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FLYIT Simulators, Inc.

Motivation

Predator (General Atomics)

Flexible Wing
 (University of Florida)

Applications of Unsteady Models

Conventional UAVs (performance/robustness)

Micro air vehicles (MAVs)

Flow control, flight dynamic control

Autopilots / Flight simulators

Gust disturbance mitigation

Need for State-Space Models

Need models suitable for control

Combining with flight models

Understand bird/insect flight

Bio-locomotion
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Flight Dynamic Control

flight dynamics

aerodynamics

coupled model

estimatorcontroller

reference trajectory,
wind disturbances 

deviation from 
desired path, or state 

position,
aerodynamic state

thrust, elevator, aileron,
             blowing/suction

H2 − optimal control framework
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Stall velocity and size

RQ-1 Predator 
(27 m/s stall)

Daedalus Dakota 
(18m/s stall)

Puma AE
(10 m/s stall)

Smaller, lower stall velocity

Vstall =
�

2
ρ

(CLmaxS)−1 W
S

W

L

CL

V

Wing surface area

Aircraft weight

Lift force

Lift coefficient

Velocity of aircraft
Unsteady phenomena become more significant,

easier to excite for smaller vehicles
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Lift vs.  Angle of Attack
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Need model that captures lift due to moving airfoil!

Reynolds number 100
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Need model that captures lift due to moving airfoil!

Reynolds number 100
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Lift

Drag

Re = 300

2D Model Problem

α = 32◦

Added-Mass

Periodic Vortex Shedding
Transient
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Lift vs.  Angle of Attack
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State-Space Indicial Response

State-Space Model

Indicial Response

Theodorsen’s Model

CL(t) = Cδ
L(t)α(0) +

� t

0
Cδ

L(t− τ)α̇(τ)dτ

CL =
π

2

�
ḧ+ α̇− a

2
α̈
�

� �� �
Added-Mass

+2π

�
α+ ḣ+

1

2
α̇

�
1

2
− a

��

� �� �
Circulatory

C(k)

d

dt




x
α
α̇



 =




Ar 0 0
0 0 1
0 0 0








x
α
α̇



+




Br

0
1



 α̈

CL =
�
Cr CLα CLα̇

�



x
α
α̇



+ CLα̈ α̈

quasi-steady and added-mass

fast dynamics

Computationally tractable

fits into control framework

Captures input output dynamics accurately

Tuned to specific geometry, Re #

Physically motivated components

Parametrized by pitch point

Frequency domain, idealized assumptions
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State-Space Indicial Response
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quasi-steady and added-mass

fast dynamics

Model Summary

ODE model ideal for control design 

Based on experiment, simulation or theory

Linearized about α = 0

Recovers stability derivatives 
   associated with quasi-steady and added-mass

CLα , CLα̇ , CLα̈

Brunton and Rowley, in preparation.
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Bode Plot - Pitch (LE)

Frequency response

Model without additional fast 
dynamics [QS+AM (r=0)] is 
inaccurate in crossover region

Models with fast dynamics of ERA 
model order >3 are converged

output is lift coefficient CL

Punchline: additional fast dynamics 
(ERA model) are essential

input is       (       is angle of attack)α̈ α

Brunton and Rowley, in preparation.
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Pitching at leading edge
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Indicial Response
ROM, r=3
Wagner/Theodorsen
DNS
ROM, r=3 (MIMO)

Bode Plot - Pitch (QC)

Frequency response

Reduced order model with ERA r=3
    accurately reproduces Indicial Response

Indicial Response and ROM agree better with   
    DNS than Theodorsen’s model.

output is lift coefficient CL

input is       (       is angle of attack)α̈ α

Brunton and Rowley, in preparation.

Pitching at quarter chord

Asymptotes are correct for Indicial Response 
    because it is based on experiment

Model for pitch/plunge dynamics 
    [ERA, r=3 (MIMO)] works as well, 
    for the same order model

Quarter-Chord Pitching
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Lift vs.  Angle of Attack
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Nonlinear Unsteady Models

α
C1.  Hopf bifurcation at 

What we know

2.  Linear models capture conjugate pair

α = 28◦
?

?

3.  Linear models based on overarching 
nonlinear model (Navier-Stokes)

Is it possible to obtain nonlinear 
reduced order model?
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Nonlinear Unsteady Models

For                      ,  equilibrium x=0 is stable, with linear dynamics given by:α0 < αcrit

ẋ = Dxf(0, 0;α0)� �� �
A(α0)

·x + Du(0, 0;α0)� �� �
B(α0)

·u + Dα(0, 0;α0)� �� �
=0

·(α− α0)

y = g(0, 0;α0)� �� �
CL(α0)

+Dxg(0, 0;α0)� �� �
C(α0)

·x + Dug(0, 0;α0)� �� �
D(α0)

·u + Dαg(0, 0;α0)� �� �
CLα

·(α− α0)

ẋ = f(x, u;α)
y = g(x, u;α)
u - input

y - output

x - state vector

   - bifurcation parameterα
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Direct numerical simulation confirms that local linearized models 
are accurate for small amplitude sinusoidal maneuvers

Brunton and Rowley, AIAA ASM 2011
Wednesday, March 28, 2012



PLANTuk u(t) yky(t)

u

u̇

�
u

Time

A

T

0

0

(Indicial) Step Response

Previously, models are based on aerodynamic step response

Idea:  Maneuver aircraft for 5-10 minutes, back out the 
Markov parameters, and construct ERA model.
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CL(t)

α̈

α̇

α

Random Input Maneuver

Idea:  Maneuver aircraft for 5-10 minutes, back out the 
Markov parameters, and construct ERA model.
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CLα

CLα̇

CLα̈{
{

Hi from OKID
Hi − αCLα

Hi − αCLα − CLα̇

Impulse response in α̈

OKID Markov Parameters

Juang, Phan, Horta, Longman, 1991.

Observer/Kalman Filter Identification (OKID)

Brunton and Rowley, submitted.

+ CL

G(s)
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Absolutely need to use the 
correct form of the model!
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Andrew Fejer Unsteady Flow Wind Tunnel
Principle Investigator - Dave Williams
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Experimental Information

Free Stream Velocity: 4.00 m/s

Chord Length: 0.246 m

Reynolds Number: 65,000

1.0 Convection time = .06 seconds

Force measurement:  ATI Nano25 force transducer

Velocity measurement: Pitot tube, 
    Validyne DP-103 pressure transducer

NACA 0006 Airfoil

Pitch point x/c = .11 (11% chord)

Pushrod position measurement:  linear potentiometer

Pushrod actuation: Copley servo tubes

Andrew Fejer Unsteady Flow Wind Tunnel

(.6m x .6m x 3.5m test section)

Principle Investigator - Dave Williams

Wednesday, March 28, 2012



NACA 0006 Airfoil
  (24.6 cm chord)

Push rods and sting

Test section

Servo tubes
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NACA 0006 Model

β

α

l3

l2

l1

(x1, y1)

(x2, y2)

Figure 1. Image of NACA 0006 model in wind tunnel.

B. Hinge constraint

Figure 2. Schematic of hinge apparatus connecting pushrods to the platform.

�
L

D

�
=

�
cos(α) − sin(α)
sin(α) cos(α)

�

� �� �
Rα

�
N

P

�
(1)

2 of 16

American Institute of Aeronautics and Astronautics

1.  Account for hinge constraint nonlinearity

Summary

2.  Rotate force vectors to obtain lift force

3.  Subtract out point mass effects (mechanical)
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Phase averaged over 200 cycles

Phase Averaged Data

5 degree step-up, step-down maneuver
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Pseudo-random sequence of ramp-hold maneuvers

Single ramp-hold maneuver
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Measured Force
ROM, r=3
Theodorsen

System ID maneuver

AOA = 0 degrees

Reduced order model outperforms 
Theodorsen at low and high frequencies

+/- 5 degree manuever, excites
large range of frequencies
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Maneuver A Maneuver B Maneuver C

Three system ID maneuvers

AOA = 0 degrees We tried three system ID maneuvers: A, B and C.
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Experiment B
Model C
Model B
Model A
Theodorsen

System ID maneuver

AOA = 0 degrees

Bootstrap:  It is important that models obtained from 
each ID maneuver accurately reproduce every other 
maneuver

Wednesday, March 28, 2012



Bode plot and Markov parameters
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CLα

CLα̇

CLα̈{
{

Hi from OKID
Hi − αCLα

Hi − αCLα − CLα̇

AOA = 0 degrees

Combined maneuver effectively blends
each of the three individual maneuvers

Bode plot Markov Parameters

Added-mass is not exclusively in first 
Markov parameter, but is instead distributed 
in the first few, contributing to the 
added-mass “bump”
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Measured Force
ROM, r=3
Theodorsen

System ID maneuver

AOA = 10 degrees

Theodorsen is significantly worse, due to 
large base angle of attack and flow 
separation effects.+/- 10 degree manuever
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Bode plot and Markov parameters

CLα

CLα̇

CLα̈{
{

Hi from OKID
Hi − αCLα

Hi − αCLα − CLα̇

AOA = 10 degrees

Flatter Markov parameters indicate 
smaller lift coefficient slope 

Convergence to asymptote at lower 
frequency indicate longer transient decay to 
steady state (more separated flow)

Wednesday, March 28, 2012



10 2 10 1 100 101 102

40

20

0

20

40

60

M
ag

ni
tu

de
 (d

b)

10 2 10 1 100 101 102

150

100

50

0

Frequency (rad/sec c/U)

Ph
as

e 
(d

eg
)

 

 

ROM AOA=00
ROM AOA=10
Theodorsen

AoA=00 vs.  AoA=10

Trend is similar to DNS, where low frequency asymptote 
converges at lower frequency, for larger angle of attack.
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Measured Force
ROM, r=3
Theodorsen

Pure Plunge
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Conclusions

Modeling techniques applied to wind tunnel experiment at IIT

-  Aggressive system ID maneuver developed, based on canonical maneuver
-  Pitch and plunge dynamics investigated
-  Reduced order model outperforms Theodorsen’s model for all cases,

           especially at large angle of attack

Accurate, efficient linear reduced order models

-  Models are linearization of full nonlinear model
-  Constructed for specific geometry, Reynolds number
-  Based on various input maneuvers

Brunton and Rowley, AIAA ASM 2009-2011

OL, Altman, Eldredge, Garmann, and Lian, 2010

Wagner, 1925.

Theodorsen, 1935.

Future Work:

-  Use pitch/plunge models for optimal control (maneuver, lift stabilization)
-  Combine linearized models into nonlinear model
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Questions?
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3 Types of Unsteadiness

1. High angle-of-attack

α > αstall

Large amplitude, slow Moderate amplitude, fast

2. Strouhal number

St =
Af

U∞

3.  Reduced frequency

k =
πfc

U∞

Small amplitude, very fast

� �� �
Closely related

αeff = tan−1 (πSt)

Brunton and Rowley, AIAA ASM 2009
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Caution Against Naive OKID
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DNS
modified OKID (ddu)
naive OKID (du)
naive OKID (ddu)

blue - using step response as input to OKID without modification

green - using step in pitch rate as input to OKID without modification

red - applying our model structure to OKID output

black - correct model

Brunton and Rowley, submitted.
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Pseudo-random sequence of ramp-hold maneuvers

Amplitude is constrained to be in +/- 10 degrees (or +/- 5)
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