Rank-1 Saddle Transport Scattering Reactions with 3 or more Degrees of Freedom

Steve Brunton

Organization of Talk

- I. Saddle Transport & Chemical Reaction Rates
- II. Transition State of a Scattering Reaction
- III. Methods for Accurate Rate Calculation
- IV. Applications:
 - Electron Scattering in the Rydberg Atom
 - Planar Scattering of H_2O with H_2
 - Higher DOF systems, Rank-2 Saddle Transport, Experimental Verification
- V. Conclusions & Open Questions
- VI. References

Transition State Theory

Schematic of potential saddle separating two wells (left) and the saddle of a scattering reaction (right) [Figures from /~koon/presentations/chemical.pdf]

Transition State: Joins Reactants & Products
 Bottleneck near rank-1 saddle
 Opens for energies larger than saddle
 TST Assumes Unstructured Phase Space
 Even Chaotic Phase Space is Structured

Rank-1 Saddle Transport

Figure from /~koon/papers/specialist_final.pdf

Saddle direction mediates transport Energy is shared between saddle and centers $S^{2DOF-3} \cong \left\{ \sum_{i=1}^{DOF-1} \frac{\omega_i}{2} \left(q_{i+1}^2 + p_{i+1}^2 \right) = H - \lambda q_1 p_1 \right\}$

What is a Scattering Reaction?

Bound vs. Unbound States (Hill Region)Nonzero Angular Momentum not always valid

Overview of Method

Identify Saddle/TS & Hill Region
Find Box Bounding Reactive Trajectories (outcut)
in & out cuts make "airlock"
Monte Carlo sample energy surface in box
Integrate traj's into bound state until escape

Identifying the Hill Region

Hill Region for H_2O-H_2 at various energies (fixed H_2 orientation)

□ Reduce out rotations and work at fixed ang. mom. □ Hill Region is in cartesian body-frame coordinates □ Amended Potential: For $\mu \in \mathfrak{g}^*$, $V_{\mu}(q) = V(q) + \frac{1}{2} \langle \mu, \mathbb{I}^{-1}(q)\mu \rangle = V(q) + \frac{1}{2} g_{00}^{-1} \mu^2$

Bounding Box Method

2

Integrate Trajectories Backwards Until Out Cut

3 Refine Bounding Box Until It Contains All Reactive Trajectories

Sampling the Energy Surface

- Randomly select points in bounding box
- Project (using momentum variables) until intersects energy surface

Example - Rydberg Atom

$$H = \frac{1}{2} \left(p_x^2 + p_y^2 + p_z^2 \right) + \frac{1}{2} \left(x p_y - y p_x \right) + \frac{1}{8} \left(x^2 + y^2 \right)$$
$$-\epsilon x - \frac{1}{\sqrt{x^2 + y^2 + z^2}}$$

1

Rydberg Atom Cont'd

~3 minutes :: 4,000 pts :: < .5% error
~1 hour :: 140,000 pts :: < .1% error
~2 days :: 1,000,000 pts ::

Controlling Standard Deviation

 \Box Compute data in N chunks (size ~1000pts):

- $X_j(i)$ bin i for chunk j
- $\bar{X}(i)$ bin i for combined data

$$SD(i) = \frac{1}{N} \sqrt{\left(X_1(i) - \bar{X}(i)\right)^2 + \ldots + \left(X_N(i) - \bar{X}(i)\right)^2}$$

□ Keep computing chunks until SD(i) <tolerance $\forall i$ □ Only necessary data is computed

Dual Method Test

Comparison of LD using forward and backward integration

Integrate trajectories backwards into bound state
 Detects error in bounding box, sampling error

Planar Scattering of H_2O-H_2

H_2O-H_2 Saddles

	Parallel RE (K=0,K=0)			Parallel RE (K=1,K=0)	
		6-0	•-•		
E0 = .00315		COMPLEX	E0 = .00298		RANK-1
	Perpendicular RE (K=0,K=1)			Perpendicular RE (K=1,K=1)	
E0 = .00300		RANK-1	E0 = .00308		COMPLEX

Linearization near rank-1 saddle

H_2O-H_2 Hill Region

H₂O-H₂ Collision Dynamics

- \Box Unrealistic Potential
- □ Numerically Volatile Collisions
- \Box Is Non-Scattering Reaction Occurring?
- □ More Realistic Potential Surface (Wiesenfeld)

H_2O-H_2 Lifetime Distribution

Locally structured (fine scale)
Globally RRKM (coarse scale)
Does structure persist w/ error in energy samples?

Gaussian Energy Sampling

Experimental verification of lifetime distribution

- Fixed energy slice is not realistic
- Gaussian around target energy is more physicalDo nonRRKM features persist?

Lifetime Distribution for 6DOF Rydberg Scattering

Lifetime Distribution for 4DOF Rydberg Scattering

Lifetime Distribution for 5DOF Rydberg Scattering

Lifetime Distribution for 8DOF Rydberg Scattering

$\geq 3~{\rm DOF}$ Rydberg Analog

□ x,y,z-like variables (w is z-like) □ Sampling takes 5-20min for ≤ 8 DOF

Comparison of Methods

- \Box Almost Invariant Set Methods (GAIO)
 - Transfer operators on box subdivisions
 - Increasing memory demands w/ higher DOF
- □ High Order Normal Form Expansion
 - Compute Transit Tubes directly
 - Manipulating expansion becomes involved for > 3 DOF

□ Bounding Box Method

- Lifetime Distribution essentially 1D problem
- Scales well to higher DOF systems
- Integration & sampling become bottleneck

□ Tighter Bounding Box

×

×

- Improvement is greater for higher DOF systems
- □ Variational Integrator
 - Larger time steps, faster runtime
 - Computes collisions more accurately
 - Bulk of computation is integration

Rank-2 Saddles

Reaction coordinate is ambiguous for rank-2 saddle
 Multi-channel reactions

- \Box Transit orbits exist for one or both saddles
- \Box Topology of transit tubes isn't clear
 - Non-compact intersection with transverse cut
 - Makes sampling difficult (or impossible?)

Conclusions & Open Questions

Conclusions

- Bounding Box Method is very efficient
- Requires minor modification for new systems
- Remains fast for high DOF systems

\Box Next Steps

- Apply method to higher DOF chemical system
- Obtain experimental verification of method

\Box Open Problems

- Is there an estimate for how small energy must be for linear dynamics to persist?
- Perron-Frobenius operator (coarse grained reaction coordinate)
- Apply tube dynamics to stochastic models
- Solve Rank-2 sampling problem (non-compact)

References

- Appleyard, D. F., Invariant sets near the collinear Lagrangian points of the nonplanar restricted three-body problem, Ph.D. thesis, University of Wisconsin, (1970).
- Conley, C., Low energy transit orbits in the restricted three-body problem. *SIAM J. Appl. Math.* 16, (1968), 732-746.
- De Leon, N., Cylindrical manifolds and reactive island kinetic theory in the time domain, textitJ. Chem. Phys., 96, (1992), 285-297.
- Dellnitz, M., K. Grubits, J. E. Marsden, K. Padberg, and B. Thiere, Set-oriented computation of transport rates in 3-degree of freedom systems: the Rydberg atom in crossed fields, *Regular and Chaotic Dynamics*, 10, (2005), 173-192.
- Dellnitz, M., O. Junge, W. S. Koon, F. Lekien, M. W. Lo, J. E. Marsden, K. Padberg, R. Preis, S. D. Ross, and B. Thiere, Transport in dynamical astronomy and multibody problems, *International Journal of Bifurcation and Chaos*, 15, (2005), 699-727.
- Gabern, F., W. S. Koon, J. E. Marsden and S. D. Ross, Theory and computation of non-RRKM lifetime distributions and rates of chemical systems with three and more degrees of freedom, *preprint*, (2005).

References

- Gabern, F., W. S. Koon, J. E. Marsden and D. J. Scheeres, Binary asteroids ovservation orbits from a global dynamical picture, submitted to *SIAM J. Appl. Dyn. Sys.*, (2005).
- Gomez, G., W. S. Koon, M. W. Lo, J. E. Marsden, J. Masdemont and S. D. Ross, Invariant manifolds, the spatial three-body problem and petit grand tour of Jovian moons, *Libration Point Orbits and Applications*, World Scientific, (2003).
- Jorba, A., A methodology for the numerical computation of normal forms, centre manifolds, and first integrals of Hamiltonian systems, *Experimental Mathematics*, 8, (1999), 155-195.
- Koon, W. S., M. W. Lo, J. E. Marsden and S. D. Ross, Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics, *Chaos*, 10, (2000), 427-469.
- McGehee, R. P., Some homoclinic orbits for the restricted three-body problem, Ph.D. thesis, University of Wisconsin, (1969).
- Wiesenfeld, L., A. Faure, and T. Johann, Rotational transition states: relative equilibrium points in inelastic molecular collisions, *J. Phys. B: At. Mol. Opt. Phys.*, 36, (2003), 1319-1335.

Typesetting Software: T_EX, *Textures*, I^AT_EX, hyperref, texpower, Adobe Acrobat 4.05 Illustrations: *Adobe Illustrator 8.1* I^AT_EX Slide Macro Packages: Wendy McKay, Ross Moore