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Applications of Unsteady Models
Conventional UAVs (performance/robustness)
Micro air vehicles (MAVs)

Flow control, flight dynamic control
Autopilots / Flight simulators
Gust disturbance mitigation

Predator (General Atomics)
Understand bird/insect flight

Need for State-Space Models

Need models suitable for control

Combining with flight models
FLYIT Simulators, Inc.
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Flight Dynamic Control

reference trajectory,
wind disturbances

thrust, elevator, aileron,
blowing/suction
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Smaller, lower stall velocity

RQ-1 Predator Daedalus Dakota
(27 m/s stall) (18m/s stall)

Unsteady phenomena become more significant,
easier to excite for smaller vehicles

"Puma AE
(10 m/s stall)

Wing surface area
Aircraft weight
Lift force

Lift coefficient

Velocity of aircraft
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Lift vs. Angle of Attack m@»ﬁm
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Need model that captures lift due to moving airfoil!
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Lift vs. Angle of Attack
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2D Model Problem e

[\ Added-Mass

Transient

Periodic Vortex Shedding
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Rod Lift vs. Angle of Attack mfc’“@é'@@
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ol State-Space Indicial Response <5 0 HR6K

Indicial Response

Tuned to specific geometry, Re #

Cr(t) = C2 (H)a(0) + /t CO(t — )a(r)dr

Theodorsen’s Model

Tl . Q. . 1. /1
Physically motivated components CL — § [h + 0 — 5()4} + 27 [a + h + 5()4 <§ — a)] C(k)
Parametrized by pitch point \ - 7 -,
Added-Mass .7
Frequency domain, idealized assumptions Circulatory
fast dynamics
State-Space Model L \_‘ L L
. ; | 7 | A, 0 0] |x B,
aptures input output dynamics accurate .
c P P ' P bly 4 E | = O O 1 al + O @8
omputationally tractable . .
P ! & 0 0 0f |& 1
fits into control framework - - - - = - - =
X

CrL=|C, Cr, Cn.]|a|+CL,a

L

quasi-steady and added-mass
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ok State-Space Indicial Response S CHRHR

Model Summary
Linearized about (¥ — O

Based on experiment, simulation or theory

Recovers stability derivatives C,_,Cr.,Cp.
associated with quasi-steady and added-mass

ODE model ideal for control design

o:
]
h

______________________________ . fast dynamics —~——
fast dynamics — X . _ -
7 % A, 0 0] [x B,
o al=[(0 0 1| |a|l+ |0 |«
Q. 0 0 0f o] 1

CrL=|C, Cr, Cn.]|a|+CL,a

)

. . : ) -~
Brunton and Rowley, in preparation. quasi-steady and added-mass
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Xl Bode Plot - Pitch (LE)
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Brunton and Rowley, in preparation.
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Bode Plot - Pitch (QC)

Frequency response

input is (v ( ¢ is angle of attack)

output is lift coefficient Cy,

Pitching at quarter chord

Reduced order model with ERA r=3

accurately reproduces Indicial Response

Indicial Response and ROM agree better with

DNS than Theodorsen’s model.

Asymptotes are correct for Indicial Resporlsé5

because it is based on experiment

Model for pitch/plunge dynamics
[ERA, r=3 (MIMO)] works as well,
for the same order model

Brunton and Rowley, in preparation.
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: % Lift vs. Angle of Attack “\DUW
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N2 Nonlinear Unsteady Models
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What we know
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m °
N Nonlinear Unsteady Models mﬂ@'m

1.6

I
Lift pre—Shedding

Average
14L == =—._ | = = —Average Lift post-Shedding -
_ e "1 =+ =" Min/Max of Limit Cycle
T = f(z,u;a)

1

(-)h_l

5

3

u - input S
y - output

X - state vector

(X - bifurcation parameter

| | | | | | | |
10 20 30 40 50 60 70 80 90
Angle of Attack, a (deg)

For &p < Qcrit , equilibrium x=0 is stable, with linear dynamics given by:

T = Dxf((), O; CM()) T + Du(O, O; Oé()) U+ DQ(O, O; Oé()) °(C\£ — Oéo)
A(ao) B(ao) =0

y = g(0,0;0) + D»g(0,0; ap) - + D,g(0,0; ag) -u + D,g(0,0; ap) - (a0 — )
—_— Y— —— ——
CL(Oéo) C(Ozo) D(Oto) CL

(8%
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NoF Bode Plot of Model (-) vs Data (x)
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Direct numerical simulation confirms that local linearized models
are accurate for small amplitude sinusoidal maneuvers

Brunton and Rowley, AIAA ASM 2011
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(Indicial) Step Response a(@@@|
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Previously, models are based on aerodynamic step response

Idea: Maneuver aircraft for 5-10 minutes, back out the
Markov parameters, and construct ERA model.
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Random Input Maneuver
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Idea: Maneuver aircraft for 5-10 minutes, back out the
Markov parameters, and construct ERA model.
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.. 6 OKID Markov Parameters

Absolutely need to use the

Impulse response in correct form of the model!
0.04 I T T T
________ quasi-steady & added mass
0.035 | ——— M, from OKID . i i
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Observer/Kalman Filter Identification (OKID) _ -
Juang, Phan, Horta, Longman, 1991. x
Cr = [Cr CLa CLOJ QL —|—CLdOé
Brunton and Rowley, submitted. &
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Andrew Fejer Unsteady Flow Wind Tunnel
Principle Investigator - Dave Williams

ey
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Experimental Information

Andrew Fejer Unsteady Flow Wind Tunnel
Principle Investigator - Dave Williams

(.6m x .6m x 3.5m test section)

NACA 0006 Airfoil
Chord Length: 0.246 m

Free Stream Velocity: 4.00 m/s

|.0 Convection time = .06 seconds
Reynolds Number: 65,000

Pitch point x/c = .1l (1% chord)

Velocity measurement: Pitot tube,
Validyne DP-103 pressure transducer

Force measurement: ATl Nano25 force transducer

Pushrod position measurement: linear potentiometer

Pushrod actuation: Copley servo tubes
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Test section

-

NACA 0006 Airfoil
(24.6 cm chord)

Push rods and sting
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NACA 0006 Model

Summary
|. Account for hinge constraint nonlinearity - - . 9 -
L| |cos(a) —sin(a)| |N
2. Rotate force vectors to obtain lift force D — sin (a) COS (a) p
3. Subtract out point mass effects (mechanical) - ~ ~~ -
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N Wing Maneuver

0.035 —— H,; from OKID . _ _ - _
—_ — - HZ _ aCLa CL X Afr' O 0 X
0.03| Hi — OtCLa - CL(-, ) d 0 O 1
— — || = 87
0025 | dt |-
: & 0 0 0 |o
e  002f T - B -7 -7
5 ( Impulse response in (y
S 0015f -
3 -
g 001f CLd{ . X
0.005 | oo _______ . CL — [Cr CLQ CL@ ] ol =+ CLd &/
ot \ } CLd 4 _Oé_
_0.005 Il | | | | |

0 10 20 30 40 50
Parameter index, i

Pseudo-random sequence of ramp-hold maneuvers

10 | | | | | | | | I
Commanded Angle
— Measured Angle  H
Single ramp-hold maneuver
- A
Ju J
w
0 ‘ | )
()
o
3
u | / \ @
(@)
e, \_ g
— A\
0 T -8+
-10 | | | | | | | | |
0 10 20 30 40 50 60 70 80 90

Convective Times (s=tU/c)

Wednesday, March 28, 2012



.

Y ¢

7 ,'..‘J.

Wednesday, March 28, 2012



A System ID maneuver ~S26060K

Angle (degrees)
o

-9 | | | | | | | | |
0 10 20 30 40 50 60 70 80 90

|
Measured Force | |
— ROM, r=3

Theodorsen

Lift Coefficient

AN W

40 50 60 70 80 90
Convective time (s=tU/c)

+/- 5 degree manuever, excites Reduced order model outperforms
large range of frequencies Theodorsen at low and high frequencies

AOA = 0 degrees
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. Three system ID maneuvers ~ 526060

Maneuver A Maneuver B Maneuver C

D 5 | | I | | ]
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1.5 Measured Force !
ROM, r=3
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c 05
o
O
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3 0 ||l
O \
3=
3 =05

-1.5 | | | | I
0 20 100 150 200 250 300
Convective time (s=tU/c)
AOA = 0 degrees We tried three system ID maneuvers: A, B and C.
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N System |ID maneuver mm@@

[T |
Experiment B
n Model C i
Model B
Model A
Theodorsen
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."_I:

-0.5
-1 I I I I I I I I
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Convective time (s=tU/c)
Bootstrap: It is important that models obtained from
each ID maneuver accurately reproduce every other
AOA = 0 degrees maneuver
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Bode plot and Markov parameters
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Combined maneuver effectively blends
each of the three individual maneuvers

Added-mass is not exclusively in first
Markov parameter, but is instead distributed
in the first few, contributing to the
added-mass “bump”
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System ID maneuver
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Lift Coefficient

Measured Force

ROM, r=3

Theodorsen

+/- 10 degree manuever

AOA = 10 degrees

20 30 40 50 60 70
Convective time (s=tU/c)

80

90

Theodorsen is significantly worse, due to
large base angle of attack and flow

separation effects.
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Bode plot and Markov parameters
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Flatter Markov parameters indicate
smaller lift coefficient slope

Convergence to asymptote at lower
frequency indicate longer transient decay to
steady state (more separated flow)
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X2 AoA=00 vs. AcA=10
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Trend is similar to DNS, where low frequency asymptote
converges at lower frequency, for larger angle of attack.
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N Pure Plunge

m
()]
c
(@)
=
[
O =
."‘?;
(@]
o _
©
O |
5 80 90
>
3 Measured Force
ROM, r=3
2r Theodorsen

il

LU W - u’&rﬂr-h‘, A [ |

40

Lift Coefficient

o t\\ NWWMWW\JMNWAW M‘

Model, Eq. (3)
Theodorsen

0 10 20 30 40 50 60 70
Convective time (s=tU/c)

Magnitude (db)
N
o

-100

Phase (deg)

10 10 10 10 10
Frequency (rad/sec c/U)

Wednesday, March 28, 2012



|.  Motivation and Overview
- Low Reynolds number aerodynamic models
- Pitch, plunge and high angle-of-attack maneuvers
2. Review of Previous Work

- State-space aerodynamic models
- Indicial response and OKID

3. Wind Tunnel Experiments

- Physical setup and configuration
- Aggressive system identification maneuver
- Models at ag = 0° and «p = 10°

4. Conclusions and Future Work — =
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)

ol Conclusions ~ 5260

Accurate, efficient linear reduced order models

- Models are linearization of full nonlinear model
- Constructed for specific geometry, Reynolds number
- Based on various input maneuvers

Modeling techniques applied to wind tunnel experiment at |IT

- Aggressive system ID maneuver developed, based on canonical maneuver

- Pitch and plunge dynamics investigated

- Reduced order model outperforms Theodorsen’s model for all cases,
especially at large angle of attack

Future Work:

- Use pitch/plunge models for optimal control (maneuver, lift stabilization)
- Combine linearized models into nonlinear model

Waghner, 1925. Brunton and Rowley, AIAA ASM 2009-201 I

Theodorsen, 1935. OL, Altman, Eldredge, Garmann, and Lian, 2010
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Questions!
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3 Types of Unsteadiness

1. High angle-of-attack 2. Strouhal number 3. Reduced frequency

Q& > Oligtall St = —
Uoo
Large amplitude, slow Moderate amplitude, fast Small amplitude, very fast

N ——  p—

Closely related
Qg = tan~* (mSt)

Brunton and Rowley, AIAA ASM 2009

Wednesday, March 28, 2012



3 Types of Unsteadiness

3. Reduced frequency

Brunton and Rowley, AIAA ASM 2009

Small amplitude, very fast
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.. % Caution Against Naive OKID mm@m

U

DNS
0.8 modified OKID (ddu) —
A naive OKID (du)
naive OKID (ddu)
0.6 I\ —
: f
0
0
2 04r , .
@) ,
. 4 V
0.2 ]

_0.2 | | | | | |
0 1 2 3 4 5 6 7

Time (s=tU/c)

black - correct model
blue - using step response as input to OKID without modification
green - using step in pitch rate as input to OKID without modification

red - applying our model structure to OKID output Brunton and Rowley, submitted.
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N Wing Maneuver
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Amplitude is constrained to be in +/- 10 degrees (or +/-5)
o _______Our model
@ d @7 . 8% ot i . i C
— Actuator P22+ Mechanical System P 1» Aerodynamics ———

- - —— = - = - = - = = = = = = = = )

Wednesday, March 28, 2012



