections

Saddle Proiection
Linearization near rank-1 saddle

$\mathrm{H}_{2} \mathrm{O}-\mathrm{H}_{2}$ Hill Region

$\mathrm{H}_{2} \mathrm{O}-\mathrm{H}_{2}$ Collision Dynamics

\square Unrealistic Potential
\square Numerically Volatile Collisions
\square Is Non-Scattering Reaction Occurring?
\square More Realistic Potential Surface (Wiesenfeld)

$\mathrm{H}_{2} \mathrm{O}-\mathrm{H}_{2}$ Lifetime Distribution

CollisionDistributionfor $\mathrm{H} 2 \mathrm{O}-\mathrm{H} 2(<1000)$

- Locally structured (fine scale)
- Globally RRKM (coarse scale)
- Does structure persist w/ error in energy samples?

Gaussian Energy Sampling

\square Experimental verification of lifetime distribution

- Fixed energy slice is not realistic
- Gaussian around target energy is more physical
- Do nonRRKM features persist?

LifetimeDistribution $\epsilon=.58$

Energy Distribution of SamplePoints

$$
\begin{aligned}
& \geq 3 \text { DOF Rydberg Analog } \\
& H=\frac{1}{2}\left(p_{x}^{2}+p_{y}^{2}+p_{z}^{2}+p_{w}^{2}\right)+\frac{1}{2}\left(x p_{y}-y p_{x}\right)+\frac{1}{8}\left(x^{2}+y^{2}\right) \\
& -\epsilon x-\frac{}{\sqrt{x^{2}+y^{2}+z^{2}+w^{2}}}
\end{aligned}
$$

$\square \mathrm{x}, \mathrm{y}, \mathrm{z}$-like variables (w is z-like)
\square Sampling takes 5 -20min for ≤ 8 DOF

6DOF Rydberg Scattering Time

4DOF Rydberg Scattering Time

7DOF Rydberg Scattering Time

5DOF Rydberg Scattering Time

8DOF Rydberg Scattering Time

Comparison of Methods

\square Almost Invariant Set Methods (GAIO)

- Transfer operators on box subdivisions
- Increasing memory demands w/ higher DOF
\square High Order Normal Form Expansion
- Compute Transit Tubes directly
- Manipulating expansion becomes involved for $>$ 3 DOF
\square Bounding Box Method
- Lifetime Distribution essentially 1D problem
- Scales well to higher DOF systems
- Integration \& sampling become bottleneck

Future Work

\square Tighter Bounding Box

- Improvement is greater for higher DOF systemsVariational Integrator
- Larger time steps, faster runtime
- Computes collisions more accurately
- Bulk of computation is integration

Rank-2 Saddles

Saddle 1

Saddle 2

Centers
\square Reaction coordinate is ambiguous for rank-2 saddle - Multi-channel reactions
\square Transit orbits exist for one or both saddles
\square Topology of transit tubes isn't clear

- Non-compact intersection with transverse cut
- Makes sampling difficult (or impossible?)

Conclusions \& Open Questions

\square Conclusions

- Bounding Box Method is very efficient
- Requires minor modification for new systems
- Remains fast for high DOF systems
\square Next Steps
- Apply method to higher DOF chemical system
- Obtain experimental verification of method
\square Open Problems
- Is there an estimate for how small energy must be for linear dynamics to persist?
- Perron-Frobenius operator (coarse grained reaction coordinate)
- Apply tube dynamics to stochastic models
- Solve Rank-2 sampling problem (non-compact)

References

- Appleyard, D. F., Invariant sets near the collinear Lagrangian points of the nonplanar restricted three-body problem, Ph.D. thesis, University of Wisconsin, (1970).
- Conley, C., Low energy transit orbits in the restricted three-body problem. SIAM J. Appl. Math. 16, (1968), 732-746.
- De Leon, N., Cylindrical manifolds and reactive island kinetic theory in the time domain, textitJ. Chem. Phys., 96, (1992), 285-297.
- Dellnitz, M., K. Grubits, J. E. Marsden, K. Padberg, and B. Thiere, Set-oriented computation of transport rates in 3-degree of freedom systems: the Rydberg atom in crossed fields, Regular and Chaotic Dynamics, 10, (2005), 173-192.
- Dellnitz, M., O. Junge, W. S. Koon, F. Lekien, M. W. Lo, J. E. Marsden, K. Padberg, R. Preis, S. D. Ross, and B. Thiere, Transport in dynamical astronomy and multibody problems, International Journal of Bifurcation and Chaos, 15, (2005), 699-727.
- Gabern, F., W. S. Koon, J. E. Marsden and S. D. Ross, Theory and computation of non-RRKM lifetime distributions and rates of chemical systems with three and more degrees of freedom, preprint, (2005).

References

- Gabern, F., W. S. Koon, J. E. Marsden and D. J. Scheeres, Binary asteroids ovservation orbits from a global dynamical picture, submitted to SIAM J. Appl. Dyn. Sys., (2005).
- Gomez, G., W. S. Koon, M. W. Lo, J. E. Marsden, J. Masdemont and S. D. Ross, Invariant manifolds, the spatial three-body problem and petit grand tour of Jovian moons, Libration Point Orbits and Applications, World Scientific, (2003).
- Jorba, A., A methodology for the numerical computation of normal forms, centre manifolds, and first integrals of Hamiltonian systems, Experimental Mathematics, 8, (1999), 155-195.
- Koon, W. S., M. W. Lo, J. E. Marsden and S. D. Ross, Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics, Chaos, 10, (2000), 427-469.
- McGehee, R. P., Some homoclinic orbits for the restricted three-body problem, Ph.D. thesis, University of Wisconsin, (1969).
- Wiesenfeld, L., A. Faure, and T. Johann, Rotational transition states: relative equilibrium points in inelastic molecular collisions, J. Phys. B: At. Mol. Opt. Phys., 36, (2003), 1319-1335.

Typesetting Software: TEX, Textures, LATEX, hyperref, texpower, Adobe Acrobat 4.05 Illustrations: Adobe Illustrator 8.1
IATEX Slide Macro Packages: Wendy McKay, Ross Moore

