Linear Unsteady Aerodynamic Models from Wind Tunnel Measurements

Steven L. Brunton, Clarence W. Rowley Princeton University

David R.Williams Illinois Institute of Technology

AIAA Honolulu, June 28, 2011

TYS NUMBER

- I. Motivation and Overview
 - Low Reynolds number aerodynamic models
 - Pitch, plunge and high angle-of-attack maneuvers
- 2. Review of Previous Work
 - State-space aerodynamic models
 - Indicial response and OKID
- 3. Wind Tunnel Experiments
 - Physical setup and configuration
 - Aggressive system identification maneuver
 - Models at $\alpha_0 = 0^\circ$ and $\alpha_0 = 10^\circ$
- 4. Conclusions and Future Work

- I. Motivation and Overview
 - Low Reynolds number aerodynamic models
 - Pitch, plunge and high angle-of-attack maneuvers
- 2. Review of Previous Work
 - State-space aerodynamic models
 - Indicial response and OKID
- 3. Wind Tunnel Experiments
 - Physical setup and configuration
 - Aggressive system identification maneuver
 - Models at $\alpha_0 = 0^\circ$ and $\alpha_0 = 10^\circ$
- 4. Conclusions and Future Work

BEL PRINTER

- I. Motivation and Overview
 - Low Reynolds number aerodynamic models
 - Pitch, plunge and high angle-of-attack maneuvers
- 2. Review of Previous Work
 - State-space aerodynamic models
 - Indicial response and OKID
- 3. Wind Tunnel Experiments
 - Physical setup and configuration
 - Aggressive system identification maneuver
 - Models at $\alpha_0 = 0^\circ$ and $\alpha_0 = 10^\circ$
- 4. Conclusions and Future Work

- Motivation and Overview
 - Low Reynolds number aerodynamic models
 - Pitch, plunge and high angle-of-attack maneuvers
- **Review of Previous Work** 2.
 - State-space aerodynamic models
 - Indicial response and OKID
- 3. Wind Tunnel Experiments
 - Physical setup and configuration
 - Aggressive system identification maneuver
 - Models at $\alpha_0 = 0^\circ$ and $\alpha_0 = 10^\circ$
- **Conclusions and Future Work**

Motivation

Applications of Unsteady Models

Conventional UAVs (performance/robustness)

Micro air vehicles (MAVs)

Flow control, flight dynamic control

Autopilots / Flight simulators

Gust disturbance mitigation

Understand bird/insect flight

Need for State-Space Models

Need models suitable for control

Combining with flight models

FLYIT Simulators, Inc.

Predator (General Atomics)

(University of Florida)

Wednesday, March 28, 2012

Wednesday, March 28, 2012

www.gettyimages.com

Wednesday, March 28, 2012

<u>www.gettyimages.com</u>

Stall velocity and size

Smaller, lower stall velocity

RQ-I Predator (27 m/s stall)

Daedalus Dakota (18m/s stall)

Puma AE (10 m/s stall)

$$V_{\text{stall}} = \sqrt{\frac{2}{\rho} \left(C_{L_{\text{max}}} S \right)^{-1} W}$$

Unsteady phenomena become more significant, easier to excite for smaller vehicles

S	Wing surface area
W	Aircraft weight
L	Lift force
C_L	Lift coefficient
V	Velocity of aircraft

Reynolds number 100

Need model that captures lift due to moving airfoil!

Reynolds number 100

Need model that captures lift due to moving airfoil!

Reynolds number 100

Need model that captures lift due to moving airfoil!

Reynolds number 100

Need model that captures lift due to moving airfoil!

2D Model Problem

$$\operatorname{Re} = 300$$

 $\alpha = 32^{\circ}$

2D Model Problem

BEL PRINTER

- I. Motivation and Overview
 - Low Reynolds number aerodynamic models
 - Pitch, plunge and high angle-of-attack maneuvers

- 2. Review of Previous Work
 - State-space aerodynamic models
 - Indicial response and OKID
- 3. Wind Tunnel Experiments
 - Physical setup and configuration
 - Aggressive system identification maneuver
 - Models at $\alpha_0 = 0^\circ$ and $\alpha_0 = 10^\circ$
- 4. Conclusions and Future Work

- I. Motivation and Overview
 - Low Reynolds number aerodynamic models
 - Pitch, plunge and high angle-of-attack maneuvers
- 2. Review of Previous Work
 - State-space aerodynamic models
 - Indicial response and OKID
- 3. Wind Tunnel Experiments
 - Physical setup and configuration
 - Aggressive system identification maneuver
 - Models at $\alpha_0 = 0^\circ$ and $\alpha_0 = 10^\circ$
- 4. Conclusions and Future Work

Indicial Response

 $C_L(t) = C_L^{\delta}(t)\alpha(0) + \int_0^t C_L^{\delta}(t-\tau)\dot{\alpha}(\tau)d\tau$

Theodorsen's Model

Physically motivated components

Tuned to specific geometry, Re #

Parametrized by pitch point

Frequency domain, idealized assumptions

 C_L

State-Space Model

Captures input output dynamics accurately

Computationally tractable

fits into control framework

$$= \underbrace{\frac{\pi}{2} \begin{bmatrix} \ddot{h} + \dot{\alpha} - \frac{a}{2} \ddot{\alpha} \end{bmatrix}}_{\text{Added-Mass}} + \underbrace{2\pi \begin{bmatrix} \alpha + \dot{h} + \frac{1}{2} \dot{\alpha} \left(\frac{1}{2} - a\right) \end{bmatrix}}_{\text{Circulatory}} C(k)$$

$$\frac{d}{dt} \begin{bmatrix} \mathbf{x} \\ \alpha \\ \dot{\alpha} \end{bmatrix} = \begin{bmatrix} A_r & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \alpha \\ \dot{\alpha} \end{bmatrix} + \begin{bmatrix} B_r \\ 0 \\ 1 \end{bmatrix} \ddot{\alpha}$$

$$C_{L} = \begin{bmatrix} C_{r} & C_{L_{\alpha}} & C_{L_{\dot{\alpha}}} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \alpha \\ \dot{\alpha} \end{bmatrix} + C_{L_{\ddot{\alpha}}} \ddot{\alpha}$$

quasi-steady and added-mass

fast dynamics —

$$\frac{d}{dt} \begin{bmatrix} \mathbf{x} \\ \alpha \\ \dot{\alpha} \end{bmatrix} = \begin{bmatrix} A_r & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \alpha \\ \dot{\alpha} \end{bmatrix} + \begin{bmatrix} B_r \\ 0 \\ 1 \end{bmatrix} \ddot{\alpha}$$
$$C_L = \begin{bmatrix} C_r & C_{L_{\alpha}} & C_{L_{\dot{\alpha}}} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \alpha \\ \dot{\alpha} \end{bmatrix} + C_{L_{\ddot{\alpha}}} \ddot{\alpha}$$

Model Summary

Linearized about $\alpha = 0$

Based on experiment, simulation or theory

ODE model ideal for control design

Recovers stability derivatives $C_{L_{\alpha}}, C_{L_{\dot{\alpha}}}, C_{L_{\dot{\alpha}}}$

associated with quasi-steady and added-mass

quasi-steady and added-mass

Brunton and Rowley, in preparation.

Frequency response

input is $\ddot{\alpha}$ (α is angle of attack)

output is lift coefficient $\,C_L\,$

Pitching at leading edge

Model without additional fast dynamics [QS+AM (r=0)] is inaccurate in crossover region

Models with fast dynamics of ERA model order >3 are converged

Punchline: additional fast dynamics (ERA model) are essential

Brunton and Rowley, in preparation.

Brunton and Rowley, in preparation.

Nonlinear Unsteady Models

What we know

- I. Hopf bifurcation at $\, lpha = 28^\circ \,$
- 2. Linear models capture conjugate pair
- 3. Linear models based on overarching nonlinear model (Navier-Stokes)

Is it possible to obtain nonlinear reduced order model?

For $\alpha_0 < \alpha_{crit}$, equilibrium x=0 is stable, with linear dynamics given by:

Brunton and Rowley, AIAA ASM 2011

(Indicial) Step Response

Previously, models are based on aerodynamic step response

Idea: Maneuver aircraft for 5-10 minutes, back out the Markov parameters, and construct ERA model.

Random Input Maneuver

Idea: Maneuver aircraft for 5-10 minutes, back out the Markov parameters, and construct ERA model.

 $\frac{d}{dt} \begin{bmatrix} \mathbf{x} \\ \alpha \\ \dot{\alpha} \end{bmatrix} = \begin{bmatrix} A_r & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \alpha \\ \dot{\alpha} \end{bmatrix} + \begin{bmatrix} B_r \\ 0 \\ 1 \end{bmatrix} \ddot{\alpha}$

 $C_L = \begin{bmatrix} C_r & C_{L_{\alpha}} & C_{L_{\dot{\alpha}}} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \alpha \\ \dot{\alpha} \end{bmatrix} + C_{L_{\ddot{\alpha}}} \ddot{\alpha}$

Observer/Kalman Filter Identification (OKID)

Juang, Phan, Horta, Longman, 1991.

Brunton and Rowley, submitted.

- I. Motivation and Overview
 - Low Reynolds number aerodynamic models
 - Pitch, plunge and high angle-of-attack maneuvers
- 2. Review of Previous Work
 - State-space aerodynamic models
 - Indicial response and OKID
- 3. Wind Tunnel Experiments
 - Physical setup and configuration
 - Aggressive system identification maneuver
 - Models at $\alpha_0 = 0^\circ$ and $\alpha_0 = 10^\circ$
- 4. Conclusions and Future Work

- I. Motivation and Overview
 - Low Reynolds number aerodynamic models
 - Pitch, plunge and high angle-of-attack maneuvers
- 2. Review of Previous Work
 - State-space aerodynamic models
 - Indicial response and OKID
- 3. Wind Tunnel Experiments
 - Physical setup and configuration
 - Aggressive system identification maneuver
 - Models at $\alpha_0 = 0^\circ$ and $\alpha_0 = 10^\circ$
- 4. Conclusions and Future Work

Andrew Fejer Unsteady Flow Wind Tunnel Principle Investigator - Dave Williams

Andrew Fejer Unsteady Flow Wind Tunnel Principle Investigator - Dave Williams

(.6m x .6m x 3.5m test section)

NACA 0006 Airfoil

Chord Length: 0.246 m

Free Stream Velocity: 4.00 m/s

1.0 Convection time = .06 seconds

Reynolds Number: 65,000

Pitch point x/c = .11 (11% chord)

Velocity measurement: Pitot tube, Validyne DP-103 pressure transducer
Force measurement: ATI Nano25 force transducer
Pushrod position measurement: linear potentiometer
Pushrod actuation: Copley servo tubes

NACA 0006 Airfoil (24.6 cm chord)

- Push rods and sting

Servo tubes

NACA 0006 Model

Summary

- I. Account for hinge constraint nonlinearity
- 2. Rotate force vectors to obtain lift force
- 3. Subtract out point mass effects (mechanical)

$$\begin{bmatrix} L \\ D \end{bmatrix} = \underbrace{\begin{bmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{bmatrix}}_{R_{\alpha}} \begin{bmatrix} N \\ P \end{bmatrix}$$

$$C_L = \begin{bmatrix} C_r & C_{L_{\alpha}} & C_{L_{\dot{\alpha}}} \end{bmatrix} \begin{bmatrix} \ddot{\alpha} \\ \alpha \\ \dot{\alpha} \end{bmatrix} + C_{L_{\ddot{\alpha}}} \ddot{\alpha}$$

+/- 5 degree manuever, excites large range of frequencies Reduced order model outperforms Theodorsen at low and high frequencies

AOA = 0 degrees

Three system ID maneuvers

AOA = 0 degrees

We tried three system ID maneuvers: A, B and C.

System ID maneuver

Bootstrap: It is important that models obtained from each ID maneuver accurately reproduce every other maneuver

AOA = 0 degrees

Bode plot and Markov parameters

Combined maneuver effectively blends each of the three individual maneuvers

Added-mass is not exclusively in first Markov parameter, but is instead distributed in the first few, contributing to the added-mass "bump"

AOA = 0 degrees

+/- 10 degree manuever

AOA = 10 degrees

Theodorsen is significantly worse, due to large base angle of attack and flow separation effects.

Bode plot and Markov parameters

Flatter Markov parameters indicate smaller lift coefficient slope

Convergence to asymptote at lower frequency indicate longer transient decay to steady state (more separated flow)

AOA = 10 degrees

Trend is similar to DNS, where low frequency asymptote converges at lower frequency, for larger angle of attack.

Pure Plunge

BEL PR NYMEN

- I. Motivation and Overview
 - Low Reynolds number aerodynamic models
 - Pitch, plunge and high angle-of-attack maneuvers
- 2. Review of Previous Work
 - State-space aerodynamic models
 - Indicial response and OKID
- 3. Wind Tunnel Experiments
 - Physical setup and configuration
 - Aggressive system identification maneuver
 - Models at $\alpha_0 = 0^\circ$ and $\alpha_0 = 10^\circ$
- 4. Conclusions and Future Work

Outline

- I. Motivation and Overview
 - Low Reynolds number aerodynamic models
 - Pitch, plunge and high angle-of-attack maneuvers
- 2. Review of Previous Work
 - State-space aerodynamic models
 - Indicial response and OKID
- 3. Wind Tunnel Experiments
 - Physical setup and configuration
 - Aggressive system identification maneuver
 - Models at $\alpha_0 = 0^\circ$ and $\alpha_0 = 10^\circ$

4. Conclusions and Future Work

Accurate, efficient linear reduced order models

- Models are linearization of full nonlinear model
- Constructed for specific geometry, Reynolds number
- Based on various input maneuvers

Modeling techniques applied to wind tunnel experiment at IIT

- Aggressive system ID maneuver developed, based on canonical maneuver
- Pitch and plunge dynamics investigated
- Reduced order model outperforms Theodorsen's model for all cases, especially at large angle of attack

Future Work:

- Use pitch/plunge models for optimal control (maneuver, lift stabilization)
- Combine linearized models into nonlinear model

Wagner, 1925.

Brunton and Rowley, AIAA ASM 2009-2011

Theodorsen, 1935.

OL, Altman, Eldredge, Garmann, and Lian, 2010

Questions?

3 Types of Unsteadiness

3 Types of Unsteadiness

Brunton and Rowley, AIAA ASM 2009

Caution Against Naive OKID

black - correct model

blue - using step response as input to OKID without modification

green - using step in pitch rate as input to OKID without modification

red - applying our model structure to OKID output

Brunton and Rowley, submitted.

Wing Maneuver

Pseudo-random sequence of ramp-hold maneuvers

Amplitude is constrained to be in +/- 10 degrees (or +/- 5)

